
ar
X

iv
:2

10
7.

04
22

8v
1 

 [
cs

.C
V

] 
 9

 J
ul

 2
02

1
1

Activated Gradients for Deep Neural Networks
Mei Liu, Liangming Chen, Xiaohao Du, Long Jin, Senior Member, IEEE, and Mingsheng Shang

Abstract—Deep neural networks often suffer from poor
performance or even training failure due to the ill-conditioned
problem, the vanishing/exploding gradient problem, and the
saddle point problem. In this paper, a novel method by acting
the gradient activation function (GAF) on the gradient is
proposed to handle these challenges. Intuitively, the GAF
enlarges the tiny gradients and restricts the large gradient.
Theoretically, this paper gives conditions that the GAF needs
to meet, and on this basis, proves that the GAF alleviates
the problems mentioned above. In addition, this paper proves
that the convergence rate of SGD with the GAF is faster than
that without the GAF under some assumptions. Furthermore,
experiments on CIFAR, ImageNet, and PASCAL visual object
classes confirm the GAF’s effectiveness. The experimental
results also demonstrate that the proposed method is able
to be adopted in various deep neural networks to improve
their performance. The source code is publicly available at
https://github.com/LongJin-lab/Activated-Gradients-for-Deep-Neural-Networks.

Index Terms—Gradient activation function (GAF), ill-
conditioned problems, vanishing gradient problems, exploding
gradient problems, saddle point problems.

I. INTRODUCTION

A
RTIFICIAL neural networks are applied to a lot of fields,

such as machine translation [1], speech recognition [2],

object detection [3], robotics [4]–[6], intelligent control [7],

etc. In neural networks, the gradient-descent-based algorithm

is one of the most widely used optimization algorithms [8]. In

order to accelerate the training and promote generalization,

some batch-based gradient descent methods are developed

in large-scale neural network training based on the vanilla

gradient descent method, namely, stochastic gradient descent

(SGD), batch gradient descent, and mini-batch gradient de-

scent [9], [10], respectively. Several variants are constructed

for the batch-based gradient descent methods, such as SGD

with momentum (SGDM) [11], Nesterov accelerated gradi-

ents [12]. These gradient-based methods allow a model to

generalize well with relatively low computational overhead.

Even though these optimization algorithms can achieve sat-

isfying results, the backpropagation (BP) [13] algorithm may

suffer from obstacles in training. Examples include the ill-

conditioned problem [14], the vanishing gradient problem [15],

the exploding gradient problem [16], and the saddle point

problem [17].

This work is supported in part by the National Natural Science Foundation
of China (No. 61703189).

M. Liu, L. Chen, X. Du, and L. Jin are with the School of Information
Science and Engineering, Lanzhou University, Lanzhou, China (e-mails:
jinlongsysu@foxmail.com; longjin@ieee.org).

M. Shang is with the University of the Chinese Academy of Sciences,
Beijing 100049, China.

Kindly note that M. Liu, L. Chen, and X. Du are jointly of the first
authorship.

An ill-conditioned problem is the problem with a high con-

dition number [14]. The Hessian matrix of an ill-conditioned

problem has both relatively large and relatively small eigen-

values [18]. From the perspective of the loss landscape, there

are some directions that make the loss surface wide and

flat, with some other narrow and sharp directions. For an

ill-conditioned problem, the gradient descent optimizer often

vibrates in narrow/sharp directions but converges slowly in

the wide/flat directions. The ill-conditioned problem makes

the tuning of the learning rate sensitive and prevents efficient

training.

During deep learning training, the gradient flows through

layers with the chain derivation rule in the BP algorithm. If

the initial gradient value is less than 1 in a deep network,

the gradient is prone to approach zero during the calculation

process, which contributes to a failure of training on some

layers: This is the vanishing gradient problem. The exploding

gradient problem is the opposite of the vanishing gradient one.

If the gradient’s initial value is greater than 1 and the network

has a large number of layers, the final gradient can be a very

large number, which might result in divergence. The vanish-

ing and exploding gradient problems are partly attributed to

improper parameter initialization and inappropriate selection

of the activation function, and mainly owing to the inherent

deficiency of chain derivation rule in the BP algorithm [19].

