# $Z_{p}$ ACTIONS ON SYMPLECTIC MANIFOLDS 

BY<br>R. J. ROWLETT


#### Abstract

A bordism classification is studied for periodic maps of prime period $p$ preserving a symplectic structure on a smooth manifold. In sharp contrast to the corresponding oriented bordism, this theory contains nontrivial $p$ torsion even when $p$ is odd. Calculation gives an upper limit on the size of this p-torsion.


1. Introduction. Let $p$ be a prime. This note considers the bordism classification of smooth $Z_{p}$ actions preserving a symplectic structure. Since the coefficient ring, the symplectic bordism ring $S p_{*}$, is not completely known, we cannot expect a complete classification. However, we will discover that symplectic equivariant bordism differs in significant ways from oriented equivariant bordism. Thus the subject is probably worth further study.

This paper began in a conversation with R. E. Stong, who observed that Proposition 3 is the correct description of the fixed point classification for symplectic $Z_{p}$ actions. I am indebted to Professor Stong for his patience in discovering several errors in preliminary versions of the paper.
2. Symplectic group actions. Conner and Floyd defined the notion of a unitary group action in [3, p. 576]. We can easily extend their ideas to define a symplectic group action.

Specifically, let $G \times M \rightarrow M$ be a smooth action of the finite group $G$ on an $n$-manifold $M$. Let $\tau$ be the tangent bundle of $M$, and for $k>n / 4$ let $\tau(k)$ be the Whitney sum of $\tau$ and a trivial $(4 k-n)$-plane bundle. The manifold $M$ is then symplectic if and only if the classifying map $M \rightarrow B O(4 k)$ for $\tau(k)$ lifts to $B S p(k)$ for all sufficiently large $k$.

Given such a lifting $f$, there exist bundle automorphisms $I$ and $J$ on $\tau(k)$, covering the identity map of $M$, such that $I^{2}=J^{2}=-1$ and $I J=-J I$. The homotopy class of $f$ determines the homotopy classes of $I$ and $J$. Conversely, the existence of $I$ and $J$ implies that $\tau(k)$ is quaternionic and hence that some lifting $f$ exists.

Every element $g \in G$ acts on $\tau(k)$ via $d g$ on $\tau$ and the identity map on the trivial bundle. Suppose that for suitable $f$, and for every $g \in G$, this mapping

Received by the editors September 11, 1975.
AMS (MOS) subject classifications (1970). Primary 57D85; Secondary 57D15.
Key words and phrases. Symplectic manifold, periodic map.
$d g \times 1$ commutes with $I$ and $J$. We then say that the action of $G$ preserves the symplectic structure of $M$ given by $f$.

Let $F^{\prime} \subset F$ be families of subgroups of $G$, as defined by [6, p. 3], with $F^{\prime}$ possibly empty. Then $S p_{*}\left(G, F, F^{\prime}\right)$ is the bordism module (over $S p_{*}$ ) of structure-preserving $G$ actions on symplectic manifolds $M$, such that the isotropy subgroup $G_{m}$ is in $F$ for all $m \in M$, and in $F^{\prime}$ for all $m \in \partial M$. For a full definition see $[6, \S 2]$. We write free for the family $\{\{1\}\}$ and all for the family of all subgroups of $G$. We write

$$
\sigma: S p_{*}\left(G, F, F^{\prime}\right) \rightarrow S O_{*}\left(G, F, F^{\prime}\right)
$$

for the homomorphism that forgets that a $G$ action preserves symplectic structure, but remembers that it is orientation preserving.

Proposition 1. For any finite group $G$, there is an isomorphism $S p_{*}(G$, free $) \cong S p_{*}(B G)$, which assigns to a free $G$ action on $M$ the map $M / G$ $\rightarrow B G$ classifying the quotient map $M \rightarrow M / G$.

Since $M / G$ is clearly a symplectic manifold, the proof is exactly like that of [2, (19.1)].
3. Maps of prime period. We specialize to the case $G=Z_{p}$, where $p$ is a prime.

