
ActionVLAD: Learning spatio-temporal aggregation for action classification

Rohit Girdhar1
∗

Deva Ramanan1 Abhinav Gupta1 Josef Sivic2,3
∗

Bryan Russell2

1Robotics Institute, Carnegie Mellon University 2Adobe Research 3INRIA

http://rohitgirdhar.github.io/ActionVLAD

Abstract

In this work, we introduce a new video representa-

tion for action classification that aggregates local convolu-

tional features across the entire spatio-temporal extent of

the video. We do so by integrating state-of-the-art two-

stream networks [42] with learnable spatio-temporal fea-

ture aggregation [6]. The resulting architecture is end-to-

end trainable for whole-video classification. We investigate

different strategies for pooling across space and time and

combining signals from the different streams. We find that:

(i) it is important to pool jointly across space and time,

but (ii) appearance and motion streams are best aggregated

into their own separate representations. Finally, we show

that our representation outperforms the two-stream base ar-

chitecture by a large margin (13% relative) as well as out-

performs other baselines with comparable base architec-

tures on HMDB51, UCF101, and Charades video classifi-

cation benchmarks.

1. Introduction

Human action recognition is one of the fundamental

problems in computer vision with applications ranging from

video navigation and movie editing to human-robot collab-

oration. While there has been great progress in classifi-

cation of objects in still images using convolutional neu-

ral networks (CNNs) [19, 20, 43, 47], this has not been

the case for action recognition. CNN-based representa-

tions [15, 51, 58, 59, 63] have not yet significantly outper-

formed the best hand-engineered descriptors [12, 53]. This

is partly due to missing large-scale video datasets similar in

size and variety to ImageNet [39]. Current video datasets

are still rather small [28, 41, 44] containing only on the

order of tens of thousands of videos and a few hundred

classes. In addition, those classes may be specific to cer-

tain domains, such as sports [44], and the dataset may con-

tain noisy labels [26]. Another key open question is: what

is the appropriate spatiotemporal representation for mod-

∗Work done at Adobe Research during RG’s summer internship

Dribbling

Hoop

Ball Running
Jump

Group

Throw

= Basketball Shoot

R
G

B
F

lo
w

Figure 1: How do we represent actions in a video? We propose Ac-

tionVLAD, a spatio-temporal aggregation of a set of action prim-

itives over the appearance and motion streams of a video. For

example, a basketball shoot may be represented as an aggregation

of appearance features corresponding to ‘group of players’, ‘ball’

and ‘basketball hoop’; and motion features corresponding to ‘run’,

‘jump’, and ‘shoot’. We show examples of primitives our model

learns to represent videos in Fig. 6.

eling videos? Most recent video representations for action

recognition are primarily based on two different CNN ar-

chitectures: (1) 3D spatio-temporal convolutions [49, 51]

that potentially learn complicated spatio-temporal depen-

dencies but have been so far hard to scale in terms of recog-

nition performance; (2) Two-stream architectures [42] that

decompose the video into motion and appearance streams,

and train separate CNNs for each stream, fusing the outputs

in the end. While both approaches have seen rapid progress,

two-stream architectures have generally outperformed the

spatio-temporal convolution because they can easily exploit

the new ultra-deep architectures [19, 47] and models pre-

trained for still-image classification.

However, two-stream architectures largely disregard the

long-term temporal structure of the video and essentially

learn a classifier that operates on individual frames or short

blocks of few (up to 10) frames [42], possibly enforcing

consensus of classification scores over different segments

of the video [58]. At test time, T (typically 25) uniformly

1971

http://rohitgirdhar.github.io/ActionVLAD


sampled frames (with their motion descriptors) are classi-

fied independently and the classification scores are averaged

to get the final prediction. This approach raises the question

whether such temporal averaging is capable of modelling

the complex spatio-temporal structure of human actions.

This problem is exaggerated when the same sub-actions are

shared among multiple action classes. For example, con-

sider a complex composite action of a ‘basketball shoot’

shown in Figure 1. Given only few consecutive frames of

video, it can be easily confused with other actions, such as

‘running’, ‘dribbling’, ‘jumping’ and ‘throwing’. Using late

fusion or averaging is not the optimal solution since it re-

quires frames belonging to same sub-action to be assigned

to multiple classes. What we need is a global feature de-

scriptor for the video which can aggregate evidence over

the entire video about both the appearance of the scene and

the motion of people without requiring every frame to be

uniquely assigned to a single action.

To address this issue we develop an end-to-end trainable

video-level representation that aggregates convolutional de-

scriptors across different portions of the imaged scene and

across the entire temporal span of the video. At the core

of this representation is a spatio-temporal extension of the

NetVLAD aggregation layer [6] that has been shown to

work well for instance-level recognition tasks in still im-

ages. We call this new layer ActionVLAD. Extending

NetVLAD to video brings the following two main chal-

lenges. First, what is the best way to aggregate frame-level

features across time into a video-level representation? To

address this, we investigate aggregation at different levels

of the network ranging from output probabilities to differ-

ent layers of convolutional descriptors and show that aggre-

gating the last layers of convolutional descriptors performs

best. Second, how to best combine the signals from the dif-

ferent streams in a multi-stream architecture? To address

this, we investigate different strategies for aggregating fea-

tures from spatial and temporal streams and show, some-

what surprisingly, that best results are obtained by aggregat-

ing spatial and temporal streams into their separate single

video-level representations. We support our investigations

with quantitative experimental results together with quali-

tative visualizations providing the intuition for the obtained

results.