In addition to the vanishing gradient problem and the

exploding gradient problem, the saddle point problem is also

difficult to solve. The saddle point’s mathematical meaning

is that the Hessian matrix [20] of the loss function where

the first-order derivative is zero (the stationary point) is an

indefinite matrix. A saddle point has a second-order derivative

of less than 0 in at least one dimension, and this endows the

optimizer’s potential to continue the minimization. Assume

that the Hessian matrix of the loss is denoted as H. The

eigenvalues of H are denoted as λ1, λ2, ..., λň, where the

symbol ň refers to the total dimension of the parameter.

Assume that the probability that an eigenvalue is greater

than 0 is pt. The probability p(H) that H is a positive

definite matrix whose eigenvalues are all greater than 0 is

p(H) = p(λ1) · p(λ2) · ... · p(λň) = (pt)
ň. Since pt < 1, a

large enough ň (generally, the deep learning model contains a

large number of parameters) leads to p(H)→ 0, i.e., there is

a high possibility for the initial point being a saddle point.

Besides, another obstacle for deep learning training is the

plateau, which are flat regions with a nearly zero gradient and

slows down neural network learning [21]. The plateau around

the saddle point makes the SGD being stuck near that point

for many iterations since the gradient is close to zero [21].

The ill-conditioned problem, the vanishing gradient prob-

lem, the exploding gradient problem, and the saddle point

problem are not completely resolved according to the loss

http://arxiv.org/abs/2107.04228v1
https://github.com/LongJin-lab/Activated-Gradients-for-Deep-Neural-Networks


2

landscape visualization and other works [22]–[25]. A method

operating on gradients called the gradient activation function

(GAF) is proposed to tackle the ill-conditioned problem, the

vanishing gradient problem, the exploding gradient problem,

and the saddle point problem. Detailed proofs are given in

Section II. Besides, based on theoretical and empirical anal-

yses, hyperparameter determination suggestions are provided,

which allows the GAF to be applied in practice. Moreover,

deep neural networks equipped with the GAF are evaluated on

ImageNet, CIFAR-10, CIFAR-100, and PASCAL visual object

classes (VOC) datasets. The main contributions of this paper

are as follows:

• This paper proposes the GAF, which tackles the ill-

conditioned problem, the vanishing gradient problem, the

exploding gradient problem, and the saddle point problem

in one shot by acting a certain activation function on the

gradient.

• Theoretically, this paper proves the following results.

(a) The GAF decreases the condition number of the

original optimization problem under some conditions. (b)

The GAF accelerates the convergence of the SGD under

some assumptions. (c) The arctan-type GAF avoids the

vanishing/exploding gradient problems to some extent.

(d) The arctan-type GAF escapes the saddle point region

faster than GD.

• Extensive experiments are conducted to evaluate the prac-

tical performance of the GAF, and significant improve-

ments are observed. Experiments on ImageNet, CIFAR-

100, CIFAR-10, and PASCAL VOC datasets consistently

demonstrate the effectiveness of the proposed GAF.

II. RELATED WORK

Optimization is one of the fundamental issues in neural

network training. A large number of solutions are constructed

to solve problems in optimization. In this section, we briefly

review works related to the proposed GAF solution.

Ill-conditioned problems: The ill-conditioned problem

brings instability in the network’s training. Newton’s method is

an optimization method with second-order derivative involved

[26]. Theoretically, under certain conditions, Newton’s method

solves the ill-conditioned problem effectively. However, New-

ton’s method requires the calculation of the inverse of the

Hessian matrix which contains ň2 elements with ň denoting

the number of parameters in a neural network. As a result, the

computational overhead of Newton’s method is unacceptable.

Adam is an adaptive optimization method that suppresses the

oscillations toward sharp directions and accelerates the descent

toward flat directions [27]. Generally, Adam converges faster

than SGDM, but with poor generalization ability [27].

Vanishing gradient problems: Several methods are studied

to mitigate effects of the vanishing gradient problem, such

as replacing activation functions from sigmoid and tanh to

rectified linear unit (ReLU) [28], batch normalization (BN)

[29], and residual structures [30], [31]. Before ReLU is

designed, sigmoid and tanh are mainly used as activation

functions in neural networks [28], [32]. However, the sigmoid
and tanh activation functions’ derivatives are less than 1

(especially for somewhere far away from the origin), which

easily cause the gradient to tend to 0 after applying the chain

rule. ReLU and its variants (such as Gaussian error linear units

[33], Swish [34], exponential linear units [35], and scaled

exponential linear units [36]) are employed to mitigate the

vanishing gradient problem in deep neural network models.

