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Zp ACTIONS ON SYMPLECTIC MANIFOLDS
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R. J. ROWLETT

ABSTRACT.  A bordism classification is studied for periodic maps of prime

period p preserving a symplectic structure on a smooth manifold.  In sharp con-

trast to the corresponding oriented bordism, this theory contains nontrivial p-

torsion even when p is odd.  Calculation gives an upper limit on the size of this

p-torsion.

1. Introduction. Let p be a prime. This note considers the bordism classi-

fication of smooth Zp actions preserving a symplectic structure. Since the co-

efficient ring, the symplectic bordism ring 5p*, is not completely known, we

cannot expect a complete classification. However, we will discover that symplectic

equivariant bordism differs in significant ways from oriented equivariant bordism.

Thus the subject is probably worth further study.

This paper began in a conversation with R. E. Stong, who observed that

Proposition 3 is the correct description of the fixed point classification for sym-

plectic Z  actions. I am indebted to Professor Stong for his patience in dis-

covering several errors in preliminary versions of the paper.

2. Symplectic group actions. Conner and Floyd defined the notion of a

unitary group action in [3, p. 576]. We can easily extend their ideas to define a

symplectic group action.

Specifically, let G x M —* M be a smooth action of the finite group G on

an «-manifold M. Let t be the tangent bundle of M, and for k > n/4 let r(k)

be the Whitney sum of r and a trivial (4k - n)-plane bundle. The manifold M

is then symplectic if and only if the classifying map M —+ BO(4k) for r(k) lifts

to BSp(k) for all sufficiently large k.

Given such a lifting /, there exist bundle automorphisms / and / on r(k),

covering the identity map of M, such that I2 =J2 = -1 and // = -//. The

homotopy class of/determines the homotopy classes of / and /. Conversely,

the existence of/ and / implies that r(k) is quaternionic and hence that some

lifting / exists.

Every element g EG acts on rik) via dg on r and the identity map on the

trivial bundle. Suppose that for suitable /, and for every g EG, this mapping
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170 R. J. ROWLETT

dg x 1 commutes with J and /. We then say that the action of G preserves the

symplectic structure of M given by /.

LetF'CF be families of subgroups of G, as defined by [6, p. 3], with

F' possibly empty. Then Sp*(G, F, F') is the bordism module (over Sp*) of

structure-preserving G actions on symplectic manifolds M, such that the isotropy

subgroup Gm is in F for all zzz G M, and in F' for all zzz G 3Af. For a full def-

inition see [6, §2]. We write free for the family {{1}} and all for the family

of all subgroups of G. We write

a: Sp,(G, F, F') -+ SO*(G, F, F')

for the homomorphism that forgets that a G action preserves symplectic structure,

but remembers that it is orientation preserving.

Proposition 1. For any finite group G, there is an isomorphism

Spt(G, free) = Sp*(BG), which assigns to a free G action on M the map M/G

—* BG classifying the quotient map M —*■ M/G.

Since M/G is clearly a symplectic manifold, the proof is exactly like that

of [2,(19.1)].

3. Maps of prime period. We specialize to the case G =Z , where p is

a prime.

Proposition 2. Let o[M, 0] = [dM, 4>\G x 3Af] for any action 0: G x

M —*M. Then there is a long exact sequence

...-* Sp*(Zp,free) -^ Sp*(Zp, all)

-i- Sp*(Zp, all, free) -+ Sp*(Zp,free) -»•...

in which r and s are the forgetful homomorphisms.

The proof is standard; see [6, Proposition 22].

Given a sequence (ri) = (nx,n2.n(p-i)/2) °f nonnegative integers,

write N = Sfczzfc and BU((n)) = Tlk(BU(nk)).

Proposition 3. Ifp = 2, then there is an isomorphism

(1) Spm{Z2, att, free) s   £   Spm_Ak(BSp(k)).
4k<m

Ifp is odd, then there is an isomorphism

(2) Spm(Z   all, free) ~   £   Spm_4N(BU((n))),
4N<m

where the sum is over all sequences (zz) having 4N<m.