Proposition 2. Let $\partial[M, \phi]=[\partial M, \phi \mid G \times \partial M]$ for any action $\phi: G \times$ $M \rightarrow M$. Then there is a long exact sequence

$$
\begin{aligned}
\ldots & \rightarrow S p_{*}\left(Z_{p}, \text { free }\right) \xrightarrow{r} S p_{*}\left(Z_{p}, \text { all }\right) \\
& \xrightarrow{s} S p_{*}\left(Z_{p}, \text { all, free }\right) \xrightarrow{\partial} S p_{*}\left(Z_{p}, \text { free }\right) \rightarrow \ldots
\end{aligned}
$$

in which $r$ and $s$ are the forgetful homomorphisms.
The proof is standard; see [6, Proposition 2.2].
Given a sequence $(n)=\left(n_{1}, n_{2}, \ldots, n_{(p-1) / 2}\right)$ of nonnegative integers, write $N=\Sigma_{k} n_{k}$ and $B U((n))=\Pi_{k}\left(B U\left(n_{k}\right)\right)$.

Proposition 3. If $p=2$, then there is an isomorphism

$$
\begin{equation*}
S p_{m}\left(Z_{2}, a l l, f r e e\right) \cong \sum_{4 k<m} S p_{m-4 k}(B S p(k)) \tag{1}
\end{equation*}
$$

If $p$ is odd, then there is an isomorphism

$$
\begin{equation*}
S p_{m}\left(Z_{p}, \text { all, free }\right) \cong \sum_{4 N<m} S p_{m-4 N}(B U((n))) \tag{2}
\end{equation*}
$$

where the sum is over all sequences ( $n$ ) having $4 N \leqslant m$.
Proof. Let $p$ be any prime, and consider a $Z_{p}$ action on $M$, preserving a symplectic structure described by bundle maps $I$ and $J$. Then $I$ also describes
an underlying weakly complex structure on $M$.
Let $F$ be a component of the fixed set of $Z_{p}$. Then $F$ is a submanifold [ $2, \S 22$ ] and the embedding of a tubular neighborhood converts its normal bundle $\nu$ into a bundle with $Z_{p}$ action. We have $\tau(k) \mid F=\tau_{F} \oplus \nu \oplus(4 k-n)$. Since $I$ and $J$ are equivariant, $\nu$ is invariant under $I$ and $J$. Thus $\nu$ is quaternionic and $F$ is symplectic.

For $p=2$ this is all we need to know. Classifying the bundles $\nu$ gives a homomorphism from the left side of (1) to the right side. It is an isomorphism, since $M$ is equivariantly bordant to the disjoint union of the tubular neighborhoods $D \nu$, where the latter have antipodal $Z_{2}$ action.

For $p$ odd, $\nu$ splits as a sum of complex bundles $\nu_{1} \oplus \nu_{2} \oplus \cdots \oplus \nu_{p-1}$, where the action of a generator $T$ of $Z_{p}$ on $\nu_{k}$ is multiplication by $b^{k}=$ $\exp (2 \pi i k / p)$. Each $\nu_{k}$ is invariant under $I$, of course. However, $J$ is an isomorphism from $\nu_{k}$ to $\nu_{p-k}$ for each $k$, for if $T(v)=\exp (2 \pi i k / p) v$ then

$$
T(J v)=\exp (2 \pi i k / p) J v=J(\exp (2 \pi i(p-k) / p) v)
$$

Thus a homomorphism from the left side of (2) to the right side is given by classifying the $\nu_{k}, 1 \leqslant k<p / 2$. In the other direction, given complex bundles $\nu_{k}$, let $\nu$ be the direct sum of the $\nu_{k} \oplus \bar{\nu}_{k}$, with $T$ acting on $\nu_{k}$ as multiplication by $b^{k}$ and on $\bar{\nu}_{k}$ as multiplication by $b^{-k}$, and with $J=$ conjugation. Then $D \nu$ is a manifold with symplectic $Z_{p}$ action.

Remarks. As a result of (1), $S p_{*}\left(Z_{2}\right.$, all, free) is known from work of P. S. Landweber [4, Theorem 4.1]. The right side of (2) is more mysterious. For odd $p$, notice the effect of the homomorphism

$$
\sigma: S p_{*}\left(Z_{p}, \text { all, free }\right) \rightarrow S O_{*}\left(Z_{p}, \text { all }, \text { free }\right)
$$

If we combine (2) with §38 of [2], we see that the class of $v \oplus \bar{v}$ in $S p_{*}(B U((n)))$ is sent to the class of $v \oplus v$ in $S O_{*}(B U((n)))$.
4. Maps of odd prime period. For the rest of the paper, $p$ will be an odd prime.

