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0 Actions of Hopf quasigroups

Tomasz Brzeziński and Zhengming Jiao

Abstract. Definitions of actions of Hopf quasigroups are discussed in the context

of Long dimodules and smash products. In particular, Long dimodules are defined

for Hopf quasigroups and coquasigroups, and solutions to Militaru’s D-equation are

constructed. A necessary compatibility condition between action and multiplica-

tion of a Hopf quasigroup acting on its quasimodule Hopf quasigroup for a smash

product construction is derived.
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1. Introduction

Hopf quasigroups and Hopf coquasigroups were introduced recently in [3] in order

to capture the quasigroup features of the (algebraic) 7-sphere. These are generalisa-

tions of Hopf algebras that are not required to be (co)associative. The aim of this

paper is to discuss possible definitions of actions of Hopf quasigroups and coactions

of Hopf coquasigroups. Since Hopf quasigroups are not required to be associative,

the natural compatibility between the multiplication and action should be different

from the associative law. It seems, however, that there is no universal compatibility

condition that could be imposed. What relationship between the multiplication and

action should be required depends on the application in mind. For example, in [2],

where Hopf modules for Hopf quasigroups were defined, a particular compatibility

condition was requested that stems naturally from the relationship between quasi-

groups (or loops) and Hopf quasigroups. In this paper we use the same condition for

the definition of Long dimodules and we prove that a different (stronger) condition

is needed for construction of smash products of Hopf quasigroups.

A Long dimodule over a Hopf algebra H is a vector space M with a left H-action

and a right H-coaction that is required to be left H-linear (with respect to the left

H-module structure on H⊗M induced by the multiplication in H). Long dimodules

were introduced in [4] in the context of Brauer groups, and were used in [5] to solve a

class of nonlinear equations termed D-equations which we describe presently. Given a
1
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vector space M , a linear endomorphism R : M⊗M → M⊗M is said to be a solution

of the D-equation if

R12 ◦R23 = R23 ◦R12, (1.1)

where R12 = R⊗id, R23 = id⊗R : M⊗M⊗M → M⊗M⊗M . In the first part of this

paper we introduce Long-dimodules for Hopf quasigroups and Hopf coquasigroups

and show that they are a source of solutions to the D-equation.

Smash or cross products of Hopf quasigroups and coproducts of Hopf coquasi-

groups were introduced in [3] as the ‘quasi’ versions of their Hopf algebra predeces-

sors [6]. The construction of a smash product involves two Hopf quasigroups, one

acting on the other. The action is assumed to be associative. Since multiplication in

a Hopf quasigroup is not associative this assumption might appear artificial. In the

second part of this paper we show that, in fact, this assumption is almost necessary

(it is truly necessary in the case of a bijective antipode). More precisely, we study

the smash product construction without assuming that the action is associative, and

then derive the necessary condition for the existence of the antipode, Eq. (4.6), which

turns out to be the associativity of the action up to the antipodal operation. A similar

analysis is then carried out for smash coproducts of Hopf coquasigroups.

All algebras and coalgebras are over a field k. Unadorned tensor product symbol

represents the tensor product of k-vector spaces.

2. Preliminaries on Hopf (co)quasigroups

The aim of this section is to recall the definition of a Hopf quasigroup and a Hopf

coquasigroup from [3]. Let H be a vector space that is a unital (not necessarily

associative) algebra with product µ : H⊗H → H and unit 1 : k → H , and a counital

(not necessarily coassociative) coalgebra with coproduct ∆ : H → H⊗H and counit

ε : H → k that are algebra homomorphisms.

H is called a Hopf quasigroup provided ∆ is coassociative and there exists a linear

map S : H → H such that

µ ◦ (id⊗µ) ◦ (S⊗id⊗id) ◦ (∆⊗id) = ε⊗id = µ ◦ (id⊗µ) ◦ (id⊗S⊗id) ◦ (∆⊗id) (2.1)

and

µ ◦ (µ⊗id) ◦ (id⊗id⊗S) ◦ (id⊗∆) = id⊗ε = µ ◦ (µ⊗id) ◦ (id⊗S⊗id) ◦ (id⊗∆). (2.2)

H is called a Hopf coquasigroup provided µ is associative and there exists a linear

map S : H → H such that

(µ⊗id) ◦ (S⊗id⊗id) ◦ (id⊗∆) ◦∆ = 1⊗id = (µ⊗id) ◦ (id⊗S⊗id) ◦ (id⊗∆) ◦∆ (2.3)

and

(id⊗µ) ◦ (id⊗id⊗S) ◦ (∆⊗id) ◦∆ = id⊗1 = (id⊗µ) ◦ (id⊗S⊗id) ◦ (∆⊗id) ◦∆. (2.4)
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We use Sweedler notation for coproduct: for all h ∈ H , ∆(h) = h(1)⊗h(2) (sum-

mation implicit). Thus, in terms of the Sweedler notation, the Hopf quasigroup

conditions (2.1)–(2.2) come out as,

S(h(1))(h(2)g) = h(1)(S(h(2))g) = (gh(1))S(h(2)) = (gS(h(1)))h(2) = gε(h),

for all g, h ∈ H . Dually, the Hopf coquasigroup conditions (2.3)–(2.4) come out as

S(h(1))h(2)(1)⊗h(2)(2) = h(1)S(h(2)(1))⊗h(2)(2) = 1⊗h

and

h(1)(1)⊗h(1)(2)S(h(2)) = h(1)(1)⊗S(h(1)(2))h(2) = h⊗1.