Proof.   Let p be any prime, and consider a Zp action on M, preserving a

symplectic structure described by bundle maps / and /. Then / also describes
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an underlying weakly complex structure on M.

Let F be a component of the fixed set of Zp. Then F is a submanifold

[2, §22] and the embedding of a tubular neighborhood converts its normal

bundle v into a bundle with Zp action. We have r(k) \F = rF © v © (4k - ri).

Since / and / are equivariant, v is invariant under / and /. Thus v is quaternionic

and F is symplectic.

For p = 2 this is all we need to know. Classifying the bundles v gives a

homomorphism from the left side of (1) to the right side. It is an isomorphism,

since M is equivariantly bordant to the disjoint union of the tubular neighbor-

hoods Dv, where the latter have antipodal Z2 action.

Forp odd, v splits as a sum of complex bundles vx © v2 © ••• © vp-\>

where the action of a generator TofZp on vk is multiplication by bk =

exp(2itik/p). Each vk is invariant under I, of course. However, / is an isomorphism

from vk to vp_k for each k, for if Tip) — exp(2mk/p)u then

T(Jv) = exp(2it ik/p)Jv = J(exp(2ni(p - k)/p)v).

Thus a homomorphism from the left side of (2) to the right side is given

by classifying the vk, 1 < k <p/2. In the other direction, given complex bundles

vk, let v he the direct sum of the vk © vk, with T acting on vk as multiplication

by bk and on vk as multiplication by b~k, and with / = conjugation. Then Dv

is a manifold with symplectic Z   action.

Remarks.   As a result of (1), Sp*(Z2, all, free) is known from work of

P. S. Landweber [4, Theorem 4.1]. The right side of (2) is more mysterious.

For odd p, notice the effect of the homomorphism

a: Spt(Zp, all, free) -> SO*(Zp, all, free).

If we combine (2) with § 38 of [2], we see that the class of v © v in Sp^(BU((ri)))

is sent to the class of v © v in S0*(5t/((«))).

4. Maps of odd prime period. For the rest of the paper, p will be an odd

prime.

Proposition 4. The homomorphism

Sp¿BZp,*)-+SO¿BZp,*\

on the reduced bordism groups ofBZp, is an isomorphism.

Proof. We know Sp* and SO* are isomorphic modulo 2-torsion [5].

Hence the same is true of Sp*(X, A) and SO^(X, A), for any CW-pair (X, A).

On the other hand, SOJßZ , *) contains only p-torsion [2, p. 90], arid by

similar considerations this is also true of Sp*(BZ , *).

The S0*-module structure of SO*(BZp, *) is described completely by [2,

Theorem (36.5)]. Let p: Sp*(BZp, *) —>• H*(BZp, *) he the homomorphism
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P-WJ] =/*[M], where [M] EH ¿M) is the orientation class. Then Sp+(BZp, *)

has one Sp„-module generator in each odd dimension, and a generator x.- G

Sp2j_x(BZp, *) is characterized by /¿(x-) # 0.

C'by

(3)

Write rj = exx)(2xii/p) and let a generator t EZ  act on a unit vector in

?(z,,.. . ,Z/) = (î?Z1,. .. ,T7Zy).

This free Z   action on S2/_1 yields a bordism element in BZp with p^O, but

it is only symplectic if/ is even.

In dimensions 4zzz 4- 1 we need new generators. If zz is odd, CP(zz) is a

symplectic manifold. Let % —♦ CP(zz) be the canonical complex line bundle and

write v = £ + kC. Then v + v —*■ CP(ri) is a symplectic bundle, isomorphic as

an oriented bundle to 2v —> CP(ri). Thus

do[v + v] = [S\k,6] eS02,n+k)+x(Zp,free),

where \k —* CP(2v) is the canonical complex line bundle and 0(?, —) is multi-

plication by rj in the fibers of S\k.

Proposition 5. Ifn = 1 and k = m- I, then

p[S\k,6] ±QEH4m + x(BZp,*).