2. Related Work

Action recognition is a well studied problem with stan-

dard datasets [4, 8, 18, 28, 41, 44] focused on tasks such

as classification [15, 42, 53, 58, 59] and temporal or spatio-

temporal localization [25, 60, 62]. Action recognition is,

however, hard due to the large intra-class variability of dif-

ferent actions and difficulty of annotating large-scale train-

ing datasets. As a result, the performance of automatic

recognition methods is still far below the capability of hu-

man vision. In this paper we focus on the problem of action

classification, i.e., classifying a given video clip into one of

K given actions classes. We review the main approaches

to this problem below followed by a brief review of feature

aggregation.

Dense trajectories: Up until recently, the dominating

video representation for action recognition has been based

on extracting appearance (such as histograms of image gra-

dients [10]) and motion features (such as histogram of

flow [11]) along densely sampled point trajectories in video.

The descriptors are then aggregated into a bag-of-visual-

words like representation resulting in a fixed-length descrip-

tor vector for each video [52, 54]. The representation can

be further improved by compensating for unwanted camera

motions [53]. This type of representation, though shallow,

is still relevant today and is in fact part of the existing state-

of-the-art systems [15, 51, 55]. We build on this work by

performing a video-level aggregation of descriptors where

both the descriptors and the parameters for aggregation are

jointly learned in a discriminative fashion.

Convolutional neural networks: Recent work has

shown several promising directions in learning video rep-

resentations directly from data using convolutional neural

networks. For example, Karpathy et al. [26] showed the

first large-scale experiment on training deep convolutional

neural networks from a large video dataset, Sports-1M. Si-

monyan and Zisserman[42] proposed the two-stream archi-

tecture, thereby decomposing a video into appearance and

motion information. Wang et al. [58] further improved the

two-stream architecture by enforcing consensus over pre-

dictions in individual frames. Another line of work has in-

vestigated video representations based on spatio-temporal

convolutions [49, 51], but these methods have been so far

hard to scale to long videos (maximum of 120 frames in

[51]), limiting their ability to learn over the entire video.

Modelling long-term temporal structure: Some meth-

ods explicitly model the temporal structure of the video us-

ing, for example, grammars [36, 40] but are often limited

to constrained set-ups such as sports [21], cooking [38], or

surveillance [5]. More related to our approach, the tempo-

ral structure of the video can be also represented implic-

itly by an appropriate aggregation of descriptors across the

video [16, 29, 31, 34, 55, 61]. For example, Ng et al. [31]

combine information across frames using LSTMs. Xu et al.

[61] use features from fc7 ImageNet pre-trained model and

use VLAD [23] for aggregation, and show improvements

for video retrieval on TRECVID datasets [8]. However,

their method is not end-to-end trainable and is used as a

post-processing step. Other works in event detection and ac-

tion classification rely on pooling hand crafted features over

segments of videos [17, 30, 32, 37, 48]. Others have also in-

vestigated pooling convolutional descriptors from video us-

ing, for example, variants of Fisher Vectors [29, 34] or pool-

972



ing along point trajectories [55]. In contrast to these meth-

ods, we develop an end-to-end trainable video architecture

that combines recent advances in two-stream architectures

with a trainable spatio-temporal extension of the NetVLAD

aggregation layer, which to the best of our knowledge, has

not be done before. In addition, we compare favourably the

performance of our approach with the above pooling meth-

ods in Section 4.6.

Feature aggregation: Our work is also related to feature

aggregation such as vectors of locally aggregated descrip-

tors (VLAD) [23] and Fisher vectors (FV) [35, 46]. Tra-

ditionally, these aggregation techniques have been applied

to keypoint descriptors as a post processing step, and only

recently have been extended to end-to-end training within

a convolutional neural network for representing still im-

ages [6]. We build on this work and extend it to an end-to-

end trainable video representation for action classification

by feature aggregation over space and time.

Contributions: The contribution of this paper are three-

fold: (1) We develop a powerful video-level representation

by integrating trainable spatio-temporal aggregation with

state-of-the-art two-stream networks. (2) We investigate

different strategies for pooling across space and time as well

as combining signals from the different streams providing

insights and experimental evidence for the different design

choices. (3) We show that our final representation outper-

forms the two-stream base architecture by a large margin

(13% relative) as well as outperforms other baselines with

comparable base architectures on HMDB51, UCF101, and

Charades video classification benchmarks.

3. Video-level two-stream architecture

We seek to learn a representation for videos that is train-

able end-to-end for action recognition. To achieve this

we introduce an architecture outlined in Figure 2. In de-

tail, we sample frames from the entire video, and aggre-

gate features from the appearance (RGB) and motion (flow)

streams using a vocabulary of “action words” into a single

video-level fixed-length vector. This representation is then

passed through a classifier that outputs the final classifica-

tion scores. The parameters of the aggregation layer – the

set of “action words” – are learnt together with the feature

extractors in a discriminative fashion for the end task of ac-

tion classification.

In the following we first describe the learnable spatio-

temporal aggregation layer (Sec. 3.1). We then discuss the

possible placements of the aggregation layer in the overall

architecture (Sec. 3.2) and strategies for combining appear-

ance and motion streams (Sec. 3.3). Finally, we give the

implementation details (Sec. 3.4).