Note that since ∆ is not coassociative in this case, the standard Sweedler’s relabeling

rules cannot be used.

As for standard Hopf algebras, the map S is called an antipode. It is proven in

[3] that the antipode is antimultiplicative and anticomultiplicative and it immedi-

ately follows from (any of) equations (2.1)–(2.4) that, for all h ∈ H , S(h(1))h(2) =

h(1)S(h(2)) = ε(h)1, i.e. S enjoys the standard antipode property.

3. Quasimodules and Long dimodules for Hopf quasigroups

The aim of this section is to introduce Long dimodules over Hopf quasigroups

and Hopf coquasigroups and to prove that they provide solutions to the Militaru

D-equation (1.1).

3.1. Quasimodules over Hopf quasigroups. First recall from [2] the defi-

nition of a quasimodule over a Hopf quasigroup and a quasicomodule over a Hopf

coquasigroup.

Definition 3.1 ([2]). Let H be a Hopf quasigroup, a left H-quasimodule is a pair

(M, ρM), where M is a k-vector space, ρM : H⊗M → M , h⊗m 7→ h·m, is a linear

map such that, for all m ∈ M and h ∈ H ,

1·m = m, h(1) ·(S(h(2))·m) = ε(h)m = S(h(1))·(h(2) ·m). (3.1)

A morphism of left H-quasimodules is defined as a left H-linear map, i.e. a k-

linear map f : M → N such that, for all m ∈ M , h ∈ H , f(h ·m) = h · f(m). The

category of left H-quasimodules over a Hopf quasigroup H is denoted by HQM.

Remark 3.2. The definition of a quasimodule is intended to reflect that a Hopf

quasigroup is a linearisation of a loop. Recall from [1] that a loop is a set L with

a binary operation L × L → L, (a, b) 7→ ab that has a neutral element e ∈ L (i.e.

ae = ea = a) and such that, for all a ∈ L, there exists a−1 ∈ L satisfying, for all

b ∈ L,

a(a−1b) = a−1(ab) = (ba−1)a = (ba)a−1 = b.
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If L is a loop then the k-algebra H = kL spanned by the elements of L is a Hopf

quasigroup with unit e and multiplication induced from that in L, the comultiplication

∆(a) = a⊗a, counit ε(a) = 1 and antipode S(a) = a−1, for all a ∈ L.

When discussing actions of loops on sets it is natural to require that a left L-set

is a set X with an operation L×X → X , (a, x) 7→ a · x, that is compatible with the

unit and inverses in L, i.e.

e·x = x, a−1 ·(a·x) = a·(a−1 ·x) = x.

Then X is an L-set if and only if kX is a kL-quasimodule.

Remark 3.3. Let H be a Hopf quasigroup.

(1) H is a left H-quasimodule with the multiplication as action and so is the

tensor product H⊗M , where M is an H-quasimodule. The H-action on H⊗M is

given by the multiplication in H and by identity on M . Note, however, that the

action ρM : H⊗M → M is not a morphism of quasimodules. Note, further, that an

associative left H-module M can be viewed as a left H-quasimodule. In this case the

action is a morphism in HQM.

(2) The field k is a right H-quasimodule with trivial action h ·α = ε(h)α. Fur-

thermore, if M,N ∈ HQM, then M⊗N is also an object in HQM with the diagonal

action

h·(m⊗n) = h(1) ·m⊗h(2) ·n.

This makes the category of quasimodules into a monoidal category (HQM,⊗, k).

The category QMH of right H-quasimodules is defined similarly. Dually,

Definition 3.4 ([2]). Let H be a Hopf coquasigroup, a right H-quasicomodule is

a pair (M, ρM ), where M is a k-vector space and ρM : M → M⊗H , m 7→ m(0)⊗m(1)

(summation implicit), is a linear map such that, for all m ∈ M ,

m(0)ε(m(1)) = m, m(0)(0)⊗m(0)(1)S(m(1)) = m⊗1 = m(0)(0)⊗S(m(0)(1))m(1). (3.2)

The category of right H-quasicomodules over a Hopf coquasigroup H with H-

colinear maps as morphisms is denoted by QMH . The category HQM of left H-

quasicomodules is defined similarly.

By considerations dual to those in Remarks 3.2–3.3, examples of right H-coquasi-

comodules include (H,∆) and (k, 1). Also, if (M, ρM) is a quasicomodule, ρM is not

a morphism in QMH from (M, ρM) to (M⊗H, id⊗∆). Furthermore, (QMH ,⊗, k)

is a monoidal category, where the coaction on M⊗N is given by

ρM⊗N (m⊗n) = m(0)⊗n(0)⊗m(1)n(1).
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3.2. Long dimodules over Hopf quasigroups.

Definition 3.5. Let H be a Hopf quasigroup. A Long H-dimodule is a triple

(M, ρM , ρM), where (M, ρM) is a left H-quasimodule, (M, ρM) is a unital and coas-

sociative right H-comodule such that the following compatibility condition holds

ρM ◦ ρM = (ρM ⊗H) ◦ (H ⊗ ρM). (3.3)

Writing h·m for ρM(h⊗m) and using the Sweedler notation for coaction ρM (m) =

m(0) ⊗m(1), the conditions (3.3) read explicitly, for all h ∈ H and m ∈ M ,

(h·m)(0) ⊗ (h·m)(1) = h·m(0) ⊗m(1). (3.4)

The category of Long H-dimodules over a Hopf quasigroup H with H-linear H-

colinear maps is denoted by HL
H .

