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Abstract: Activated carbon doping TiO2 nanoparticles were synthesised by zapota leaf extract using
the co-precipitation method. The bio-constituents of plant compounds were used in the reactions
of stabilization and reductions. The carbon loading on the TiO2 nanoparticles was characterised by
XRD, FTIR, UV-DRS, SEM with EDX, and TEM analysis. The loading of activated carbon onto the
TiO2 nanoparticles decreased the crystallite size and optical bandgap, and their doping improved the
surface structure of AC/TiO2 nanoparticles. Mesoporous/microporous instability was remodified
from the activated carbon, which was visualised using SEM and TEM analysis, respectively. The
photocatalytic dye degradation of Rh-B dye was degraded in TiO2 and AC/TiO2 nanoparticles under
visible light irradiation. The degradation efficiencies of TiO2 and AC/TiO2 nanoparticles were 73%
and 91%, respectively. The bacterial abilities of TiO2 and AC/TiO2 nanoparticles were examined by
E. coli and S. aureus. The water reclamation efficiency and bactericidal effect of TiO2 and AC/TiO2

nanoparticles were examined via catalytic dye degradation and bacterial efficiency of activated
carbon-doped titanium dioxide nanoparticles.

Keywords: TiO2 and AC/TiO2 nanoparticles; photocatalysis; antibacterial activity; Rh-B; zapota leaf;
bio-synthesis

1. Introduction

Water scarcity is an important and big issue in the current world. The demand for water
is influenced by the development of industries and population increments [1–6]. Technology
and population growth affect water bodies through various associated compounds. Dyes,
germs, chemicals, and parasites are among the components that are integrated into water
bodies and changed to unpleasant and non-drinkable water. Dyes, chemicals, microbes, and
parasites are among the components that are integrated into water bodies and changed into
unpleasant and non-drinkable water [7–10]. Among the pollutants, organic and biological
compounds are very toxic to living organisms. Inadequacies in the water system have
been remedied through the application of nanomaterials for either wastewater treatment or
water reuse systems. Numerous technologies are elaborate in the water reclamation process,
such as filtrations, coagulations, adsorption, and photocatalysts [11,12]. The photocatalyst
method is an efficient technique and more powerful and convenient than other remediation
processes. In addition, the photocatalyst remediation process derives non-toxic compounds,
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and their by-products are noxious-free compounds. Metal oxides as photocatalysts facilitate
the maximum and more resourceful applications than metal photocatalysts due to their
wide bandgap and their recombination of photo charge carriers [13–16]. TiO2, ZnO, and
CeO2 metal oxides containing the 3.2 eV bandgap are the same, but TiO2 possesses a
larger surface area and higher oxidization ability than other metal oxides [17–20]. Hence,
the phase formation of TiO2 nanoparticles and their short response in visible light and
rapid recombination are major drawbacks of TiO2 nanoparticles. These drawbacks can be
circumvented and eliminated by using carbon decoration/doping on the TiO2 nanoparticles.
Carbon-based materials possess a large number of applications in various fields due to
their large surface area and porous nature [15–21]. Diamond, graphene, fullerene, activated
carbon, and coal are all examples of carbon allotropes. Carbon in various forms can
be utilised in supercapacitors, energy storage devices, and photocatalysts due to their
long-term stability, chemical compatibility, and chemical and mechanical qualities [16–18].
Among the carbon allotropes, activated carbon has a unique nature because it emanates
a double layer of surface area on the coating material and has high porosity compared
to other carbon forms. These properties are highly appreciated in adsorption activity
in water and gas separation developments. The porosity nature is classified into three
phases, (i) mesoporous, (ii) microporous, and (iii) macroporous [19–21]. Activated carbon
has mesoporous and microporous attitudes that absorb big and small molecules from the
surface. The large liquid molecules are adsorbed by activated carbon in mesoporous form,
and small gas molecules are captured from the microporous state [22–24]. The ratio between
mesoporous and microporous is a very important condition to form an efficient adequate
activated carbon system. Activated carbon is synthesised from bio-waste and a greenway
production process, which is a highly eco-friendly synthesis method [25–30]. The present
work aimed to remove water pollution through activated carbon-doped TiO2 nanoparticles.
Three important developments are discussed in the current work: (i) visible light adsorption
is enhanced using activated carbon to dope the TiO2 lattice; (ii) recombination processes
are extended by using activated carbon; and (iii) mesoporous and microporous ratios are
maintained by using TiO2 nanoparticles. These frames of action extensively degraded and
adsorbed the organic pollutants and bacterial activities.