PROPOSITION 4. The homomorphism

$$
S p_{*}\left(B Z_{p}, *\right) \rightarrow S O_{*}\left(B Z_{p}, *\right)
$$

on the reduced bordism groups of $B Z_{p}$, is an isomorphism.
Proof. We know $S p_{*}$ and $S O_{*}$ are isomorphic modulo 2 -torsion [5]. Hence the same is true of $S p_{*}(X, A)$ and $S O_{*}(X, A)$, for any CW-pair $(X, A)$. On the other hand, $S O_{*}\left(B Z_{p}, *\right)$ contains only $p$-torsion [2, p. 90], and by similar considerations this is also true of $S p_{*}\left(B Z_{p}, *\right)$.

The $S O_{*}$-module structure of $S O_{*}\left(B Z_{p}, *\right)$ is described completely by [2, Theorem (36.5)]. Let $\mu: S p_{*}\left(B Z_{p}, *\right) \rightarrow H_{*}\left(B Z_{p}, *\right)$ be the homomorphism
$\mu[M, f]=f_{*}[M]$, where $[M] \in H_{*}(M)$ is the orientation class. Then $S p_{*}\left(B Z_{p}, *\right)$ has one $S p_{*}$-module generator in each odd dimension, and a generator $x_{j} \in$ $S p_{2 j-1}\left(B Z_{p}, *\right)$ is characterized by $\mu\left(x_{j}\right) \neq 0$.

Write $\eta=\exp (2 \pi i / p)$ and let a generator $t \in Z_{p}$ act on a unit vector in $C^{j}$ by

$$
\begin{equation*}
t\left(z_{1}, \ldots, z_{j}\right)=\left(\eta z_{1}, \ldots, \eta z_{j}\right) . \tag{3}
\end{equation*}
$$

This free $Z_{p}$ action on $S^{2 j-1}$ yields a bordism element in $B Z_{p}$ with $\mu \neq 0$, but it is only symplectic if $j$ is even.

In dimensions $4 m+1$ we need new generators. If $n$ is odd, $\mathbf{C P}(n)$ is a symplectic manifold. Let $\boldsymbol{\xi} \rightarrow \mathbf{C P}(n)$ be the canonical complex line bundle and write $\nu=\xi+k \mathbf{C}$. Then $\nu+\bar{\nu} \longrightarrow \mathbf{C P}(n)$ is a symplectic bundle, isomorphic as an oriented bundle to $2 \nu \rightarrow \mathbf{C P}(n)$. Thus

$$
\partial \sigma[\nu+\bar{\nu}]=\left[S \lambda_{k}, \theta\right] \in S O_{2(n+k)+1}\left(Z_{p}, \text { free }\right),
$$

where $\lambda_{k} \rightarrow \mathbf{C P}(2 \nu)$ is the canonical complex line bundle and $\theta(t,-)$ is multiplication by $\eta$ in the fibers of $S \lambda_{k}$.

Proposition 5. If $n=1$ and $k=m-1$, then

$$
\mu\left[S \lambda_{k}, \theta\right] \neq 0 \in H_{4 m+1}\left(B Z_{p}, *\right)
$$

Proof. There is the following commutative diagram:


Here $f_{k}$ and $g$ classify the bundles $\pi_{1}$ and $\pi_{2} \pi_{1}$, respectively, and $q$ is the obvious projection. Let $\alpha_{1} \in H^{2}(B U(1))$ be the universal Chern class. In the cohomology of $\mathbf{C P}(2 \nu)$ there is the relation

$$
g^{*}\left(\alpha_{1}\right)^{2 m}=q^{*} c_{1}(2 v) g^{*}\left(\alpha_{1}\right)^{2 m-1}
$$

whence

$$
g^{*}\left(\alpha_{1}\right)^{2 m}[C P(2 \nu)]= \pm c_{1}(2 v)[C P(1)]= \pm 2 c_{1}(\nu)[C P(1)] \neq 0 .
$$

Thus $g_{*}[C P(2 v)] \neq 0 \in H_{4 m}(B U(1))$. It follows, for example by considering
the spectral sequences of $\pi_{2}$ and $\pi^{\prime}$, that $\left(f_{k}\right)_{*}\left[S \lambda_{k} / Z_{p}\right] \neq 0$, as required. This completes the proof.