Example 3.6. Let L be a loop and consider a family of L-sets {Xa | a ∈ L}.

Define M :=
⊕

a∈L kXa. Then M is a Long dimodule over a Hopf quasigroup kL,

provided each of the Xa is equipped with the kL-coaction x 7→ x⊗a and
⊕

a∈L kXa

is equipped with the resulting direct sum action and coaction; compare [5, Exam-

ple 3.2(1)].

Lemma 3.7. Let H be a Hopf quasigroup, (M, ρM , ρM) ∈ HL
H . Then, for all

m ∈ M and h ∈ H,

ρM (S(m(1))·m(0)) = S(m(1)
(2))·m

(0) ⊗m(1)
(1) (3.5)

and

ρM(h·(S(m(1))·m(0))) = h·(S(m(1)
(2))·m

(0))⊗m(1)
(1). (3.6)

Proof. Equation (3.5) follows by the compatibility condition (3.4) and by the

coassociativity of the coaction ρM . Then equation (3.6) is a simple consequence of

(3.4) and (3.5). ⊔⊓

The following propositions are the Hopf-quasigroup versions of [5, Example 3.2

& Remark 3.3].

Proposition 3.8. Let H be a Hopf quasigroup. Then, for any left H-quasimodule

(M, ρM), M ⊗ H is a Long H-dimodule with action ρM⊗H = ρM⊗id and coaction

ρM⊗H = id⊗∆. The functor •⊗H : HQM →HL
H is the right adjoint of the forgetful

functor HL
H → HQM.

Proof. By the unitality of action ρM , 1·(m⊗k) = m⊗k. For all m ∈ M, k, h ∈ H ,

h(1) ·(S(h(2))·(m⊗k)) = h(1) ·(S(h(2))·m)⊗k = ε(h)m⊗k,

where the first equality follows by the definition of ρM⊗H and the second and third

ones by equations (3.1). The coassociativity of comultiplication ∆ and the couni-

tality of ε imply that (M⊗H, ρM⊗H) is a right H-comodule. Finally, combining the
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definitions of ρM⊗H and ρM⊗H we obtain

ρM⊗H(h·(m⊗k)) = ρM⊗H(h·m⊗k) = h·m⊗k(1)⊗k(2) = h·(m⊗k)(0)⊗(m⊗k)(1).

Therefore, the compatibility condition (3.4) between ρM⊗H and ρM⊗H holds, and

M⊗H is a Long H-dimodule.

The unit η and the counit σ of adjunction are defined as follows. For all Long

H-dimodules (M, ρM , ρM), ηM = ρM , and, for all quasimodules (N, ρN), σN = id⊗ε :

N⊗H → N . Note that ηM is a morphism of Long H-dimodules by the coassociativity

of ρM and the compatibility condition (3.3). The triangular identities follow by the

counitality of ρM . ⊔⊓

Proposition 3.9. Let H be a Hopf quasigroup. For any right H-comodule

(M, ρM), H ⊗ M is a Long H-dimodule by the action ρH⊗M = µ⊗id and coaction

ρH⊗M = id⊗ρM .

Proof. By the definition of ρH⊗M and ρH⊗M , the Hopf quasigroup stucture of H

and the right H-comodule structure of M make H⊗M a left H-quasimodule and a

right H-comodule, respectively. We need only to check the compatibility between

ρH⊗M and ρH⊗M . As a matter of fact,

ρH⊗M(h·(k⊗m)) = ρH⊗M(hk⊗m) = hk⊗m(0)⊗m(1) = h·(k⊗m)(0)⊗(k⊗m)(1).

This completes the proof. ⊔⊓

Remark 3.10. Note the asymmetry in statements of Propositions 3.8 and 3.9.

In the latter we stopped short from claiming that the functor H⊗• : MH → HL
H

and the forgetful functor HL
H → MH form an adjoint pair. For a Long H-dimodule

(M, ρM , ρM) the expected counit of this adjunction σM would be given by the action

ρM , which, as explained in Remark 3.3(1), is not a morphism of quasimodules, hence

not a morphism in HL
H . Note that the expected unit ηN = id⊗1 is a comodule map,

and that σ and η satisfy the triangular identities by the unitality of ρM .

As explained in Remark 3.3(2) the field k is a left H-quasimodule by the counit ε,

and it is a right H-comodule with the coaction given by the unit of H . It follows from

Propositions 3.8 and 3.9 that H is a Long H-dimodule in two different ways: with

multiplication in H and the trivial coaction id⊗1, and with trivial action id⊗ε and

comultiplication ∆. Generalising this observation we obtain the following corollary

of Propositions 3.8 and 3.9.

Corollary 3.11. (1) Let H be a Hopf quasigroup and let (M, ρM) be a left H-

quasimodule. Then (M, ρM , ρM), where ρM : M → M⊗H, m 7→ m⊗1, is a Long

H-dimodule.

(2) Let (M, ρM) be a right comodule over a Hopf quasigroupH. Then (M, ρM , ρM),

where ρM : H⊗M → M , h⊗m 7→ ε(h)m, is a Long H-dimodule.
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Since (k, ε) is an H-quasimodule, Corollary 3.11 implies that (k, ε, 1) is a Long

H-dimodule which is the first step in establishing that (HL
H ,⊗, k) is a monoidal

category; see [5, Remark 3.3(2)] for the Hopf algebra case. The second step, the

definition of a tensor product of Long H-dimodules is contained in the following

Proposition 3.12. Let H be a Hopf quasigroup, (M, ρM , ρM) and (N, ρN , ρ
N ) be

Long H-dimodules. Then M⊗N is a Long H-dimodule with the diagonal action and

coaction, for all m ∈ M , n ∈ N , h ∈ H,

ρM⊗N(h⊗m⊗n) := h(1) ·m⊗h(2) ·n and ρM⊗N (m⊗n) := m(0)⊗n(0)⊗m(1)n(1).