2. Materials and Methods
2.1. Materials

All the chemicals were procured from Merck India. The reductant of Manilkara
zapota leaf was collected from Tamilnadu, India. Synthesised chemicals of activated carbon
and titanium tetra isopropoxide (TTIP) were used at an analytical grade (AR). Double
distilled water was used for further synthesis, and extra modifications did not occur in the
synthesised process.

2.2. Manilkara Zapota Leaf Extract Preparation

A total of 500 mg of fresh Manilkara zapota leaf was collected from a garden. The
obtained leaves were washed with tap water, rinsed with double distilled water, and then
dried at room temperature for 6 h. Finally, dried samples were mixed with 200 mL of
double distilled water and heated to 100 ◦C for 60 min. The boiled extract was filtered by
Whatman No.1 filter paper and stored for further synthesis processes.

2.3. Synthesis of TiO2 Nanoparticles

The 1 M TTIP solution was dissolved in 90 mL of double distilled water and mixed
with 10 mL of plant extract. The mixed solution was stirred for 6 h, and the temperature
was maintained at 60 ◦C. Ti compounds slowly reduced their colour configuration to a milk-
white colour formation. After stirring the colour-reduced solution, it was centrifuged for
10,000 rpm for 180 s, and this was repeated three times to eliminate unwanted compounds
from the surface. Then, the precipitate was processed using double distilled water and
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dried at 80 ◦C for one day. Finally, the obtained nanophase powder was stored for further
characterizations.

2.4. Preparation of AC/TiO2 Nanoparticles

An amount of 2 g of the activated carbon source was poured into a 1 M TTIP solution
and 10 mL of plant extract. The combined source solution was stirred for 6 h at 60 ◦C,
which produced the precipitate form of AC/TiO2 nanoparticles. The nano precipitate was
purified from the centrifugation process for 10,000 rpm at 180 s (3 times) and washed with
double distilled water. The purified precipitate obtained after removing the supernatant
was kept in an oven at 800 ◦C for 24 h. The final AC/TiO2 nanoparticles were stored for
further measurements.

2.5. Characterization of AC/TiO2 Nanoparticles

The phase details and structural information were monitored from X-ray diffraction
(XRD-PANalytical B.V., Overijssel, The Netherlands). The chemical compounds and their
functionality compounds and groups were captured from Fourier transform infrared
(FT-IR-Perkin Elmer, Waltham, MA, USA). The optical imperfections and their electronic
mitigations were recorded using UV-DRS (UV-2700, Shimadzu, Kyoto, Japan) analysis.
The surface morphology and their modifications of the synthesised nanoparticles were
derived from transmission electron microscopy (TEM-FEI Titan 80–300, Bangalore, India),
and scanning electron microscopy (SEM-Carl Zeiss, Jena, Germany) coupled with EDAX
spectroscopy measured the elemental presence of the nanoparticles. Binding energy and
their bonding were measured from XPS (Physical Electronics Model-PHI 5000 Versa Probe
III-Chanhassen, MN, USA)

2.6. Bacterial Suspension

The antibacterial activity was determined using Escherichia coli 745 and Staphylococ-
cus aureus 9779 as bacterial sources. Layreint Broth (LB) medium was used to prepare
the Gram-positive S. aureus and Gram-negative bacteria E. coli under the conditions of
36 ◦C/48 h. The well diffusion method helped to determine the bacterial efficacy of synthe-
sised nanoparticles. The well wall was created using a cork borer, and its diameter was
0.85 cm on the Petri plates. The different concentrations (10, 25, 50, and 100 µL) of the
nanoparticles sample were loaded into the created well and incubated for 24 h at 36 ◦C.
The bacterial growth rate was calculated using the zone of inhibitions, and the range was
measured in millimetres.