The ReLU has a gradient of 1 when the input is greater

than 0, preventing the gradient from vanishing or exploding in

this case. Nevertheless, ReLU can cause the gradient to be 0
when the input is less than 0. The BN normalizes the feature

map to a certain distribution to ensure stability [29]. The

BN brings remarkable improvements for deep learning models

and is widely used in popular backbones. BN is essentially a

solution to the vanishing gradient problem in the backpropa-

gation process. The residual structure deals with the vanishing

gradient problem from a different perspective. The output of

the residual block is the sum of the activated feature map and

the identity mapping of the input. Deep neural networks with

residual structures maintain the information through layers and

thus tend to avoid the vanishing gradient problem to some

extent [37]. However, the residual structure cannot completely

solve the problem of vanishing gradient, which is supported

by some visualization studies [22], and ResNets fail to enable

arbitrarily deep networks to be effectively trained.

Exploding gradient problems: In addition to methods for

solving the vanishing gradient problem, some other methods

are exploited to tackle the exploding gradient problem, such

as gradient clipping [38] and weight regularization [39]. There

are two types of gradient clipping: the value clipping method

is to clip the gradient that exceeds a preset threshold, and the

norm clipping one adjusts the gradient according to its norm

[38].

However, gradient clipping cannot promote solving vanish-

ing gradient and saddle point problems. Another method for

solving the exploding gradient problem is to use parameter

regularization, more commonly known as L1 regularization

and L2 regularization. These regularization methods add a

norm term to the loss function to softly constrain the parameter

range. If the exploding gradient occurs (i.e., the norm of the

parameter becomes very large), the regularization term can

“pull back” the weight to a relatively flat region (i.e., the region

which is close to zero), thus limit the occurrence of exploding

gradients to some extent [39]. Nevertheless, the regularization

term still remains unresolved issues on efficiency and stability.

Saddle point problems: Most existing works for handling

saddle points revolve around injecting noises or introducing

an adaptive learning rate [17], [40], [41]. Feasible methods

include adding noise to the correct gradient [41], randomly

initializing the optimization starting point [42], using an op-

timizer with adaptive learning rates [43] to escape from the

saddle points. Specifically, adding the Gaussian noise to the

gradient helps the gradient avoiding saddle points [41]. There

exists a general phenomenon that the optimizer of a neural

network model is trapped within a neighborhood of the saddle

point during the early stage. When noise is injected into the

gradient, there are no such initial conditions for every iteration

that make the optimizer converge into saddles.

Operations on gradients Gradient normalization (GN) au-



3

tomatically normalizes the gradient, and performance improve-

ment is observed in deep multitask networks [44]. Different

from the GN that operates the overall gradient distribution,

the proposed GAF modifies the value of each element of

the gradient to promote optimization. Gradient centralization

(GC) modifies the gradient vector so that its mean value is

zero. GC performs well in many tasks but lacks a theoretical

guarantee. Researchers may give more theoretical evidences

of GC’s effectiveness in the future, but in [45] itself, GC

changes the sign of the gradient element, which is not easy to

follow. Similar to GC, the proposed GAF operates directly

on gradients. The difference is that the GAF acts specific

function to gradients rather than centralizes them, and we

provide extensive theoretical guarantees of convergence and on

the ill-conditioned problem, the vanishing/exploding gradient

problems, and the saddle point problem.

In summary, the ill-conditioned problem, the vanishing

gradient problem, the exploding gradient problem, and the

saddle point problem have not been completely resolved yet.

This paper proposes the GAF to alleviate these problems in

one shot with theoretical and empirical evidences.

III. THEORETICAL ANALYSIS

In this section, the formal description of the GAF is given,

and theoretical analyses are provided.

A. Description of the GAF

The current solutions to the ill-conditioned problem, the

vanishing gradient problem, the exploding gradient problem,

and the saddle point problem are not perfect [22]–[25]. Since

these problems are directly related to the gradient, it would be

helpful if there is a strategy to control the gradient to make the

training process more efficient and stable. Therefore, the GAF,

which acts on the gradient, is designed to be embedded in an

optimizer. To lay a basis for further discussions, a definition

on the GAF is given.

Definition 1. For a function ǵ : R → R, ǵ = ǵ(g) is a GAF

if the following conditions are met:

• ǵ(g) is second-order differentiable and monotonic in-

creasing;

• ǵ(g) is an odd function;

• There exists a number ε ≥ 0 that makes ∀g ≥ ε, ǵ(g) ≤
g.

• g ·ǵ′′(g) < 0, where the superscript ′′ denotes the second-

order derivative.