Proof. Since 1 ∈ H is a grouplike element and actions ρM and ρN are unital, also

ρM⊗N is unital. To check the quasimodule property, take any m,∈ M and n ∈ N ,

and compute

h(1) ·(S(h(2))·(m⊗n)) = h(1) ·(S(h(3))(1) ·m)⊗h(2) ·(S(h(3))(2) ·n)

= h(1) ·(S(h(4))·m)⊗h(2) ·(S(h(3))·n) = ε(h)m⊗n,

by the anticomultiplicativity of the antipode and the quasimodule properties of M

and N . Similarly, S(h(1))·(h(2) ·(m⊗n)) = ε(h)m⊗n. Therefore, (M⊗N, ρM⊗N) is a

left H-quasimodule. (M⊗N, ρM⊗N) is a right H-comodule by the coassociativity of

coactions and multiplicativity of the coproduct in H . It remains to check that the

compatibility condition (3.4) holds. For all m ∈ M , n ∈ N and h ∈ H ,

ρM⊗N(h·(m⊗n)) = ρM⊗N(h(1) ·m⊗h(2) ·n)

= (h(1) ·m)(0)⊗(h(2) ·n)
(0)⊗(h(1) ·m)(1)(h(2) ·n)

(1)

= h(1) ·m
(0)⊗h(2) ·n

(0)⊗m(1)n(1) = h·(m⊗n)(0)⊗(m⊗n)(1),

where the Long H-dimodule compatibility conditions for M and N have been used

to obtain the second equality. ⊔⊓

Finally, we construct a solution to the Militaru D-equation (1.1).

Proposition 3.13. Let H be a Hopf quasigroup and let (M, ρM , ρM) be a Long

H-dimodule. Then the map

R(M,ρM ,ρM ) : M⊗M → M⊗M, m⊗n 7→ n(1) ·m⊗n(0),

is a solution of the D-equation.

Proof. Write R for R(M,ρM ,ρM ). Then, by the Long H-dimodule compatibility

condition (3.4), for all l, m, n ∈ M ,

R12 ◦R23(l⊗m⊗n) = R12(l⊗n(1) ·m⊗n(0)) = (n(1) ·m)(1) ·l⊗(n(1) ·m)(0)⊗n(0)

= m(1) ·l⊗n(1) ·m(0)⊗n(0) = R23(m(1) ·l⊗m(0)⊗n)

= R23 ◦R12(l⊗m⊗n),
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i.e. R12 ◦R23 = R23 ◦R12, as required. ⊔⊓

3.3. Long dimodules over Hopf coquasigroups. Considerations regarding

Long dimodules over Hopf coquasigroups are dual to these regarding Hopf quasi-

groups, so we merely outline main observations without giving detailed proofs.

Definition 3.14. Let H be a Hopf coquasigroup. A Long H-dimodule is a triple

(M, ρM , ρM), where (M, ρM) is a unital and associative left H-module and (M, ρM )

is a right H-quasicomodule such that the compatibility condition (3.3) holds.

Note that we require a Long H-dimodule over a Hopf coquasigroup to satisfy the

same compatibility condition as in the case of a Hopf quasigroup as (3.3) is self-dual,

i.e. it is invariant under simultaneous interchanging actions with coactions, reversing

the order of composition and flipping tensor products (this last operation ensures

that H acts on the left and coacts on the right of M). The category of right Long H-

dimodules over a Hopf coquasigroup H with H-linear H-colinear maps as morphisms

will be denoted by HL
H . Dually to Lemma 3.7 we have

Lemma 3.15. Let H be a Hopf coquasigroup, M ∈ HL
H . Then, for all m ∈ M ,

ρM (S(m(1))·m(0)) = S(m(1)
(2))·m(0) ⊗m(1)

(1) (3.7)

and, for all m ∈ M,h ∈ H,

ρM(h·(S(m(1))·m(0))) = h·(S(m(1)
(2))·m(0))⊗m(1)

(1) (3.8)

As explained at the end of Section 3.1, the coaction of a quasicomodule is not

a morphism of quasicomodules. On the other hand, in view of the compatibility

condition (3.3) the action is H-colinear and is linear by the associativity, hence it

is a morphism of long H-dimodules. Therefore, Proposition 3.8 and Proposition 3.9

dualise to, respectively,

Proposition 3.16. For any right quasicomodule (M, ρM ) over a Hopf coquasi-

group H, H ⊗ M is a Long H-dimodule with action ρH⊗M = µ⊗id and coaction

ρH⊗M = id⊗ρM . The functor H⊗• : QMH →HL
H is the left adjoint of the forgetful

functor HL
H → QMH .

Proof. We only indicate the forms of the unit η and counit σ of this adjunction.