2.7. Photocatalytic Degradation Experiment

The visible light photocatalytic dye degradation of Rh-B dye was treated under solar
irradiation. The 10 mL (dye concentration was 1 × 10−5 M) Rh-B solution was dissolved in
10 mg of nanoparticles and placed in a dark condition to reach the equilibrium positions.
After that, the mixed solution was irradiated by solar light with continuous stirring. At
5 min, the aliquot was taken out and centrifuged to remove the nanoparticles, and the
degradation efficiency was measured by the following formula.

Dye removal percentage (%) = (Ca − Cb/Ca) × 100

where
Ca = Initial Rh-B concentrations at time = 0.

Cb = Active dye concentrations at time = 5 min.

The quenching experiment helps to find the active species (superoxides, free radicals,
and holes) of the photocatalyst. The 1 mmol/L concentration quenchers (triethanolamine
(TEOA), p-benzoquinone (BQ), and (isopropyl alcohol (IPA)) were used in the analysis, and
their measurements were captured from UV–Visible spectroscopy.
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3. Results and Discussion
3.1. XRD Analysis

Figure 1 shows the X-ray diffraction pattern of titanium dioxide and activated carbon-
decorated titanium dioxide nanoparticles. The pure titanium dioxide nanoparticles ob-
tained diffractive patterns at 2θ = 25.44T, 38T, 47.94T, 54.13T, 54.81T, 62.75T, 69.08T, 70.8T,
and 74.84T values, which are associated with (1 0 1), (0 0 4), (2 0 0), (1 0 5), (2 1 1), (2 0 4),
(1 1 6), (2 2 0), and (2 1 5) planes, respectively. The obtained values coincided well with the
anatase phase standard JCPDS card number: 89–4921 and their tetragonal structure [31,32].
The anatase phase stability is very high compared to other phases of titanium dioxide
nanoparticles, which can accelerate the electron accumulations on the surfaces. The dop-
ing of activated carbon reformed the titanium dioxide nanoparticles lattice arrangement,
which can be coated on the titanium dioxide surfaces. The activated carbon existence was
confirmed by 2θ = 25.33T (0 0 2), which moved towards the lower wavelength side. The
peak displacement on the titanium dioxide surfaces provides evidence of the formation
of activated carbon doping on the surfaces. The obtained 2θ values ensured the activated
carbon presence and were confirmed by the standard JCPDS card number 75–1621 [33–35].
The activated carbon increased the electron accumulations on the surface and modified the
crystal regularity. The crystallite sizes of the nanoparticles were calculated using the Scher-
rer formula. The calculated crystallite sizes are 29 nm and 23 nm for TiO2 and AC/TiO2
nanoparticles, respectively. The incorporation of activated carbon increased the lattice
orderings and decreased the void between atoms, which deducted the crystallite sizes.
The enhanced crystallite sizes of the AC/TiO2 nanoparticles are an efficient alternative for
water remediation and biological inactivation activities.
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3.2. FTIR Analysis

Figure 2 displays the functional groups of the TiO2 and AC/TiO2 nanoparticles. The
broad peak of pure TiO2 nanoparticles located at 3238 cm−1 exhibited OH-stretching
on the nanoparticles’ surface, which absorbed the phenolic compounds, alcohols, and
water molecules [36,37]. An aromatic ring vibration at the C=C stretching peak was seen
at 1634 cm−1, carboxylic acid formation was seen at 1524 cm−1, and C-H asymmetric
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stretching from the plant derivatives was exhibited at the peak of 1417 cm−1, which was
derived from the zapota plant extract [38–40]. The wide peak at 759 cm−1 and the narrow
peak at 553 cm−1 indicated the formation of activated carbon-loaded titanium dioxide
nanoparticles and established the oxygen–metal–oxygen bonding [41]. The activated
carbon loading modified the adsorption capability of TiO2 nanoparticles. The peak of
2984 cm−1 decreased their intensity due to the doping of activated carbon and derived the
OH-stretching on the surface [42]. The 1731 cm−1 peak indicates the existence of amine
compounds from biomolecules. The 1365 cm−1 peak represents the secondary amide
compounds derived from phenolic plant compounds. The peak at 1218 cm−1 denotes
the stretching vibrations of the C-O bond [43–45]. The peaks at 898 cm−1 and 516 cm−1

characterised the C-O-Ti-O bonding [46], which recognised the formation of activated
carbon-loaded titanium dioxide nanoparticles. Activated carbon loading or substitution on
titanium oxide nanoparticles was obtained from plant bio-molecules.
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Figure 2. FTIR spectrum of TiO2 (a) and AC/TiO2 (a) nanoparticles.