Summarizing, we make the following choice of $S p_{*}$-module generators for $S p_{*}\left(B Z_{p}\right.$, *). In dimension $4 m-1$ there is the usual inclusion $S^{4 m-1} / Z_{p} \subset B Z_{p}$. If $m \geqslant 1$ there is in dimension $4 m+1$ the example $f_{k}: S \lambda_{k} / Z_{p} \rightarrow B Z_{p}$ just constructed. In dimension 1 we may take $\left[S^{1}, i\right]$, where $i: S^{1} \rightarrow B Z_{p}$ is inclusion.
5. Which free actions bound? In this section, we will determine what we can of the homomorphism

$$
S p_{*} \oplus S p_{*}\left(B Z_{p}, *\right) \cong S p_{*}\left(Z_{p}, \text { free }\right) \xrightarrow{r} S p_{*}\left(Z_{p}, \text { all }\right) .
$$

First, the restriction of $r$ to the summand $S p_{*}$ sends [ $M$ ] to the class of $Z_{p} \times M$, where $Z_{p}$ acts by multiplication on itself, and acts trivially on $M$. This must be a monomorphism, since $S p_{*}$ has no elements of order $p$.

Second, let $\theta: Z_{p} \times S^{1} \rightarrow S^{1}$ by $\theta(t, z)=\eta z$. If $\left(S^{1}, \theta\right)=\partial(M, \phi)$ then the fixed set of $Z_{p}$ in $M$ would have to have codimension at least 4. Thus $r$ : $S p_{1}\left(B Z_{p}, *\right) \rightarrow S p_{1}\left(Z_{p}\right.$, all $)$ is a monomorphism. In particular, $S p_{*}\left(Z_{p}\right.$, all $)$ has nontrivial $p$-torsion.

Proposition 6. The odd torsion in $S p_{*}\left(Z_{p}\right.$, all $)$ is the $Z_{p}$-vector space consisting of multiples $[M]\left[S^{1}, \phi\right]$ for $[M] \in S p_{*}$.

Proof. As in the proof of Proposition 4,

$$
S p_{*}\left(Z_{p}, \text { all }, \text { free }\right) \cong \sum S O_{*}(B U((n))) \text { modulo 2-torsion. }
$$

But the latter is free of odd torsion by [2, Theorem (18.1)]. Thus all odd torsion in $S p_{*}\left(Z_{p}\right.$, all) lies in the image of $r$, by Proposition 2. The actions on $S^{4 m-1}$ are certainly sent to zero by $r$, and the examples $\left[S \lambda_{k}, \theta\right]$ were constructed in the image of $\partial$, so we see that of the $p$-torsion classes only multiples of $\left[S^{1}, \theta\right]$ can survive under $r$.

Thus we should consider the homomorphism $S p_{*} / p S p_{*} \rightarrow S p_{*}\left(Z_{p}\right.$, all $)$, which sends $[M]$ to $[M]\left[S^{1}, \theta\right]$. Now $S p_{*} / p S p_{*} \cong S O_{*} / p S O_{*}$ is a $Z_{p}$-polynomial algebra with one generator in each dimension divisible by four.

Proposition 7. For each $j \geqslant 4$ there exists a symplectic manifold $M^{4 j}$ so that $\left[M^{4 j}\right]$ is indecomposable in $\mathrm{SO}_{4 j} / \mathrm{pSO}_{4 j}$, and $\left[M^{4 j}\right]\left[S^{1}, \theta\right]=0 \in$ $S p_{4 j+1}\left(Z_{p}, a l l\right)$.

Proof. First we define characteristic numbers

$$
h_{\omega}: S p_{4 j+1}\left(B Z_{p}, *\right) \rightarrow Z_{p}
$$

Let $\alpha \in H^{1}\left(B Z_{p} ; Z_{p}\right)=Z_{p}$ be nonzero. Given $[M, f] \in S p_{4 j+1}\left(B Z_{p}, *\right)$ and a partition $\omega$ of $j$, let $p_{\omega} \in H^{4 j}\left(M ; Z_{p}\right)$ be the $\bmod p$ reduction of the Pontrjagin class corresponding to $\omega$. Then

$$
h_{\omega}[M, f]=\left\langle p_{\omega} \alpha,[M]\right\rangle \in Z_{p}
$$

If $\lambda \rightarrow N$ is a complex line bundle over a $4 j$-manifold, and if $\pi: S \lambda \rightarrow N$ is the projection of its sphere bundle, then the tangent bundles $\tau(S \lambda)$ and $\tau(N)$ are related by the isomorphism $\tau(S \lambda)=\pi^{*} \tau(N)+\mathbf{R}$. If $f: S \lambda / Z_{p} \rightarrow B Z_{p}$ classifies $S \lambda \rightarrow S \lambda / Z_{p}$, we will then have an equality $h_{\omega}\left[S \lambda / Z_{p}, f\right]=p_{\omega}[N]$. In particular, for the generators we chose in dimensions $4 m+1, m \geqslant 1$,

$$
\begin{equation*}
h_{\omega}\left[S \lambda_{k} / Z_{p}, f_{k}\right]=p_{\omega}[\mathrm{CP}(2 \nu \rightarrow \mathrm{C} P(1))] \tag{4}
\end{equation*}
$$