3.1. Trainable SpatioTemporal Aggregation

Consider xi,t ∈ RD, a D-dimensional local descriptor

extracted from spatial location i ∈ {1 . . . N} and frame

t ∈ {1 . . . T} of a video. We would like to aggregate these

descriptors both spatially and temporally over the whole

video while preserving their informative content. This is

achieved by first dividing the descriptor space RD into K

cells using a vocabulary of K “action words” represented

by anchor points {ck} (Fig. 3 (c)). Each video descriptor

xi,t is then assigned to one of the cells and represented by

a residual vector xit − ck recording the difference between

the descriptor and the anchor point. The difference vectors

are then summed across the entire video as

V [j, k] =
T∑

t=1

N∑

i=1

e−α||xit−ck||
2

∑

k′ e−α||xit−c
k′ ||2

︸ ︷︷ ︸

Soft-assignment

(xit[j]− ck[j])
︸ ︷︷ ︸

Residual

,

(1)

where xit[j] and ck[j] are the j-th components of the de-

scriptor vector xit and anchor ck, respectively, and α is a

tunable hyper-parameter. Note that the first term in (1) rep-

resents the soft-assignment of descriptor xit to cell k and

the second term, xit[j] − ck[j], is the residual between the

descriptor and the anchor point of cell k. The two sum-

ming operators represent aggregation over time and space,

respectively. The output is a matrix V , where k-th column

V [·, k] represents the aggregated descriptor in the k-th cell.

The columns of the matrix are then intra-normalized [7],

stacked, and L2-normalized [23] into a single descriptor

v ∈ RKD of the entire video.

The intuition is that the residual vectors record the differ-

ences of the extracted descriptors from the “typical actions”

(or sub-actions) represented by anchors ck. The residual

vectors are then aggregated across the entire video by com-

puting their sum inside each of the cells. Crucially, all pa-

rameters, including the feature extractor, action words {ck},

and classifier, are jointly learnt from the data in an end-

to-end manner so as to better discriminate target actions.

This is because the spatio-temporal aggregation described

in (1) is differentiable and allows for back-propagating er-

ror gradients to lower layers of the network. Note that the

outlined aggregation is a spatio-temporal extension of the

NetVLAD [6] aggregation, where we, in contrast to [6],

introduce the sum across time t. We refer to our spatio-

temporal extension as ActionVLAD.

Discussion: It is worth noting the differences of the

above aggregation compared to the more common average

or max-pooling (Figure 3). Average or max-pooling rep-

resent the entire distribution of points as only a single de-

scriptor which can be sub-optimal for representing an en-

tire video composed of multiple sub-actions. In contrast,

the proposed video aggregation represents an entire distri-

bution of descriptors with multiple sub-actions by splitting

973



RGB Stream Flow Stream

A
c
ti

o
n
V

L
A

D

Classification Loss

Figure 2: Our network architecture. We use a standard CNN architecture (VGG-16) to extract features from sampled appearance and

motion frames from the video. These features are then pooled across space and time using the ActionVLAD pooling layer, which is

trainable end to end with a classification loss. We also experiment with ActionVLAD to fuse the two streams (Sec. 3.3).

(a) Max Pool (b) Average Pool (c) ActionVLAD

ck

xi,t

Figure 3: Different pooling strategies for a collection of diverse

features. Points correspond to features from a video, and different

colors correspond to different sub-actions in the video. While (a)

max or (b) average pooling are good for similar features, they do

not not adequately capture the complete distribution of features.

Our representation (c) clusters the appearance and motion features

and aggregates their residuals from nearest cluster centers.

the descriptor space into cells and pooling inside each of

the cells. In theory, a hidden layer between a descriptor

map and pooling operation could also split up the descriptor

space into half-spaces (by making use of ReLU activations)

before pooling. However, it appears difficult to train hidden

layers with dimensions comparable to ours KD = 32, 768.

We posit that the ActionVLAD framework imposes strong

regularization constraints that makes learning of such mas-

sive models practical with limited training data (as is the

case for action classification).

3.2. Which layer to aggregate?

In theory, the spatio-temporal aggregation layer de-

scribed above can be placed at any level of the network

to pool the corresponding feature maps. In this section we

describe the different possible choices that will later guide

our experimental investigation. In detail, we build upon the

two-stream architecture introduced in Simonyan and Zis-

serman [42] over a VGG16 network [43]. Here we consider

only the appearance stream, but discuss the different ways

of combining the appearance and motion streams with our

aggregation in Section 3.3.

Two-stream models first train a frame-level classifier us-

ing all the frames from all videos, and at test time, average

the predictions from T uniformly sampled frames [42, 58].

We use this base network (pre-trained on frame-level) as a

feature generator that provides input from different frames

to our trainable ActionVLAD pooling layer. But, which

layer’s activations do we pool? We consider two main

choices. First, we consider pooling the output of fully con-

nected (FC) layers. Those are represented as 1 × 1 spatial

feature maps with 4096-dimensional output for each of the

T frames of the video. In other words we pool one 4096-

dimensional descriptor from each of the T frames of the

video. Second, we consider pooling features from the con-

volutional layers (we consider conv4 3 and conv5 3). For

conv5 3, for example, those are represented by 14×14 spa-

tial feature maps each with 512-dimensional descriptors for

each of the T frames, i.e. we pool 196 512-dimensional de-

scriptors from each of the T frames. As we show in Sec-

tion 4.3, we obtain best performance by pooling features at

the highest convolutional layer (conv5 3 for VGG-16).

974



ActionVLAD

(a) Concat Fusion

ActionVLAD

(b) Early Fusion

ActionVLAD ActionVLAD

(c) Late Fusion

Figure 4: Different strategies for combining the appearance and

motion streams.