3.3. UV-DRS Analysis

The UV-DRS measurements of synthesised TiO2 and AC/TiO2 nanoparticles are
displayed in Figure 3. Figure 3a exposes the optical insights of the synthesised nanoparticles,
and their optical limit was characterised by the ultraviolet and visible regions. The pure
TiO2 nanoparticles exhibited an absorption edge at 370–390 nm, which described the
green emission of TiO2 nanoparticles. In addition, the O-Ti-O formations of Ti4+ cations
established the UV region absorption in TiO2 nanoparticles. Activated carbon doping to
the Ti4+ cations increased the electron excitations and produced a higher quantity of charge
carriers than pure TiO2 nanoparticles. When activated carbon is added to the Ti4+ cationic
system, the peaks shift to the higher wavelength side (redshift). Furthermore, the Ti4+
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cations increased the adsorbing behaviour due to their modifications of crystal lattices by
doping activated carbon. The optical defect and electron migrations are well constructed
by calculating the bandgap of the nanoparticles. The Kubelka–Munk relations were used
to find the bandgap of synthesised nanoparticles. The obtained values are demonstrated
in Figure 3b. The pure anatase TiO2 is 3.11 eV, well matched with the previous TiO2
nanoparticle value and standard anatase bandgap of TiO2 nanoparticles [47–51]. The wide
bandgap of TiO2 nanoparticles was modified with the activated carbon, which reduced
the bandgap to 2.73 eV. The energy difference is 0.38 eV which established the visible light
absorption and evidenced the production of photo-charge carriers. The generations of
charge carriers increased the free radicals and enhanced the recombination activity, which
provoked efficient catalytic degradation activity [52]. The radical generation promotes
bactericidal activity and is highly appreciable in biomedical developments.
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3.4. SEM with EDX and TEM Analysis

The synthesised nanoparticles’ surface morphology and their elemental disorder prop-
erties were measured from SEM with EDX spectrum, as shown in Figure 4. The pure
TiO2 nanoparticles exhibited semi-spherical and spherical shapes on the surface. The semi-
spherical shapes were attained from the plant molecules. The plant molecules’ infringement
over the surface creates a large molecule, and their existence builds semi-spherical forma-
tions of TiO2 nanoparticles [53,54]. The distribution and spherical formations are displayed
in Figure 4a,b. The addition of activated carbon to the TiO2 nanoparticles formed an
equal spherical shape and even distribution over the nanoparticles’ surface, as shown in
Figure 4c,d. The pure TiO2 nanoparticles demonstrated that the particle size is 30 nm and
AC/TiO2 is 22 nm, which are close to the XRD crystallite size values. The energy dispersion
on the elements was characterised by EDX spectroscopy, and their spectrum and table are
presented in Figure 4e. The carbon, titanium, and oxygen elements were confirmed from
the EDX peaks and table. The low amount of carbon modified the surface morphology and
created a mono-dispersion over the surfaces.
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nanoparticles.

The TEM images of AC/TiO2 nanoparticles are displayed in Figure 5a,b. Figure 5a
revealed that AC/TiO2 nanoparticles are spherical in shape with dark spotted surfaces.
Dark spotted surfaces indicated activated carbon doping on the TiO2 nanoparticles. The
TEM particle size of AC/TiO2 nanoparticles is 22 nm. The hetero-compounds of activated
carbon-doped titanium dioxide nanoparticles formed the improved morphology. The
polycrystalline and obtained AC/TiO2 nanoparticles’ structural information was ensured
by the SAED pattern of AC/TiO2 nanoparticles, as shown in Figure 5b. The obtained
particle sizes are well matched with the XRD crystallite size and SEM particle size. The
spherical nanoparticles have large surface areas. The surface enhancement of nanoparticles
simply strikes the organic pollutants or bacterial system and induces the charge carrier’s
productivity [55–57]. The spherical nanoparticles demonstrated an improved catalytic
activity compared to other shaped nanoparticles.