For any H-comodule (N, ρN), ηN = 1⊗id : N → H⊗N , and, for all Long-dimodules

(M, ρM , ρM), σM = ρM : H⊗M → M . ⊔⊓

Proposition 3.17. For any left module (M, ρM) over a Hopf coquasigroup H,

M ⊗ H is a Long H-dimodule with action ρM⊗H = ρM⊗id and coaction ρM⊗H =

id⊗∆.
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Given a Hopf coquasigroup H , every H-module can be made into a Long H-

dimodule and every H-quasicomodule can be made into a Long H-dimodule as in

Proposition 3.11. In particular H itself is a Long H-dimodule in two ways. The

category HL
H is a monoidal category with unit k and tensor product as in Propo-

sition 3.12. The formula in Proposition 3.13 with M ∈ HL
H gives a solution of

Militaru’s D-equation (1.1).

4. Module algebras for Hopf quasigroups and smash products

Smash or cross products for Hopf quasigroups and coproducts for Hopf coquasi-

groups were introduced in [3]. The former involve two Hopf quasigroups such that

one acts on the other respecting its algebra and coalgebra structures, i.e. H and A

are Hopf quasigroups such that A is an H-module Hopf quasigroup. The action of H

on A is assumed to be associative even though H itself is not an associative algebra.

The aim of this section is to re-examine the smash product construction from [3]

not assuming that A is an H-module algebra from the onset, but rather that A is

an H-quasimodule Hopf quasigroup. We then conclude that the associativity of the

H-action up to an application of the antipode is a necessary condition for the smash

product construction. In this way we slightly improve and clarify results of [3]. In the

second part of this section we discuss the smash coproduct of Hopf coquasigroups.

4.1. Module algebras and smash products for Hopf quasigroups. We

start with the definition of a quasimodule Hopf quasigroup.

Definition 4.1. Let H be a Hopf quasigroup, a (not necessarily associative)

algebra A is called a left H-quasimodule algebra if A is a left H-quasimodule and

(h(1) ·a)(h(2) ·b) = h·(ab), h·1A = ε(h)1A, (4.1)

for all h, g ∈ H, a, b, c ∈ A.

A coalgebra C is a left H-quasimodule coalgebra if C is a left H-quasimodule and

∆(h·c) = h(1) ·c(1)⊗h(2) ·c(2), ε(h·c) = ε(h)ε(c), (4.2)

for all h ∈ H, c ∈ C.

A Hopf quasigroup A is called a left H-quasimodule Hopf quasigroup if it is both

a left H-quasimodule algebra and coalgebra (by the same H-action).

Noting that the proof of [3, Lemma 4.13] does not rely on the associativity of the

action we can state

Lemma 4.2. The antipode of a left H-quasimodule Hopf quasigroup is H-linear.

The following theorem, which gives the necessary condition for the construction

in [3, Proposition 4.14], is the main result of this section.
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Theorem 4.3. Let H be a Hopf quasigroup, A a left H-quasimodule Hopf quasi-

group such that, for all h ∈ H and a ∈ A,

h(1)⊗h(2) ·a = h(2)⊗h(1) ·a. (4.3)

Then the following statements are equivalent:

(1) There is a smash product Hopf quasigroup A>⊳H built on A⊗H with tensor

product coproduct, counit and unit, and

(a⊗h)(b⊗g) = a(h(1) ·b)⊗h(2)g, (4.4)

S(a⊗h) = S(h(2))·S(a)⊗S(h(1)), (4.5)

for all a, b ∈ A, g, h ∈ H.

(2) For all g, h ∈ H and a ∈ A,

g ·(S(h)·a) = (gS(h))·a (4.6)

Proof. (1) ⇒ (2) If A>⊳H forms a Hopf quasigroup in the given way, then the

second of the Hopf quasigroup conditions (2.2) reads

((b⊗g)S((a⊗h)(1)))(a⊗h)(2) = ε(a)ε(h)b⊗g.

Developing the left hand side of this condition we obtain

((b⊗g)S((a⊗h)(1)))(a⊗h)(2) = ((b⊗g)S(a(1)⊗h(1)))(a(2)⊗h(2))

(4.5)
= ((b⊗g)(S(h(1))(1) ·S(a(1))⊗S(h(1))(2)))(a(2)⊗h(2))

(4.4)
= (b(g(1) ·(S(h(1))(1) ·S(a(1))))⊗g(2)S(h(1))(2))(a(2)⊗h(3))

(4.4)
= (b(g(1) ·(S(h(1))(1) ·S(a(1)))))((g(2)S(h(1))(2))·a(2))⊗(g(3)S(h(1))(3))h(2)

= (bS(g(1) ·(S(h(1))(1) ·a(1))))((g(2)S(h(1))(2))·a(2))⊗(g(3)S(h(1))(3))h(2).

The last equality follows by the H-linearity of the antipode S of A. Therefore,

(bS(g(1) ·(S(h(1))(1) ·a(1))))((g(2)S(h(1))(2))·a(2))⊗(g(3)S(h(1))(3))h(2) = ε(a)ε(h)b⊗g.

Next, apply id⊗ε to both sides of this equation, set b = g(1)·(S(h)(1)·a(1)) and replace

a, g, h by a(2), g(2), h(2), respectively, to obtain

((g(1) ·(S(h)(1) ·a(1)))S(g(2) ·(S(h)(2) ·a(2))))((g(3)S(h)(3))·a(3)) = g ·(S(h)·a).

Finally, the fact that A is an H-quasimodule coalgebra (4.2) combined with the

antipode property yield g ·(S(h)·a) = (gS(h))·a, as required.

(2) ⇒ (1) Assume that condition (4.6) holds. We need to check that A>⊳H is a

Hopf quasigroup.