3.3. How to combine Flow and RGB streams?

ActionVLAD can be also used to pool features across

the different streams of input modalities. In our case we

consider appearance and motion streams [42], but in the-

ory pooling can be done across any number of other data

streams, such as warped flow or RGB differences [58].

There are several possible ways to combine the appearance

and motion streams to obtain a jointly trainable representa-

tion. We explore the most salient ones in this section and

outline them in Figure 4.

Single ActionVLAD layer over concatenated appear-

ance and motion features (Concat Fusion). In this case,

we concatenate the corresponding output feature maps from

appearance and motion, essentially assuming their spatial

correspondence. We place a single ActionVLAD layer on

top of this concatenated feature map, as shown in Fig-

ure 4(a). This allows correlations between appearance and

flow features to be exploited for codebook construction.

Single ActionVLAD layer over all appearance and mo-

tion features (Early Fusion). We also experiment with

pooling all features from appearance and motion streams

using a single ActionVLAD layer, as illustrated in Fig-

ure 4(b). This encourages the model to learn a single de-

scriptor space xij for both appearance and motion features,

and hence exploit redundancy in the features.

Late Fusion. This strategy, shown Figure 4(c), follows the

standard testing practice of weighted average of the appear-

ance and motion last layer features. Hence, we have two

separate ActionVLAD layers, one for each stream. This al-

lows for both ActionVLAD layers to learn specialized rep-

resentations for each input modality.

We compare the performance of the different aggrega-

tion techniques in Section 4.5.

3.4. Implementation Details

We train all our networks with a single-layer linear clas-

sifier on top of our ActionVLAD representation described

above. Throughout, we use K = 64 and a high value for

α = 1000.0, similar to [6]. Since the output feature di-

mensionality can be large, we use a dropout of 0.5 over the

representation to avoid overfitting to small action classifi-

cation datasets. We train the network with cross-entropy

loss, where the probabilities are obtained through a softmax.

Similar to [6], we decouple ActionVLAD parameters {ck}
used to compute the soft assignment and the residual from

(1) to simplify learning (though both sets of parameters are

identically initialized with the same cluster centers).

We use T = 25 frames per video (for both flow and

RGB) to learn and evaluate our video representation, in or-

der to be comparable to standard practice [42, 58]. Flow

is represented using 10 consecutive x and y direction flow

maps, to get a 20-channel input. Since our model is trained

at a video level, we can fit very few videos every iteration

due to limited GPU memory and CPU preprocessing ca-

pability. To maintain reasonable batch sizes, we use slow

updates by averaging gradients over multiple GPU itera-

tions. We clip gradients at 5.0 L2 norm. Data augmen-

tation is done at the video level by performing random

cropping/flipping of all the RGB and flow frames corre-

spondingly. When training ActionVLAD, we use the Adam

solver [27] with ǫ = 10−4. This is required as the Ac-

tionVLAD output is L2 normalized and we need a lower ǫ

value for reasonably fast convergence. We perform train-

ing in a two-step approach. In the first step, we initialize

and fix the VLAD cluster centers, and only train the lin-

ear softmax classifier with a learning rate of 0.01. In the

second step, we jointly finetune both the linear classifier

and the ActionVLAD cluster centers with a learning rate

of 10−4. Our experiments show that this uniformly gives a

significant boost in validation accuracy (Table 1), indicat-

ing that ActionVLAD does adapt clusters to better repre-

sent the videos. When training ActionVLAD over conv5 3,

we keep layers before conv5 1 fixed to avoid overfitting to

small action classification datasets. This also helps by hav-

ing a smaller GPU memory footprint and faster training.

That said, our model is completely capable of end-to-end

training, which can be exploited for larger, more complex

datasets. We implemented our models in TensorFlow [3]

and have released our code and pretrained models [1].

4. Experiments

In this section we experiment with the various network

architectures proposed above on standard action classifica-

tion benchmarks.

4.1. Datasets and Evaluation

We evaluate our models on two popular trimmed

action classification benchmarks, UCF101 [44] and

HMDB51 [28]. UCF101 consists of 13320 sports video

clips from 101 action classes, and HMDB51 contains 6766

realistic and varied video clips from 51 action classes.

We follow the evaluation scheme from THUMOS13 chal-

975



Table 1: Evaluation of training ActionVLAD representation using

VGG-16 architecture on HMDB51 split 1.

Method Appearance Motion

Two Stream [15] 47.1 55.2

Non-trained ActionVLAD + Linear Classifier 44.9 55.6

Trained ActionVLAD 51.2 58.4

lenge [24] and employ the provided three train/test splits

for evaluation. We use the split 1 for ablative analysis

and report final performance averaged over all 3 splits. Fi-

nally, we also evaluate our model on an untrimmed dataset,

Charades [41]. Since a video in Charades can have mul-

tiple labels, the evaluation is performed using mAP and

weighted average precision (wAP), where AP of each class

is weighted by class size.

4.2. Training ActionVLAD Representation

To first motivate the strength of the trainable Action-

VLAD representation, we compare it to non-trained Action-

VLAD extracted from video. In particular, we train only a

single classifier over the ActionVLAD layer (over conv5 3)

initialized by k-means (and kept fixed). Next, we start from

the above model and also train the parameters of the lay-

ers including and before ActionVLAD, upto conv5 1. As

shown in Table 1, removing the last 2-layer non-linear clas-

sifier from the two-stream model and training a single linear

layer over the (fixed) VLAD pooled descriptor already gets

close to the two-stream performance. This improves even

further when the parameters of ActionVLAD are trained to-

gether with the preceding layers. Throughout, we use the

default value of K = 64 following [6]. Initial experiments

(HMDB51 split 1 RGB) have shown stable performance on

varying K (49.1%, 51.2% and 51.1% for K = 32, 64 and

128 respectively). Reducing K to 1, however, leads to much

lower performance, 43.2%.