3.5. XPS Analysis

The chemical composition and the valency of the synthesised AC/TiO2 nanoparticles
were determined from X-ray photoelectron spectroscopy. The XPS spectrum consists of
wide Ti-2p, O-1s, and C-1s spectra for AC/TiO2 nanoparticles, representing activated
carbon, titanium, and oxygen, as shown in Figure 6. The Ti-2p spectrum is associated with
oxygen and activated carbon, increasing the bonding between the synthesised nanoparticles.
The Ti-2p spectrum is located at 458.6 eV (Ti-2p 3/2) and 466 eV (Ti-2p 1/2). The lattice
oxygen spectrum is exhibited at 531 and 533 eV for O-1s, and their association in C=O and
O-C=O is derived from activated carbon and plant extract. Their inclusion over the lattice
oxygen stabilised the Ti4+ valency and improved the degradation of the organic dyestuffs.
The activated carbon spectrum is located at 235 eV and represents the C-1s elements, which
indicates the formation of activated carbon-doped TiO2 nanoparticles. When doping the
TiO2 nanoparticles, activated carbon emanates the strongest binding between them. The
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constructed results of Ti-2p, O-1s, and C-1s demonstrate the potential of their binding
energy and the degradation potential of the AC/TiO2 nanoparticles.
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3.6. Antibacterial Activity

The synthesised pure AC, plant extract, TiO2, and AC/TiO2 nanoparticles were examined
against S. aureus (G-Positive) and E. coli (G-Negative) bacterial strains. The obtained bacterial
results of the synthesised nanoparticles are displayed in Figures 7 and 8. The AC and plant
extract (zapota) bacterial activities act as a standard antibacterial module, and it was compared
with pure TiO2 and AC/TiO2 nanoparticles. The zone of inhibitions was evident by the
inactivation of bacterial strains. Anatase TiO2 nanoparticles revealed the highest activity in
E. coli (G-Negative) bacterial strains compared to S. aureus (G-Positive) bacterial strains. The
wide bandgap and extended recombination process formulated radical activity, which enhanced
biological deactivation [58–60] as the activated carbon-doped titanium dioxide nanoparticles
exhibited higher activity in E. coli than in S. aureus. The presented zone of inhibitions is based
on the dosage-dependent manner, and their dissolution rate decides the bacterial dissociations.
The antibacterial activity is AC < plant extract < TiO2 < AC/TiO2 nanoparticles. Every action is
based on some procedure and protocol of the event. The bacterial inactivation mechanism is
displayed in Figure 9. The entry of nanoparticles attacks the cell wall, and their strength disrupts
the cell wall bonding. The leakage of the cell wall permits the entry of nanoparticles into the
bacterial domain, which affects electron chain communications. The miscommunications in
the cell system stop DNA and protein production, which affects the cell–nutrient system. A
nutrient-free cell system gradually expresses its inactivation. Regarding the obtained findings,
activated carbon-doped titanium dioxide nanoparticles improved their bio-sorption nature, and
it is highly advisable to use bio-medical development-related devices [60–62].
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3.7. Photocatalytic Activity