Obviously, A>⊳H is a coassociative and counital coalgebra, the unitality of multi-

plication is a consequence of the unitality of the quasiaction, product and coproduct

in Hopf quasigroups. The comultiplication in A>⊳H is an algebra homomorphism by
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the quasimodule coalgebra property (4.2) and by (4.3). All this is not different from

the case of a smash product of standard Hopf algebras.

It remains to check the Hopf quasigroup identities (2.1) and (2.2). They are

checked by direct calculations, which we display presently indicating carefully what

assumptions and equalities are used at each stage. For all a, b ∈ A and g, h ∈ H ,

S((a⊗h)(1))((a⊗h)(2)(b⊗g)) = S(a(1)⊗h(1))((a(2)⊗h(2))(b⊗g))

(4.5)(4.4)
= (S(h(1))(1) ·S(a(1))⊗S(h(1))(2))(a(2)(h(2) ·b)⊗h(3)g)

(4.4)
= (S(h(1))(1) ·S(a(1)))(S(h(1))(2) ·(a(2)(h(2) ·b)))⊗S(h(1))(3)(h(3)g)

(4.1)
= S(h(1))(1) ·(S(a(1))(a(2)(h(2) ·b)))⊗S(h(1))(2)(h(3)g)

(2.1)
= ε(a)S(h(2))·(h(3) ·b)⊗S(h(1))(h(4)g)

(3.1)(2.1)
= ε(a)ε(h)b⊗g.

This proves the first of equations (2.1). Next

(a⊗h)(1)(S((a⊗h)(2))(b⊗g)) = (a(1)⊗h(1))(S(a(2)⊗h(2))(b⊗g))

(4.5)
= (a(1)⊗h(1))(S(h(3))·S(a(2))⊗S(h(2)))(b⊗g))

(4.4)
= (a(1)⊗h(1))(S(h(4))·S(a(2)))(S(h(3))·b)⊗S(h(2))g)

(4.4)
= (a(1)(h(1) ·((S(h(5))·S(a(2)))(S(h(4))·b))⊗h(2)(S(h(3))g)

(2.1)
= a(1)(h(1) ·((S(h(3))·S(a(2)))(S(h(2))·b))⊗g

(4.1)
= a(1)(h(1) ·(S(h(2))·(S(a(2))b))⊗g

(3.1)
= ε(h)a(1)(S(a(2))b)⊗g

(2.1)
= ε(a)ε(h)b⊗g,

thus proving the second of relations (2.1). It is the proof of (2.2) where the associative

law (4.6) is used. The first of identities (2.2) is proven by the following calculation

((b⊗g)(a⊗h)(1))S((a⊗h)(2)) = ((b⊗g)(a(1)⊗h(1)))S(a(2)⊗h(2))

(4.4)(4.5)
= (b(g(1) ·a(1))⊗g(2)h(1))(S(h(3))·S(a(1))⊗S(h(2)))

(4.4)
= (b(g(1) ·a(1)))((g(2)h(1))·(S(h(4))·S(a(2)))⊗(g(3)h(2))S(h(3))

(2.2)
= (b(g(1) ·a(1)))((g(2)h(1))·(S(h(2))·S(a(2)))⊗g(3)

(4.6)
= (b(g(1) ·a(1)))(((g(2)h(1))(S(h(2)))·S(a(2)))⊗g(3)

(2.2)
= ε(h)(b(g(1) ·a(1)))(g(2) ·S(a(2)))⊗g(3)=ε(h)(b(g(1) ·a(1)))S(g(2) ·a(2))⊗g(3)

(4.2)
= ε(h)(b(g(1) ·a)(1))S(g(1) ·a)(2)⊗g(2)

(2.2)
= ε(a)ε(h)b⊗g,
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where the seventh equality is a consequence of Lemma 4.2. Finally,

((b⊗g)S((a⊗h)(1)))(a⊗h)(2) = ((b⊗g)S(a(1)⊗h(1)))(a(2)⊗h(2))

(4.5)
= ((b⊗g)(S(h(1))(1) ·S(a(1))⊗S(h(1))(2))(a(2)⊗h(2))

(4.4)
= (b(g(1) ·(S(h(1))(1) ·S(a(1))))⊗g(2)S(h(1))(2))(a(2)⊗h(2))

(4.4)
= (b(g(1) ·(S(h(1))(1) ·S(a(1))))((g(2)S(h(1))(2))·a(2))⊗(g(3)S(h(1))(3))h(2)

(4.6)
= (b(g(1)S(h(1))(1) ·S(a(1)))((g(2)S(h(1))(2))·a(2))⊗(g(3)S(h(1))(3))h(2)

= (b((g(1)S(h(1))(1))(1) ·S(a(1)))((g(1)S(h(1))(1))(2) ·a(2))⊗(g(2)S(h(1))(2))h(2)

(4.2)
= (bS((g(1)S(h(1))(1) ·a)(1))(g(1)S(h(1))(1) ·a)(2)⊗(g(2)S(h(1))(2))h(2)

(2.2)
= ε(a)b⊗(gS(h(1)))h(2) = ε(a)ε(h)b⊗g.

The sixth equality is a consequence of the multiplicativity of the coproduct. Fur-

thermore, Lemma 4.2 is also used in the derivation of the seventh equality. This

completes the proof that A>⊳H is a Hopf quasigroup as required. ⊔⊓

4.2. Comodule coalgebras and smash coproducts for Hopf coquasi-

groups. The construction of smash coproducts of Hopf coquasigroups is dual to

the construction described in Section 4.1. Thus, first one needs to formulate the

definitions of a quasicomodule algebra and a quasicomodule coalgebra.