Note that when the GAF is used for mapping a vector or a

matrix, the same notation is kept and the mapping is element-

wise, i.e., for ǵ : Rň → R
ň, ǵ(g) is used to denote the GAF

on a gradient vector g, where ň is the total dimension of the

parameter. Besides, the following notation is used to represent

the nth component of the gradient: gn(w) = gn = (∂L/∂w)n
with loss L and the parameter of the involved neural network

w. Then, the following GAFs are given as examples:

• Arctan-type GAF: ǵ(g) = α arctan(βg);
• Tanh-type GAF: ǵ(g) = α tanh(βg);

• Log-type GAF: ǵ(g) = α(ln(ReLU(βg) + 1) −
ln(ReLU(−βg) + 1)).

In these GAFs, α and β are factors that control the shape of the

GAF. For example, α in arctan-type GAF primarily controls

the range of the gradient, and once α is fixed, β mainly affects

the slope of the curve in the region that the gradient close to

0.

B. Ill-conditioned Problem and Convergence Analysis

In this part, analyses on the ill-conditioned situation and

convergence are given as follows.

Definition 2. For a continuously differentiable loss function

L(w), its gradient g is ℓ-tightly-Lipschitz continuous if the

following conditions are met.

(a) If ||w − w̃|| 6= 0, the following inequality holds for any

g(w) and g(w̃):

0 < ℓ = max
||g(w)− g(w̃)||

||w − w̃||
. (1)

(b) If ||w − w̃|| = 0, ||g(w) − g(w̃)|| = 0.

Note that w and w̃ are two arbitrary parameter vectors; || · ||
denotes the 2-norm operation.

Definition 3. A continuously differentiable loss function L(w)
is c-tightly-strongly convex if the following conditions are met.

(a) If ||w − w̃|| 6= 0, the following inequality holds for any

g(w) and g(w̃):

0 < c = min
||g(w) − g(w̃)||

||w − w̃||
. (2)

(b) If ||w − w̃|| = 0, then ||g(w) − g(w̃)|| = 0.

Remark 1. If ||w − w̃|| 6= 0, according to Definition 2,

ℓ = max
||g(w)− g(w̃)||

||w − w̃||
≥
||g(w) − g(w̃)||

||w − w̃||
.

Then, ℓ||w− w̃|| ≥ ||g(w)− g(w̃)|| holds. If ||w− w̃|| = 0,

ℓ||w − w̃|| ≥ ||g(w) − g(w̃)|| maintains. Thus, ℓ-tightly-

Lipschitz continuous implies that the gradient is Lipschitz

continuous with Lipschitz constant ℓ. The similar conclusion

is drawn from c-tightly strongly convex to strongly convex.

For simplification, g(w) and g(w̃) are written as g and g̃,

respectively.

Lemma 1. Suppose that the GAF ǵ : R
ň → R

ň is con-

tinuously differentiable with its component ǵ : R → R. In

addition, suppose that ǵ′(gn) > 1 for any |gn| ≤ ǫ0. Then,

||ǵ(ḡ)− ǵ(g̃)|| > ||ḡ− g̃|| for |gn| ≤ ǫ0, where the superscript
′ denotes the first-order derivative; ḡ and g̃ are two arbitrary

gradient vectors; ||ḡ − g̃|| 6= 0.

Proof: If ḡn > g̃n, by Lagrange’s mean value theorem

[46], one obtains ǵ(ḡn) − ǵ(g̃n) = ǵ′(ξ1)(ḡn − g̃n), where

ξ1 ∈ (ḡn, g̃n). Since ǵ′(ξ1) > 1, it follows that

ǵ(ḡn)− ǵ(g̃n) > (ḡn − g̃n). (3)

If ḡn < g̃n, by the similar steps, we have

ǵ(ḡn)− ǵ(g̃n) < (ḡn − g̃n). (4)



4

Together, equations (3) and (4) yield (ǵ(ḡn)−ǵ(g̃n))
2 > (ḡn−

g̃n)
2. Summing over all dimensions gives the result:

||ǵ(ḡ)− ǵ(g̃)|| =(
ň
∑

n=1

(ǵ(ḡn)− ǵ(g̃n))
2)

1
2

> (

ň
∑

n=1

(ḡn − g̃n)
2)

1
2 = ||ḡ − g̃||.

(5)

The proof is completed.