We also visualize the classes for which we obtained

the highest improvements compared to the standard two-

stream model. We see the largest gains for classes such

as ‘punch’, which were often confused with ‘kick’ or ‘hit’;

‘climb stairs’, often confused with ‘pick’ or ‘walk’; ‘hit’,

often confused with ‘golf’; and ‘drink’, often confused with

‘eat’ or ‘kiss’. This is expected, as these classes are easy to

confuse given only local visual evidence. For example, hit-

ting and punching are easily confused when looking at few

frames but can be disambiguated when aggregating infor-

mation over the whole video. We present the whole confu-

sion matrix highlighting the pairs of classes with the highest

changes of performance in the appendix [2].

4.3. Where to ActionVLAD?

Here we evaluate the different positions in the network

where we can insert the ActionVLAD layer. Specifically,

30 20 10 0 10 20 30
30

20

10

0

10

20

30

40

conv5 3

30 20 10 0 10 20 30
30

20

10

0

10

20

30

fc7

Figure 5: tSNE embedding of subsampled conv and fc features

from a set of videos. Features belonging to the same video have

the same color. Note that the fc features are already very similar

and hence cluster together, while the conv5 3 features are more

spread out and mixed.

we compare placing ActionVLAD after the last two con-

volutional layers (conv4 3 and conv5 3) and after the last

fully-connected layer (fc7). In each case, we train until

the block of layers just before the ActionVLAD layer; so

conv4 1 to loss in case of conv4, and fc7 to loss in case of

fc7. Results are shown in Table 2a and clearly show that

best performance is obtained by aggregating the last con-

volutional layer (conv5 3). fc6 features obtain performance

similar to fc7, getting 42.7% for RGB.

We believe that this is due to two reasons. First, pooling

at a fully-connected layer prevents ActionVLAD from mod-

elling spatial information, as these layers already compress

a lot of information. Second, fc7 features are more semantic

and hence features from different frames are already similar

to each other not taking advantage of the modelling capac-

ity of the ActionVLAD layer, i.e. they would often fall into

the same cell. To verify this hypothesis we visualize the

conv5 3 and fc7 appearance features from the same frames

using a tSNE [50] embedding in Figure 5. The plots clearly

show that fc7 features from the same video (shown in the

same color) are already similar to each other, while conv5 3

features are much more varied and ready to benefit from the

ability of the ActionVLAD layer to capture complex distri-

butions in the feature space as discussed in Sec. 3.1.

4.4. Baseline aggregation techniques

Next, we compare our ActionVLAD aggregation with

baseline aggregation techniques. As discussed earlier, av-

erage or max pooling reduce the distribution of features in

the video into one single point in the feature space, which

is suboptimal for the entire video. This is supported by our

results in Table 2b, where we see a significant drop in per-

formance using average/max pooling over con5 3 features,

even compared to the baseline two-stream architecture.

976



Table 2: Evaluation of (a) ActionVLAD at different positions in a

VGG-16 network; and (b) ActionVLAD compared to other pool-

ing strategies, on HMDB51 split 1.

(a) Position of ActionVLAD.

Method RGB Flow

2-Stream 47.1 55.2

conv4 3 45.0 53.5

conv5 3 51.2 58.4

fc7 43.3 53.1

(b) Different pooling strategies.

Method RGB Flow

2-Stream 47.1 55.2

Avg 41.6 53.4

Max 41.5 54.6

ActionVLAD 51.2 58.4

Table 3: Comparison of (a) Different fusion techniques described

in Sec. 3.3 on HMDB split 1; and (b) Comparison of two-stream

with ActionVLAD, averaged over 3-splits of HMDB.

(a) Fusion Type

Method Val acc

Concat 56.0

Early 64.8

Late 66.9

(b) Overall Comparison

Stream 2-Stream [59] Ours

RGB 42.2 49.8

Flow 55.0 59.1

Late Fuse 58.5 66.3

4.5. Combining Motion and Appearance

We compare the different combination strategies in Ta-

ble 3a. We observe that late fusion performs best. To fur-

ther verify this observation, we show a tSNE plot of conv5

features from appearance and motion streams in the ap-

pendix [2]. The two features are well separated, indicating

there is potentially complementary information that is best

exploited by fusing later in the network. In contrast, concat

fusion limits the modelling power of the model as it uses

the same number of cells to capture a larger portion of the

feature space. Finally, we compare our overall performance

on three splits of HMDB51 with the two-stream baseline in

Table 3b. We see significant improvements over each input

modality as well as over the final (late-fused) vector.

4.6. Comparison against State of the Art

In Table 4, we compare our approach to a variety of re-

cent action recognition methods that use a comparable base

architecture to ours (VGG-16). Our model outperforms all

previous approaches on HMDB51 and UCF101, using com-

parable base architectures when combined with iDT. Note

that similar to 10-crop testing in two-stream models, our

model is also capable of pooling features from multiple

crops at test time. We report our final performance us-

ing 5 crops, or 125 total images, per video. Other meth-

ods such as [14] and [58] based on ultra-deep architec-

tures such as ResNet [19] and Inception [22] respectively

obtain higher performance. However, it is interesting to

note that our model still outperforms some of these ultra-

deep two-stream baselines, such as ResNet-50 (61.2% on

HMDB51 and 91.7% on UCF101) and ResNet-152 (63.8%

Table 4: Comparison with the state of the art on UCF101 and

HMDB51 datasets averaged over 3 splits. First section compares

all ConvNet-based methods reported using VGG-16 or compara-

ble models. Second section compares methods that use iDT [53],

and third section reports methods using ultra deep architectures,

multi-modal inputs (more than RGB+Flow) and hybrid methods.