Definition 4.4. Let H be a Hopf coquasigroup. An associative and unital alge-

bra A is called a right H-quasicomodule algebra if (A, ρA) is a right H-quasicomodule

and, for all a, b ∈ A,

ρA(ab) = ρA(a)ρA(b), ρA(1) = 1⊗1. (4.7)

A counital (but not necessarily coassociative) coalgebra C is termed a right H-

quasicomodule coalgebra if (C, ρC), ρC : c 7→ c(0)⊗c(1), is a right H-quasicomodule

and, for all c ∈ C,

c(0)(1)⊗c(0)(2)⊗c(1) = c(1)
(0)⊗c(2)

(0)⊗c(1)
(1)c(2)

(1), ε(c(0))c(1) = ε(c). (4.8)

A right H-quasicomodule Hopf coquasigroup is a Hopf coquasigroup A that is a right

H-comodule algebra and H-comodule coalgebra (by the same coaction).

Dualising Lemma 4.2 one obtains (see [3, Lemma 5.13])

Lemma 4.5. The antipode of anH-quasicomodule Hopf coquasigroup is H-colinear.

The necessary conditions for and the construction of a smash coproduct of Hopf

coquasigroups are contained in the following (see [3, Proposition 5.14])
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Theorem 4.6. Let H be a Hopf coquasigroup, C a right H-quasicomodule Hopf

coquasigroup such that, for all c ∈ C, h ∈ H,

c(0)⊗c(1)h = c(0)⊗hc(1). (4.9)

Then the following statements are equivalent:

(1) There is a smash coproduct Hopf coquasigroup C ◮< H built on C⊗H with

tensor product algebra structure and counit, and with the coproduct and antipode

defined by

∆(h⊗c) = h(1)⊗c(1)
(0)⊗h(2)c(1)

(1)⊗c(2), (4.10)

S(h⊗c) = S(hc(1))⊗S(c(0)), (4.11)

for all c ∈ C, h ∈ H.

(2) For all c ∈ A,

c(0)(0)⊗S(c(0)(1))⊗c(1) = c(0)⊗S(c(1)(1))⊗c(1)(2). (4.12)

Proof. This is dual to Theorem 4.6, so we only indicate the key steps leading to

and using the coassociative law (4.12).

(1) ⇒ (2) If C ◮<H is a Hopf coquasigroup with the described structure, then

necessarily, for all c ∈ C and h ∈ H ,

(h⊗c)(1)S((h⊗c)(2)(1))⊗(h⊗c)(2)(2) = 1⊗1⊗h⊗c ; (4.13)

see the first of equations (2.3). Develop the left hand side of (4.13)

(h⊗c)(1)S((h⊗c)(2)(1))⊗(h⊗c)(2)(2)

(4.10)
= (h(1)⊗c(1)

(0))S(h(2)(1)c(1)
(1)

(1)
⊗c(2)(1)

(0))⊗(h(2)(2)c(1)
(1)

(2)
c(2)(1)

(1)⊗c(2)(2))

(4.11)
= (h(1)⊗c(1)

(0))(S(h(2)(1)c(1)
(1)

(1)
c(2)(1)

(0)(1))⊗S(c(2)(1)
(0)(0)))

⊗(h(2)(2)c(1)
(1)

(2)
c(2)(1)

(1)⊗c(2)(2))

= (h(1)S(c(1)
(1)

(1)
c(2)(1)

(0)(1))S(h(2)(1))⊗c(1)
(0)S(c(2)(1)

(0)(0))

⊗(h(2)(2)c(1)
(1)

(2)
c(2)(1)

(1)⊗c(2)(2)),

where the antimultiplicativity of the antipode is used for the last equality. Set h = 1

in the equality resulting from (4.13) to obtain

S(c(1)
(1)

(1)
c(2)(1)

(0)(1))⊗c(1)
(0)S(c(2)(1)

(0)(0))⊗c(1)
(1)

(2)
c(2)(1)

(1)⊗c(2)(2) = 1⊗1⊗1⊗c.

By Lemma 4.5,

S(S(c(2)(1))
(0)(1))S(c(1)

(1)
(1)
)⊗c(1)

(0)S(c(2)(1))
(0)(0)⊗c(1)

(1)
(2)
S(c(2)(1))

(1)⊗c(2)(2)

= 1⊗1⊗1⊗c.
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Apply (1⊗1⊗1⊗1⊗S⊗1⊗1) ◦ (1⊗1⊗1⊗ρC⊗1⊗1) ◦ (1⊗1⊗1⊗ρC⊗1) ◦ (1⊗1⊗1⊗∆) to

the equation above to conclude that

S(S(c(2)(1))
(0)(1))S(c(1)

(1)
(1)
)⊗c(1)

(0)S(c(2)(1))
(0)(0)⊗c(1)

(1)
(2)
S(c(2)(1))

(1)⊗c(2)(2)(1)
(0)(0)

⊗S(c(2)(2)(1)
(0)(1))⊗c(2)(2)(1)

(1)⊗c(2)(2)(2) = 1⊗1⊗1⊗c(1)
(0)(0)⊗S(c(1)

(0)(1))⊗c(1)
(1)⊗c(2).

Next, multiply the first component by the fifth one, the second component by the

fourth one and the third component by the sixth one to obtain

S(c(2)(2)(1)
(0)(1))S(S(c(2)(1))

(0)(1))S(c(1)
(1)

(1)
)⊗c(1)

(0)S(c(2)(1))
(0)(0)c(2)(2)(1)

(0)(0)

⊗c(1)
(1)

(2)
S(c(2)(1))

(1)c(2)(2)(1)
(1)⊗c(2)(2)(2) = S(c(1)

(0)(1))⊗c(1)
(0)(0)⊗c(1)

(1)⊗c(2).