The pure AC, TiO2, and AC/TiO2 nanoparticles’ degradation efficiencies were de-
termined from Rh-B dye under visible light irradiation. The organic pollutants are very
noxious compounds and non-degradable and produce contagious diseases, which can be
remediated using a nano-photocatalyst. Activated carbon (AC) degradation is 55% due
to their active sites on the activated carbon surfaces. Pure TiO2 nanoparticles decreased
absorbance under light irradiation with respect to time. At 30 min intervals, pure TiO2
nanoparticles showed a 73% degradation efficiency, and their values are presented in
Figure 10a. The activated carbon doping to the anatase phase increased the adsorption
behaviour and decreased the dye intensity from initial dye concentrations. The decreased
absorbance determined the dissociation of dye molecules. The dye molecule fragments
increased due to the microporous nature of activated carbon. At 30 min intervals, activated
carbon-doped titanium dioxide exposed the 91% dye degradation. Anatase phase TiO2
coupled with mesoporous/microporous activated carbon exhibited enhanced degradation
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activity compared to pure TiO2 nanoparticles. The C/C0 spectrum demonstrated the degra-
dation rate of pure TiO2 and AC/TiO2 nanoparticles, as shown in Figure 10c. The rate of
degradation evaluation using pseudo-first-order kinetics and their calculated values are
displayed in Figure 10c.
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Comparatively, anatase TiO2 nanoparticles revealed minimal degradation activity
for 30 min (73%) compared to AC/TiO2 nanoparticles (91%), confirming the high num-
ber of productions. The wide bandgap photocatalyst does not give better adsorption in
visible light regions, which is overcome by doping of activated carbon. The photocat-
alytic mechanism of AC/TiO2 nanoparticles is presented in Figure 10d, and their steps are
as follows:

AC/TiO2 + hν→ e− (C.B) + h+ (V.B) (1)

(H+ + OH−) + h+→ H+ + .OH (2)

O2 + e−→ O2
− + H+ + OH−→ HO.

2+−OH (3)

HO.
2 + −OH + h+→.OH (4)

Rh-B + ·OH and O2˙−→ CO2 + H2O + by-products (5)

The formation of activated carbon and titanium dioxide nanoparticles is based on the
work functions. The excited electrons are transferred from lower work functional material to
higher work function materials which establish the Schottky barrier. The light entry increased
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the formation of e–h pairs [63,64]. The activated carbon reduced the bandgap and suppressed
recombination, allowing excited electrons to move from the valence to the conduction bands. The
free holes in the conduction band were engaged with the excited electrons [65,66]. This process
is delayed by the doping of activated carbon. Furthermore, the deduction of recombination
generated superoxide radicals and hydroxyl radicals. The above-mentioned productions help
to convert the dye compounds to small noxious-free molecules. The photocatalytic degradation
is influenced by holes and superoxides, and free radicals. Moreover, it can be responsible for
efficient catalytic activity. The quenching experiment is displayed in Figure 11. The without-
quenchers degradation percentage is 91%, and it can compare with holes, superoxides, and
hydroxide suppression values. The figure presents the suppression values of IPA < BQ <
TEOA for hydroxide < superoxides < holes, respectively. The holes’ degradation endurance
is better than the hydroxide and superoxide degradation efficiency, and their association with
the photocatalyst improved the photocatalytic dye degradation activity. Based on the obtained
findings, AC/TiO2 nanoparticles demonstrated a high absorption capability and enriched the
degradations.
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4. Conclusions

The zapota leaf extract was used to prepare activated carbon doping titanium diox-
ide nanoparticles. The production of nanophase particles in a sustainable way reduced
environmental risk and encouraged green calmness in the environment. The heteroge-
neous photocatalytic material of activated carbon-doped titanium dioxide nanoparticles
entered/modified the TiO2 lattice system and assisted the lattice distortions and reduc-
tion in the bandgap, enhanced the surface morphology, and created C-Ti-O formations.
The activated carbon entry increased the visible light adsorption and generated the super
oxide ions and hydroxyl radical on the surfaces. Reduced e–h pairs and carrier migra-
tions increased the photocatalytic activity against Rh-B dye in AC/TiO2 (91%) compared
to TiO2 (73%) nanoparticles. The bacterial investigation of S. aureus and E. coli against
TiO2 and AC/TiO2 nanoparticles established the bacterial denaturation of the nanoparti-
cles. E. coli bacteria are more active than S. aureus in the bactericidal activity of TiO2 and
AC/TiO2 nanoparticles. Furthermore, according to the results of the characterization, TiO2



Catalysts 2022, 12, 834 13 of 15

and AC/TiO2 nanoparticles are more sensitive to all types of bacterial strains. Therefore,
TiO2 and AC/TiO2 nanoparticles are potentially applicable for wastewater remediation
development-related applications.
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