Lemma 1. The characteristic numbers (4) vanish for all $\omega$.
We defer the proof of this lemma, and of two subsequent lemmas, temporarily.

Now any $p$-torsion class $[M, \phi] \in S p_{4 j+1}\left(Z_{p}\right.$, free $)$ can be expanded, in our chosen basis, so that
$[M, f]=[N]\left[S^{1}, \theta\right]+$ a linear combination of the $\left[S \lambda_{k} / Z_{p}, f_{k}\right]$.
Therefore $h_{\omega}[M, f]=p_{\omega}[N]$, by Lemma 1 .
Next, let $n$ and $k$ be odd positive integers, and suppose $v=\xi+1 / 2(k-1) C$ $\rightarrow \mathbf{C P}(n)$, where $\xi$, as before, is the canonical line bundle. Then $M(n, k)=$ $\mathbf{C P}(\nu+\bar{\nu})$ is a symplectic $2(n+k)$-manifold. As an oriented manifold, $M(n, k)$ is diffeomorphic to $\mathbf{C P}(2 \nu)$.

Lemma 2. Let $p$ be an odd prime, and let $n+k \geqslant 8, n+k$ even. There exists an odd positive integer $n$ so that $M(n, k)$ is indecomposable in $\mathrm{SO}_{2(n+k)} / \mathrm{pSO}_{2(n+k)}$.

Assuming this lemma also, we choose such an $M(n, k)$ and let $\lambda \rightarrow M(n, k)$ be the canonical line bundle over $\mathbf{C P}(2 \nu)$. Then $h_{\omega}\left[S \lambda / Z_{p}, f\right]=p_{\omega}[M(n, k)]$. We need one last lemma.

Lemma 3. If $p_{\omega}[V]=0$ for all $\omega$, then $[V]\left[S^{1}, \theta\right] \in \operatorname{Im} \partial \sigma$.
If $\theta^{\prime}$ is the usual action on $S \lambda$, it follows that

$$
\left[S \lambda, \theta^{\prime}\right] \equiv[M(n, k)]\left[S^{1}, \theta\right] \quad \text { modulo Im } \partial \sigma
$$

for both sides have the same characteristic numbers $h_{\omega}=p_{\omega}[M(n, k)]$. Since $\sigma^{-1}\left[S \lambda, \theta^{\prime}\right] \in \operatorname{Im} \partial$, this completes the proof of the proposition.

We shall now prove the lemmas.

Proof of Lemma 1. Let $1+a^{\prime}$ and $1-b$ be the Chern classes of the canonical line bundles over $\mathbf{C P}(1)$ and $\mathbf{C P}(2 \nu)$, respectively. Let $\pi$ : $\mathbf{C P}(2 \nu)$ $\rightarrow \mathbf{C P}(1)$ be the projection, and let $a=\pi^{*} a^{\prime}$. The Chern class of $\mathbf{C P}(2 \nu)$ is then

$$
c=(1+a)^{2}(1+b+a)^{2}(1+b)^{2 m-1}
$$

Since $a^{2}=0$, the Pontrjagin class is

$$
p=\left(1+(b+a)^{2}\right)^{2}\left(1+b^{2}\right)^{2 m-1}
$$

If $C(-,-)$ denotes the binomial coefficient, the $r$ th Pontrjagin class may be computed:

$$
\begin{aligned}
p_{r} & =C(2 m, r) b^{2 r}+4 C(2 m-1, r-1) a b^{2 r-1} \\
& =\frac{2}{r} C(2 m-1, r-1)\left[m b^{2 r}+2 r a b^{2 r-1}\right]
\end{aligned}
$$