UCF101 HMDB51

Spatio-Temporal ConvNet [26] 65.4 -

LRCN [13] 82.9 -

C3D [49] 85.2 -

Factorized ConvNet [45] 88.1 59.1

VideoDarwin [16] - 63.7

Two-Stream + LSTM [31] (GoogLeNet) 88.6 -

Two-Stream ConvNet [42] (VGG-M) 88.0 59.4

Two-Stream ConvNet [57, 59] (VGG-16) 91.4 58.5

Two-Stream Fusion [15] (VGG-16) 92.5 65.4

TDD+FV [55] 90.3 63.2

RNN+FV [29] 88.0 54.3

Transformations [59] 92.4 62.0

LTC [51] 91.7 64.8

KVMF [63] 93.1 63.3

ActionVLAD (LateFuse, VGG-16) 92.7 66.9

DT+MVSV [9] 83.5 55.9

iDT+FV [53] 85.9 57.2

iDT+HSV [33] 87.9 61.1

MoFAP [56] 88.3 61.7

C3D+iDT [49] 90.4 -

Two-Stream Fusion+iDT [15] 93.5 69.2

LTC+iDT [51] 92.7 67.2

ActionVLAD (VGG-16) + iDT 93.6 69.8

TSN (BN-Inception, 3-modality) [58] 94.2 69.4

DT+Hybrid architectures [12] 92.5 70.4

ST-ResNet+iDT [14] 94.6 70.3

Table 5: Comparison with the state of the art on Charades [41]

using mAP and weighted-AP (wAP) metrics.

mAP wAP

Two-stream + iDT (best reported) [41] 18.6 -

RGB stream (BN-inception, TSN [56] style training) 16.8 23.1

ActionVLAD (RGB only, BN-inception) 17.6 25.1

ActionVLAD (RGB only, BN-inception) + iDT 21.0 29.9

and 91.8%) [14]1, while employing only a VGG-16 network

with ActionVLAD (66.9% and 92.7%). We evaluate our

method on Charades [41] in Tab. 5, and outperform all pre-

vious reported methods (details in appendix [2]).

4.7. Qualitative Analysis

Finally, we visualize what our model has learned. We

first visualize the learned ‘action words’, to understand the

primitives our model uses to represent actions. We ran-

domly picked few thousand frames from HMDB videos,

and computed ActionVLAD assignment maps for conv5 3

features by taking the max over soft-assignment in Eq. 1.

These maps define which features get soft-assigned to

which of the 64 ‘action words’. Then for each action word,

we visualize the frames that contain that action word, and

highlight regions that correspond to center of receptive field

1
Reported on http://www.robots.ox.ac.uk/˜vgg/software/two_stream_action/

977

http://www.robots.ox.ac.uk/~vgg/software/two_stream_action/


(d)

(e)

(f)

(a)

(b)

(c)

Figure 6: Visualization of ‘action words’ our ActionVLAD model learns when trained for appearance and motion modalities. Each row

shows several frames from videos where bright regions correspond to the center of the receptive field for conv5 3 features that get assigned

to one specific ‘action word’ cell. In detail, (a) shows an ‘action word’ that looks for human hands holding rod-like objects, such as a

pull-up bar, baseball bat or archery bow. (b) looks for human hair. (c) looks for circular objects like wheels and target boards. (d)-(f) shows

similar action words for the flow stream. These are more complex, as each word looks at shape and motion of the flow field over 10 frames.

Here we show some easy to interpret cases, such as (d) up-down motion, (e) linear motion for legs and (f) head motion.

Figure 7: Assignment of image regions to two specific appearance

‘action words’ over several video frames. ActionVLAD represen-

tation “tracks” these visual and flow patches over the video.

198 19 58

8

T
e
s
t 

V
id

e
o

Action Word:

19

58

Figure 8: Top contributing action words for classifying this video.

The softmax score for this ‘brushing hair’ video is obtained (in

appearance stream) from features corresponding to ‘action words’

that seem to focus on faces, eyes, hair and hand/leg clusters. It was

incorrectly classified as ‘clap’ by the baseline two-stream architec-

ture but is correctly classified as ‘brushing hair’ by our method.

of conv5 3 neuron assigned to that word. Fig. 6 shows some

such action words and our interpretation for those words.

We visualize these assignment maps over videos in Fig. 7.

To verify how the ‘action words’ help in classification,

we consider an example video in Fig. 8 that was origi-

nally misclassified by the two-stream model but gets a high

softmax score for the correct class with our ActionVLAD

model. For ease of visualization, we only consider the RGB

model in this example. We first compute the ActionVLAD

feature for this video, extract the linear classifier weights for

the correct class, and accumulate the contribution of each

‘action word’ in the final score. We show a visualization

for some of the distinct top contributing words. The visual-

ization for each word follows same format as in Fig. 6. We

see that this ‘brushing hair’ video is represented by spatial

‘action words’ focussing on faces, eyes, hair, and hands.

5. Conclusion

We have developed a successful approach for spatiotem-

poral video feature aggregation for action classification.