Proof.   There is the following commutative diagram:

SA. -►S0

w 4 ■+BZ„

CPiD CP(2v) A. BU(1)

Here fk and g classify the bundles itx and 7r27r,, respectively, and q is the

obvious projection. Let a, EH2(BU(1)) be the universal Chern class. In the

cohomology of CP(2i>) there is the relation

g*(ax)2m = q*cx(2v)g*(cxx)2m-x,

whence

g*(ax)2m[CP(2v)] =±Cl(2z;)[CP(l)] = ±2cx(V)[CP(l)] ^0.

Thusg*[CP(2v)] ± 0 EHAm(BU(T)). It follows, for example by considering
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the spectral sequences of zr2 and it', that (fk)*[S\k/Zp] ¥= 0, as required. This

completes the proof.

Summarizing, we make the following choice of 5p#-module generators for

Sp*(BZp, *). In dimension 4zzz - 1 there is the usual inclusion54m_1/Zp C BZ¡

If zzz > 1 there is in dimension 4zzz + 1 the example fk: S\k/Zp —»■ BZp just

constructed. In dimension 1 we may take [Sx, i], where i: Sl —*■ BZp is in-

clusion.

5. Which free actions bound? In this section, we will determine what we

can of the homomorphism

Sp, © Sp,(BZp, *) = Sp,(Zp,free) -^ Sp,(Zp, all).

First, the restriction of r to the summand Sp* sends [M] to the class of

Zp x M, where Zp acts by multiplication on itself, and acts trivially on M. This

must be a monomorphism, since Sp* has no elements of order p.

Second, let 6: Zp x Sl -*■ Sx by 6(t, z) = r\z. If (Sx, 6) = o(M, 0) then

the fixed set of Z   in M would have to have codimension at least 4. Thus r:

Spx(BZp, *) —* Spx(Zp, all) is a monomorphism. In particular, Sp*(Zp, all) has

nontrivial p-torsion.

Proposition 6. The odd torsion in SpJZp, all) is the Zp-vector space

consisting of multiples [M] [Sx,<t>] for [M] ESp+.

Proof. As in the proof of Proposition 4,

Spm(Zp, all, free) Sá ̂ ,SO^(BU((n)))   modulo 2-torsion.

But the latter is free of odd torsion by [2, Theorem (18.1)]. Thus all odd

torsion in Sp¿(Zp, all) lies in the image of r, by Proposition 2. The actions on

S4m_1 are certainly sent to zero by r, and the examples [SXk, 6] were con-

structed in the image of 9, so we see that of the p-torsion classes only multiples

of [Sx, 6] can survive under r.

Thus we should consider the homomorphism Sp+/pSp+ —> Sp*(Z ,alt),

which sends [M] to [M] [Sx, 6]. Now SpJpSp* s SOJpSO* is a Zp-poly-

nomial algebra with one generator in each dimension divisible by four.

Proposition 7. For each / > 4 there exists a symplectic manifold M4'

so that [M4>] is indecomposable in S04¡/pS04j, and [M4/] [Sx, 6] = 0 G

*4/+i(¿p.a>0.

Proof.   First we define characteristic numbers

h„:Sp4j+x(BZp,*)-+Zp.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Let a G H\BZp; Zp) = Zp be nonzero. Given [M, f] G Sp4]+x(BZp, *) and

a partition w of/, let pw G H4i(M; Zp) be the modp reduction of the Pontrjagin

class corresponding to co. Then

hu[M,f}={p„a, §M]>eZp.

If X —► AT is a complex line bundle over a 4/-manifold, and if it: S\—*N

is the projection of its sphere bundle, then the tangent bundles t(SX) and t(N)

are related by the isomorphism t(SX) = 7t*t(A0 4- R. Iff: S\/Zp —* BZp

classifies SX —+ S\/Zp, we will then have an equality «w [S\/Zp,f] = pw [N].

In particular, for the generators we chose in dimensions 4m + l,m> 1,

(4) hu [S\k/Zp,fk] = pu [CP(2v -> CF(1))].

Lemma 1.   The characteristic numbers (4) vanish for all w.

We defer the proof of this lemma, and of two subsequent lemmas, tem-

porarily.