Now suppose $\omega=\left(r_{1}, r_{2}, \ldots, r_{t}\right)$, that is, $r_{1}+r_{2}+\cdots+r_{t}=m$. Then

$$
\begin{aligned}
p_{\omega} & =p_{r_{1}} \cdots p_{r_{t}}=\frac{2^{t}}{r_{1} r_{2} \cdots \cdot r_{t}} \prod_{j} C\left(2 m-1, r_{j}-1\right)\left[m b^{2 r_{j}}+2 r_{j} a b^{2 r_{j}-1}\right] \\
& =\frac{2^{t}}{r_{1} r_{2} \cdots r_{t}}\left[\prod_{j} C\left(2 m-1, r_{j}-1\right)\right]\left[m^{t} b^{2 m}+2 m^{t} a b^{2 m-1}\right]
\end{aligned}
$$

However, $b^{2 m}+2 a b^{2 m-1}=0$, so $p_{\omega}=0$ for all $\omega$.
Proof of Lemma 2. This is a straightforward (if laborious) application of P. E. Conner's calculations [1]. In his notation, we have to choose an odd integer $n$ so that

$$
S_{n+k}[M(n, k)] \neq \begin{cases}0 \bmod p, & \text { if } n+k \neq p^{z}-1 \\ 0 \bmod p^{2}, & \text { if } n+k=p^{z}-1\end{cases}
$$

Let $1+c \in H^{*}(\mathbf{C P}(n))$ be the Chern class of $\xi$. We will need the characteristic class $s_{i}(2 \nu)=2 s_{i}(\nu)=2 c^{i}$, and the dual Chern class $\bar{\nu}_{i}$ of $2 \nu$. Since $2 \nu$ has Chern class $1+2 c+c^{2}, \bar{\nu}_{i}=(-1)^{i}(i+1) c^{i}$.

Now we apply Theorem 4.1 of [1]:
$S_{n+k}[M(n, k)]= \pm\left[-(k+1)(n+1)+2 \sum_{i=1}^{n} C(n+k, i)(-1)^{n-i}(n-i+1)\right]$.
With $n$ odd,

$$
\begin{aligned}
\sum_{i=1}^{n} C(n+k, i)(-1)^{n-i}(n-i+1) & =n+1+\sum_{j=0}^{n}(-1)^{j}(j+1) C(n+k, j+k) \\
& =C(n+k-2, n)+n+1
\end{aligned}
$$

so

$$
S_{n+k}[M(n, k)]=2 C(n+k-2, n)-(n+1)(k-1)
$$

up to a sign, which we neglect hereafter.
Let $m=n+k$, and write $S(n, k)=S_{n+k}[M(n, k)]$. Since $S(3, m-3)=$ $(1 / 3)(m+1)(m-4)(m-6)$, we may take $n=3$ if $8 \leqslant m \leqslant p+1$, and also when $m \equiv 0 \bmod p$, provided $p>3$.

If $m \geqslant p+3$, we may write $m-2=a_{r} p^{r}+a_{r-1} p^{r-1}+\cdots+a_{1} p+a_{0}$ with $r>0,0 \leqslant a_{i}<p$ for all $i$, and $a_{r}>0$. If $1 \leqslant t \leqslant r$,

$$
S\left(p^{t}, m-p^{t}\right) \equiv 2 a_{t}-\left(a_{0}+1\right) \bmod p
$$

In most cases, we can then take $n=p^{t}$ for some $t$.
This procedure fails if all the $a_{t}=a$ and $2 a \equiv a_{0}+1 \bmod p$. Since $a>0$, we must have $m \not \equiv 1 \bmod p$. If $m \not \equiv 0, \pm 1 \bmod p, p>3$, we take $n=p-2$. Then

$$
\begin{aligned}
C(m-2, p-2) & \equiv 0 \quad \bmod p, \quad \text { and } \\
S(p-2, m-p+2) & \equiv-(p-1)(m+1) \not \equiv 0 \bmod p
\end{aligned}
$$

If $p=3$ and $m \equiv 0 \bmod 3$, take $n=7$. Then $a_{0}=0, a=2$, and $m \equiv 6 \bmod 9$, so $C(m-2,7) \equiv 0 \bmod 3$, and $S(7, m-7) \equiv-8(m-8) \not \equiv 0 \bmod 3$.