Our method is end-to-end trainable and outperforms most

prior approaches based on the two-stream VGG-16 archi-

tecture on the HMDB51 and UCF101 datasets. Our ap-

proach is general and may be applied to future video archi-

tectures as an ActionVLAD CNN layer, which may prove

helpful for related tasks such as (spatio) temporal localiza-

tion of human actions in long videos.

Acknowledgements: The authors would like to thank Gül Varol

and Gunnar Atli Sigurdsson for help with iDT. DR is supported by NSF

Grant 1618903, Google, and the Intel Science and Technology Center for

Visual Cloud Systems (ISTC-VCS).

978



References

[1] Project webpage (code/models). http://

rohitgirdhar.github.io/ActionVLAD. 5

[2] Supplementary material (appendix) for the paper. https:

//arxiv.org/abs/1704.02895. 6, 7

[3] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-

mawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,

R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,

R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,

J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,

V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-

den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensor-

Flow: Large-scale machine learning on heterogeneous sys-

tems, 2015. Software available from tensorflow.org. 5

[4] S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici,

B. Varadarajan, and S. Vijayanarasimhan. Youtube-8m:

A large-scale video classification benchmark. CoRR,

abs/1609.08675, 2016. 2

[5] M. R. Amer, S. Todorovic, A. Fern, and S. Zhu. Monte carlo

tree search for scheduling activity recognition. In ICCV,

2013. 2

[6] R. Arandjelović, P. Gronat, A. Torii, T. Pajdla, and J. Sivic.

NetVLAD: CNN architecture for weakly supervised place

recognition. In CVPR, 2016. 1, 2, 3, 5, 6

[7] R. Arandjelovic and A. Zisserman. All about VLAD. In

CVPR, 2013. 3

[8] G. Awad, J. Fiscus, M. Michel, D. Joy, W. Kraaij, A. F.

Smeaton, G. Qunot, M. Eskevich, R. Aly, G. J. F. Jones,

R. Ordelman, B. Huet, and M. Larson. Trecvid 2016: Eval-

uating video search, video event detection, localization, and

hyperlinking. In TRECVID, 2016. 2

[9] Z. Cai, L. Wang, X. Peng, and Y. Qiao. Multi-view super

vector for action recognition. In CVPR, 2014. 7

[10] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR, 2005. 2

[11] N. Dalal, B. Triggs, and C. Schmid. Human detection using

oriented histograms of flow and appearance. In ECCV, 2006.

2

[12] C. R. de Souza, A. Gaidon, E. Vig, and A. M. López. Sym-

pathy for the details: Dense trajectories and hybrid classifi-

cation architectures for action recognition. In ECCV, 2016.

1, 7

[13] J. Donahue, L. A. Hendricks, S. Guadarrama, S. V.

M. Rohrbach, K. Saenko, and T. Darrell. Long-term recur-

rent convolutional networks for visual recognition and de-

scription. In CVPR, 2015. 7

[14] C. Feichtenhofer, A. Pinz, and R. Wildes. Spatiotemporal

residual networks for video action recognition. In NIPS,

2016. 7

[15] C. Feichtenhofer, A. Pinz, and A. Zisserman. Convolutional

two-stream network fusion for video action recognition. In

CVPR, 2016. 1, 2, 6, 7

[16] B. Fernando, E. Gavves, M. J. Oramas, A. Ghodrati, and

T. Tuytelaars. Modeling video evolution for action recogni-

tion. In CVPR, 2015. 2, 7

[17] A. Gaidon, Z. Harchaoui, , and C. Schmid. Temporal local-

ization of actions with actoms. In PAMI, 2013. 2

[18] A. Gorban, H. Idrees, Y.-G. Jiang, A. R. Zamir, I. Laptev,

M. Shah, and R. Sukthankar. THUMOS challenge: Action

recognition with a large number of classes, 2015. 2

[19] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. CVPR, 2016. 1, 7

[20] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in

deep residual networks. In ECCV, 2016. 1

[21] M. S. Ibrahim, S. Muralidharan, Z. Deng, A. Vahdat, and

G. Mori. A hierarchical deep temporal model for group ac-

tivity recognition. In CVPR, 2016. 2

[22] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

ICML, 2015. 7

[23] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating

local descriptors into a compact image representation. In

CVPR, 2010. 2, 3

[24] Y. Jiang, J. Liu, A. Roshan Zamir, I. Laptev, M. Piccardi,

M. Shah, and R. Sukthankar. THUMOS challenge: Action

recognition with a large number of classes. http://www.

thumos.info/, 2013. 6

[25] K. Kang, W. Ouyang, H. Li, and X. Wang. Object detection

from video tubelets with convolutional neural networks. In

CVPR, 2016. 2

[26] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,

and L. Fei-Fei. Large-scale video classification with convo-

lutional neural networks. In CVPR, 2014. 1, 2, 7

[27] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. In ICLR, 2015. 5

[28] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre.

HMDB: a large video database for human motion recogni-

tion. In ICCV, 2011. 1, 2, 5

[29] G. Lev, G. Sadeh, B. Klein, and L. Wolf. Rnn fisher vectors

for action recognition and image annotation. In ECCV, 2016.