Now any p-torsion class [Af, 0] G <Sp4y+ x(Zp,free) can be expanded, in

our chosen basis, so that

[Af,/] = [N] [S1,6] + a linear combination of the [SXk/Zp,fk].

Therefore hw [M, f] = pw [N], by Lemma 1.

Next, let « and k be odd positive integers, and suppose v = % + M.(k - 1)C

—*■ CP(ri), where %, as before, is the canonical line bundle. Then M(n, k) =

CP(v + v) is a symplectic 2(n 4- fc)-manifold. As an oriented manifold,M(n,k)

is diffeomorphic to GP(2i>).

Lemma 2. Let p be an odd prime, and let « + k>8,n + k even.  There

exists an odd positive integer n so that M(n, k) is indecomposable in

S02(n+k)IPS02(n+ky

Assuming this lemma also, we choose such an M(n, k) and let X —>M(n, k)

he the canonical line bundle over CP(2i>). Then «w [S\/Zp,f] = pw [M(n, k)].

We need one last lemma.

Lemma 3. Ifpu[V] = 0 for all o>, then [V] [Sx,6] E Imda.

If 6' is the usual action on SX, it follows that

[SX, 0'] = [M(n, k)] [S1,0]    modulo Im 3a,

for both sides have the same characteristic numbers hu = pw [M(n, k)]. Since

o~x [SX, 0'] G Im 3, this completes the proof of the proposition.

We shall now prove the lemmas.
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Proof of Lemma 1. Let 1 4- a' and 1 - b he the Chern classes of the

canonical line bundles over CP(1) and CP(2v), respectively. Let it: CP(2v)

—*■ CP(1) he the projection, and let a = jtV. The Chern class of CP(2i>) is

then

c = (l+ a)2(l +b+ a)2(l + b)2m-K

Since a2 = 0, the Pontrjagin class is

p = (l+(b+ a)2)2(l + b2)2m-1.

If C(-, -) denotes the binomial coefficient, the rth Pontrjagin class may be

computed:

pr = C(2m, r)b2r + 4C(2m - 1, r - l)ab2r-x

= fC(2m - 1,r- l)[mb2r + 2rab2r~1].

Now suppose 03 = (rx,r2,...,rt), that is, rx + r^ + ••• +rt = m. Then

Pu, = Prx - Prt = 7^7t ^2m ~l>ri- VW2''' + ^¡äb^r']

= —^— ITc(2r« - l,r, - 1)   Wo2™ + 2m*ab2m-x\.

However, b2m + 2ab2m~1 =0,sopo} = 0 for all co.

Proof of Lemma 2. This is a straightforward (if laborious) application

of P. E. Conner's calculations [1]. In his notation, we have to choose an odd

integer « so that

!0modp,      if«+fc#pz-l,

Omodp2,    if«+it = pz-l.

Let 1 + e G H*(CP(ri)) be the Chern class of %. We will need the characteristic

class sf(2i>) = 25/10 = 2é, and the dual Chern class vx of 2i>. Since 2i> has Chern

class l+2c + c2,vi=(-l)\i + !)<*.

Now we apply Theorem 4.1 of [1] :

Sn+k [M(n, k)] = ± \-(k + l)(n + 1) 4- 2 ¿ C(n + k, i){-1)"~'(« - / + 1)1.

With n odd,

¿ C(n + k, í)(- l)n-'(n - i + 1) = n + 1 + ¿ (-l)/(/ + 1)C(« + *,/ + k)
<=i /=o

= C(n + k-2,n) + n + l,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



176 R. J. ROWLETT

SO

S„+k [M(n, k)] = 2C(n + k-2,n)-(n + l)(k - 1),

up to a sign, which we neglect hereafter.

Let zzz = zz + k, and write S(n, k) = Sn+k [M(n, k)]. Since S(3, zzz - 3) =

(1/3) (zzz + 1) (zzz - 4) (zzz - 6), we may take zz = 3if8<zzz<p + l, and also

when zzz = 0 modp, provided p > 3.