The next step requires the use of the antipode property and the quasicomodule alge-

bra condition (4.7)

S(S(c(2)(1))c(2)(2)(1))
(0)(1)S(c(1)

(1)
(1)
)⊗c(1)

(0)(S(c(2)(1))c(2)(2)(1))
(0)(0)

⊗c(1)
(1)

(2)
(S(c(2)(1))c(2)(2)(1))

(1)⊗c(2)(2)(2) = S(c(1)
(0)(1))⊗c(1)

(0)(0)⊗c(1)
(1)⊗c(2).

The coassociative law (4.12) follows by the use of coquasigroup identity (2.3) and

application of ε to the fourth component. This completes the proof of the necessity

of (4.12).

(2) ⇒ (1) We only display the verification of coquasigroup identities (2.3) as this

is where (4.12) is used. First,

S((h⊗c)(1))(h⊗c)(2)(1)⊗(h⊗c)(2)(2)

(4.10)
= S(h(1)⊗c(1)

(0))(h(2)(1)c(1)
(1)

(1)
⊗c(2)(1)

(0))⊗h(2)(2)c(1)
(1)

(2)
c(2)(1)

(1)⊗c(2)(2)

(4.11)
= (S(h(1)c(1)

(0)(1))⊗S(c(1)
(0)(0)))(h(2)(1)c(1)

(1)
(1)
⊗c(2)(1)

(0))

⊗h(2)(2)c(1)
(1)

(2)
c(2)(1)

(1)⊗c(2)(2)

= S(c(1)
(0)(1))S(h(1))h(2)(1)c(1)

(1)
(1)
⊗S(c(1)

(0)(0))c(2)(1)
(0)

⊗h(2)(2)c(1)
(1)

(2)
c(2)(1)

(1)⊗c(2)(2)

(2.3)
= S(c(1)

(0)(1))c(1)
(1)

(1)
⊗S(c(1)

(0)(0))c(2)(1)
(0)⊗hc(1)

(1)
(2)
c(2)(1)

(1)⊗c(2)(2)

(4.12)
= S(c(1)

(1)
(1)
)c(1)

(1)
(2)(1)

⊗S(c(1)
(0))c(2)(1)

(0)⊗hc(1)
(1)

(2)(1)
c(2)(2)

(1)c(2)(1)
(1)⊗c(2)(2)

(2.3)
= 1⊗S(c(1)

(0))c(2)(1)
(0)⊗hc(1)

(1)c(2)(2)
(1)c(2)(1)

(1)⊗c(2)(2)

= 1⊗S(c(1))
(0)c(2)(1)

(0)⊗hS(c(1))
(1)c(2)(2)

(1)c(2)(1)
(1)⊗c(2)(2)

(4.7)
= 1⊗(S(c(1))c(2)(1))

(0)⊗h(S(c(1))c(2)(2))
(1)c(2)(1)

(1)⊗c(2)(2)
(2.3)
= 1⊗1⊗h⊗c,
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where the third equality is a consequence of the antimultiplicativity of the antipode,

and the seventh equality is a consequence of Lemma 4.5. Second,

(h⊗c)(1)S((h⊗c)(2)(1))⊗(h⊗c)(2)(2)

(4.10)
= (h(1)⊗c(1)

(0))S(h(2)(1)c(1)
(1)

(1)
⊗c(2)(1)

(0))⊗h(2)(2)c(1)
(1)

(2)
c(2)(1)

(1)⊗c(2)(2)

(4.11)
= (h(1)⊗c(1)

(0))(S(h(2)(1)c(1)
(1)

(1)
c(2)(1)

(0)(1))⊗S(c(2)(1)
(0)(0)))

⊗h(2)(2)c(1)
(1)

(2)
c(2)(1)

(1)⊗c(2)(2)

= h(1)S(c(1)
(1)

(1)
c(2)(1)

(0)(1))S(h(2)(1))⊗c(1)
(0)S(c(2)(1)

(0)(0))

⊗h(2)(2)c(1)
(1)

(2)
c(2)(1)

(1)⊗c(2)(2)

(4.12)
= h(1)S(c(1)

(1)
(1)
c(2)(1)

(1)
(1)
)S(h(2)(1))⊗c(1)

(0)S(c(2)(1)
(0))

⊗h(2)(2)c(1)
(1)

(2)
c(2)(1)

(1)
(2)
⊗c(2)(2)

= h(1)S(c(1)
(1)

(1)
S(c(2)(1))

(1)

(1)
)S(h(2)(1))⊗c(1)

(0)S(c(2)(1))
(0)

⊗h(2)(2)c(1)
(1)

(2)
S(c(2)(1))

(1)

(2)
⊗c(2)(2)

(4.7)
= h(1)S(c(1)S(c(2)(1)))

(1)
(1)
S(h(2)(1))⊗(c(1)S(c(2)(1)))

(0)

⊗h(2)(2)(c(1)S(c(2)(1)))
(1)

(2)
⊗c(2)(2)

(2.3)
= h(1)S(h(2)(1))⊗1⊗h(2)(2)⊗c

(2.3)
= 1⊗1⊗h⊗c,

where again the third equality is a consequence of the antimultiplicativity of the

antipode, and the fifth one is a consequence of Lemma 4.5. ⊔⊓
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