2, 7

[30] W. Li, Q. Yu, A. Divakaran, and N. Vasconcelos. Dynamic

pooling for complex event recognition. In CVPR, 2013. 2

[31] J. Y. Ng, M. J. Hausknecht, S. Vijayanarasimhan, O. Vinyals,

R. Monga, and G. Toderici. Beyond short snippets: Deep

networks for video classification. In CVPR, 2015. 2, 7

[32] J. C. Niebles, C.-W. Chen, and L. Fei-Fei. Modeling tempo-

ral structure of decomposable motion segments for activity

classification. In ECCV, 2010. 2

[33] X. Peng, L. Wang, X. Wang, and Y. Qiao. Bag of visual

words and fusion methods for action recognition: Compre-

hensive study and good practice. CVIU, 2016. 7

[34] X. Peng, C. Zou, Y. Qiao, and Q. Peng. Action recognition

with stacked fisher vectors. In ECCV, 2014. 2

[35] F. Perronnin and C. Dance. Fisher kernels on visual vocabu-

laries for image categorization. In CVPR, 2007. 3

[36] H. Pirsiavash and D. Ramanan. Parsing videos of actions

with segmental grammars. In CVPR, 2014. 2

[37] M. Raptis and L. Sigal. Poselet key-framing: A model for

human activity recognition. In CVPR, 2013. 2

[38] M. Rohrbach, M. Regneri, M. Andriluka, S. Amin,

M. Pinkal, and B. Schiele. Script data for attribute-based

recognition of composite activities. In ECCV, 2012. 2

979

http://rohitgirdhar.github.io/ActionVLAD
http://rohitgirdhar.github.io/ActionVLAD
https://arxiv.org/abs/1704.02895
https://arxiv.org/abs/1704.02895
http://www.thumos.info/
http://www.thumos.info/


[39] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein,

A. C. Berg, and F. Li. Imagenet large scale visual recognition

challenge. IJCV, 2015. 1

[40] M. S. Ryoo and J. K. Aggarwal. Recognition of composite

human activities through context-free grammar based repre-

sentation. In CVPR, 2006. 2

[41] G. A. Sigurdsson, G. Varol, X. Wang, A. Farhadi, I. Laptev,

and A. Gupta. Hollywood in homes: Crowdsourcing data

collection for activity understanding. In ECCV, 2016. 1, 2,

6, 7

[42] K. Simonyan and A. Zisserman. Two-stream convolutional

networks for action recognition in videos. In NIPS, 2014. 1,

2, 4, 5, 7

[43] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

1, 4

[44] K. Soomro, A. R. Zamir, and M. Shah. UCF101: A dataset

of 101 human actions classes from videos in the wild. CRCV-

TR-12-01, 2012. 1, 2, 5

[45] L. Sun, K. Jia, D.-Y. Yeung, and B. Shi. Human action

recognition using factorized spatio-temporal convolutional

networks. In ICCV, 2015. 7

[46] V. Sydorov, M. Sakurada, and C. Lampert. Deep fisher ker-

nels and end to end learning of the Fisher kernel GMM pa-

rameters. In CVPR, 2014. 3

[47] C. Szegedy, S. Ioffe, and V. Vanhoucke. Inception-v4,

inception-resnet and the impact of residual connections on

learning. 2016. 1

[48] K. Tang, L. Fei-Fei, and D. Koller. Learning latent temporal

structure for complex event detection. In CVPR, 2012. 2

[49] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri.

Learning spatiotemporal features with 3d convolutional net-

works. In ICCV, 2015. 1, 2, 7

[50] L. van der Maaten and G. E. Hinton. Visualizing high-

dimensional data using t-sne. JMLR, 2008. 6

[51] G. Varol, I. Laptev, and C. Schmid. Long-term temporal

convolutions for action recognition. CoRR, abs/1604.04494,

2016. 1, 2, 7

[52] H. Wang, A. Kläser, C. Schmid, and L. Cheng-Lin. Action

Recognition by Dense Trajectories. In CVPR, 2011. 2

[53] H. Wang and C. Schmid. Action recognition with improved

trajectories. In ICCV, 2013. 1, 2, 7

[54] H. Wang, M. M. Ullah, A. Klaser, I. Laptev, and C. Schmid.

Evaluation of local spatio-temporal features for action recog-

nition. In BMVC, 2009. 2

[55] L. Wang, Y. Qiao, and X. Tang. Action recognition with

trajectory-pooled deep-convolutional descriptors. In CVPR,

2015. 2, 3, 7

[56] L. Wang, Y. Qiao, and X. Tang. Mofap: A multi-level repre-

sentation for action recognition. IJCV, 2016. 7

[57] L. Wang, Y. Xiong, Z. Wang, and Y. Qiao. Towards

good practices for very deep two-stream convnets. CoRR,

abs/1507.02159, 2015. 7

[58] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and

L. Van Gool. Temporal segment networks: Towards good

practices for deep action recognition. In ECCV, 2016. 1, 2,

4, 5, 7

[59] X. Wang, A. Farhadi, and A. Gupta. Actions ˜ transforma-

tions. In CVPR, 2016. 1, 2, 7

[60] P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Learning to

track for spatio-temporal action localization. In ICCV, 2015.

2

[61] Z. Xu, Y. Yang, and A. G. Hauptmann. A discriminative cnn

video representation for event detection. In CVPR, 2015. 2

[62] S. Yeung, O. Russakovsky, N. Jin, M. Andriluka, G. Mori,

and L. Fei-Fei. Every moment counts: Dense detailed

labeling of actions in complex videos. arXiv preprint

arXiv:1507.05738, 2015. 2

[63] W. Zhu, J. Hu, G. Sun, J. Cao, and Y. Qiao. A key volume

mining deep framework for action recognition. In CVPR,

2016. 1, 7

980