If m > p + 3, we may write zzz - 2 = arpr + a^p^1 + • • • + axp + a0

with r > 0, 0 < a¿ < p for all z, and ar > 0. If 1< t < r,

S(pf, m-pt) = 2at- (a0 + 1)   mod p.

In most cases, we can then take n = p* for some ?.

This procedure fails if all the af = a and 2a = a0 + 1 mod p. Since a > 0,

we must have zzz ̂ 1 mod p. If zzz ̂ 0, ± 1 mod p,p>3, we take zz = p - 2.

Then

C(m -2,p -2) =0   modp,   and

S(p-2,m-p + 2) = -(p-T)(m + 1)^0   modp.

Ifp = 3 and zzz =■ 0 mod 3, take zz = 7. Then a0 = 0, a = 2, and zzz = 6 mod 9, so

C(zzz - 2, 7)= 0 mod 3,and 5(7, zzz - 7) = -8(zzz - 8) ^ 0 mod 3.

Finally, suppose zzz = -1 mod p. Then a0 = p - 3 and a = p-l,sozzz =

pr+1 - 1. We take zz = pr. Since

C(pr+x-l,pr) = (p-l)   modp2,

and

(p'-+1-l)(p'+1-2)C(p'-+1-3)pO

= (pr+ x-pr-T) (p'+ x - f - 2)C(pr+ x~l,Pr),

c(Pr+ x - 3, po = (1/2) (y + i) ry + 2) (p -1) mod p2.

Thus,

5(pr,pr+1-pr-l)

= ry + 1) ry + 2) (p -1) - ry + 1) (-p' - 2)  mod p2

= p(pr+ l)(y + 2) = 2p   modp2.

This proves the lemma.

Proof of Lemma 3. Recall the powerful information provided by [2,

Theorem (46.3)]. Let /* be the ideal of elements x G SO* such that pw(x) = 0

mod p for all co. Then /„, is generated by p = [M°] E SO0 and by certain
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classes [MAk] G504fc for each k > 1. Furthermore, if a2/_j ES02j_x(Zp,free)

is represented by S2'~x with the action (3), then

(5) /»„.j 4- [M4] a2/_s + [M8] <*2/_9 + . . . = 0.

Of course, p[Sx ,8] =0. By Proposition 6, there exist elements bAk G

5c94k such that

a4fc+i - ^4k P1 > ̂ ]    mo(* ̂ m 3ff-

Then (5) impUes the relations

(p/34fc +/>4fc_4[Ai4] + — +MM4*"4] + [M4*])^1,»] =0,

modulo Im 9a. By an obvious inductive argument, [M4k] [Sx, 6] G Im 3a for

all k > 0. This proves the lemma, and finishes the proof of Proposition 7.

We have shown that the p-torsion in Sp^(Zp, all) is (after a dimension shift)

some quotient of a Z -polynomial algebra on four generators, corresponding to

the cases zzz = 0, 2, 4, 6. It remains to be determined what other relations may

He in the kernel of Sp+ —► Sp*(Z , all).

references

1. P. E. Conner, The bordism class of a bundle space, Michigan Math. J. 14 (1967),

289-303.    MR 37 # 3579.

2. P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Math,

und ihrer Grenzgebiete, N. F., Band 33, Springer-Verlag, Berlin; Academic Press, New York,

1964.    MR 31 # 750.

3. -, Periodic maps which preserve a complex structure, Bull. Amer. Math.

Soc. 70 (1964), 574-579.    MR 29 # 1653.

4. P. S. Landweber, On the symplectic bordism groups of the spaces Sp(n), HP(n),

and BSp(n), Michigan Math. J. 15 (1968), 145-153.    MR 37 # 2237.

5. S. P. Novikov, Homotopy properties of Thorn complexes, Mat. Sb. 57 (99) (1962),

407-442.  (Russian)    MR 28 # 615.

6. R. E. Stong, Unoriented bordism and actions of finite groups, Mem. Amer. Math.

Soc. No. 103 (1970).    MR 42 # 8522.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TENNESSEE, KNOXVILLE,

TENNESSEE 37916

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