Finally, suppose $m \equiv-1 \bmod p$. Then $a_{0}=p-3$ and $a=p-1$, so $m=$ $p^{r+1}-1$. We take $n=p^{r}$. Since

$$
C\left(p^{r+1}-1, p^{r}\right) \equiv(p-1) \quad \bmod p^{2}
$$

and

$$
\begin{aligned}
\left(p^{r+1}-1\right)\left(p^{r+1}-2\right) & C\left(p^{r+1}-3, p^{r}\right) \\
& =\left(p^{r+1}-p^{r}-1\right)\left(p^{r+1}-p^{r}-2\right) C\left(p^{r+1}-1, p^{r}\right) \\
C\left(p^{r+1}-3, p^{r}\right) \equiv & (1 / 2)\left(p^{r}+1\right)\left(p^{r}+2\right)(p-1) \bmod p^{2}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
S\left(p^{r}, p^{r+1}-\right. & \left.p^{r}-1\right) \\
& \equiv\left(p^{r}+1\right)\left(p^{r}+2\right)(p-1)-\left(p^{r}+1\right)\left(-p^{r}-2\right) \bmod p^{2} \\
& \equiv p\left(p^{r}+1\right)\left(p^{r}+2\right) \equiv 2 p \quad \bmod p^{2}
\end{aligned}
$$

This proves the lemma.
Proof of Lemma 3. Recall the powerful information provided by [2, Theorem (46.3)]. Let $I_{*}$ be the ideal of elements $x \in S O_{*}$ such that $p_{\omega}(x)=0$ $\bmod p$ for all $\omega$. Then $I_{*}$ is generated by $p=\left[M^{0}\right] \in S O_{0}$ and by certain
classes $\left[M^{4 k}\right] \in S O_{4 k}$ for each $k \geqslant 1$. Furthermore, if $\alpha_{2 j-1} \in S O_{2 j-1}\left(Z_{p}\right.$, free $)$ is represented by $S^{2 j-1}$ with the action (3), then

$$
\begin{equation*}
p \alpha_{2 j-1}+\left[M^{4}\right] \alpha_{2 j-5}+\left[M^{8}\right] \alpha_{2 j-9}+\ldots=0 \tag{5}
\end{equation*}
$$

Of course, $p\left[S^{1}, \theta\right]=0$. By Proposition 6, there exist elements $b_{4 k} \in$ $\mathrm{SO}_{4 k}$ such that

$$
\alpha_{4 k+1} \equiv b_{4 k}\left[S^{1}, \theta\right] \quad \bmod \operatorname{Im} \partial \sigma
$$

Then (5) implies the relations

$$
\left(p b_{4 k}+b_{4 k-4}\left[M^{4}\right]+\cdots+b_{4}\left[M^{4 k-4}\right]+\left[M^{4 k}\right]\right)\left[S^{1}, \theta\right] \equiv 0
$$

modulo $\operatorname{Im} \partial \sigma$. By an obvious inductive argument, $\left[M^{4 k}\right]\left[S^{1}, \theta\right] \in \operatorname{Im} \partial \sigma$ for all $k \geqslant 0$. This proves the lemma, and finishes the proof of Proposition 7.

We have shown that the $p$-torsion in $S p_{*}\left(Z_{p}\right.$, all $)$ is (after a dimension shift) some quotient of a $Z_{p}$-polynomial algebra on four generators, corresponding to the cases $m=0,2,4,6$. It remains to be determined what other relations may lie in the kernel of $S p_{*} \rightarrow S p_{*}\left(Z_{p}\right.$, all $)$.

## REFERENCES

1. P. E. Conner, The bordism class of a bundle space, Michigan Math. J. 14 (1967), 289-303. MR 37 \# 3579.
2. P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Math. und ihrer Grenzgebiete, N. F., Band 33, Springer-Verlag, Berlin; Academic Press, New York, 1964. MR 31 \# 750.
3. Periodic maps which preserve a complex structure, Bull. Amer. Math. Soc. 70 (1964), 574-579. MR 29 \# 1653.
4. P. S. Landweber, On the symplectic bordism groups of the spaces $\operatorname{Sp}(n), \operatorname{HP}(n)$, and $\operatorname{BSp}(n)$, Michigan Math. J. 15 (1968), 145-153. MR 37 \# 2237.
5. S. P. Novikov, Homotopy properties of Thom complexes, Mat. Sb. 57 (99) (1962), 407-442. (Russian) MR 28 \# 615.
6. R. E. Stong, Unoriented bordism and actions of finite groups, Mem. Amer. Math. Soc. No. 103 (1970). MR 42 \# 8522.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TENNESSEE, KNOXVILLE, TENNESSEE 37916