Lemma 2. Suppose that the GAF ǵ : R
ň → R

ň is con-

tinuously differentiable with its component ǵ : R → R. In

addition, suppose that ∃ǫ1 ≤ ǫ2 which satisfies ǵ′(ǫ1) ≤ 1
with ǵ(ǫ2) ≤ ǫ2. Then, ||ǵ(ḡ) − ǵ(g̃)|| < ||ḡ − g̃|| for any

|gn| > ǫ2.

Proof: Consider two arbitrary scalars ḡn and g̃n respec-

tively satisfy |ḡn| > ǫ2 and |g̃n| > ǫ2.

1) First, we consider the case of ḡn > ǫ2 > 0 and g̃n <
−ǫ2 < 0. By Lagrange’s mean value theorem [46], ∃ξ2 ∈
(ǫ1, ǫ2) makes

ǵ′(ǫ1)− ǵ′(ǫ2) = ǵ′′(ξ2)(ǫ1 − ǫ2). (6)

According to the definition on the GAF (Definition 1),

ξ2 > 0 and ξ2 · ǵ
′′(ξ2) < 0 yield ǵ′′(ξ2) < 0. Together

with ǵ′(ǫ1) ≤ 1 and (6), it has

ǵ′(ǫ2) < 1. (7)

Using Taylor’s expansion [46] at ḡn and ǫ2, we have

ǵ(ḡn) = ǵ(ǫ2)+ǵ′(ǫ2)(ḡn−ǫ2)+
1

2
(ḡn−ǫ2)

2ǵ′′(ξ3), (8)

where ξ3 ∈ (ḡn, ǫ2). Under the assumption that ǵ(ǫ2) ≤
ǫ2, considering equations (7) and (8) together yields

ǵ(ḡn) ≤ ǫ2 + ǵ′(ǫ2)(ḡn − ǫ2) +
1

2
(ḡn − ǫ2)

2ǵ′′(ξ3)

≤ ḡn +
1

2
(ḡn − ǫ2)

2ǵ′′(ξ3).
(9)

Since ǵ′′(ξ3) < 0,

ǵ(ḡn) < ḡn (10)

is obtained. By following a similar analysis, we have

ǵ(g̃n) > g̃n. (11)

Combining (10), (11), and the definition on the GAF

generates

(ǵ(ḡn)− ǵ(g̃n))
2 < (ḡn − g̃n)

2. (12)

Then,

||ǵ(ḡ)− ǵ(g̃)|| < ||ḡ − g̃|| (13)

follows by summing (12) through all dimensions.

2) For the case of ḡn > g̃n > ǫ2, using Lagrange’s mean

value theorem [46] for g̃n < ξ5 < ḡn with ǫ1 < ξ4 < ξ5
leads to

ǵ′(ξ5)− ǵ′(ǫ1) = ǵ′′(ξ4)(ξ5 − ǫ1).

Combining ǵ′′(ξ4) < 0 (directly obtained from 0 < ǫ1 <

ξ4 and the assumption that ξ4ǵ
′′(ξ4) < 0), ξ5 − ǫ1 > 0,

and ǵ′(ǫ1) ≤ 1, it gives that ǵ′(ξ5) < 1. Then, using

Lagrange’s mean value theorem [46] for g̃n < ξ5 < ḡn
gives

ǵ(ḡn)− ǵ(g̃n) < ḡn − g̃n. (14)

Since (14) holds for all dimensions,

||ǵ(ḡ)− ǵ(g̃)|| < ||ḡ − g̃|| (15)

is obtained.

3) Similarly, for the case of ḡn < g̃n < −ǫ2, we have

ǵ(ḡn)− ǵ(g̃n) > ḡn − g̃n and then,

||ǵ(ḡ)− ǵ(g̃)|| < ||ḡ − g̃||. (16)

The proof is complete.

Assumption 1. The loss function L : Rň → R is continuously

differentiable and satisfies the following conditions.

(a) (wL
n , g

L
n) = {(wn, gn)| |gn(w)| ≤ ǫ0}, where wn and gn

are the nth component of the parameter and the gradient,

respectively.

(b) Consider that the part of the loss function that meets with

this condition is composed of š segments as

(wL
n)1, · · · , (w

L
n)s, · · · , (w

L
n)š ∈ wL

n ;

∀s, the loss is continuously differentiable on (wL
n)s, where

(wL
n)1 ∪ · · · ∪ (wL

n)s · · · ∪ (wL
n)š = wL

n ;

(wL
n)1 ∩ · · · ∩ (wL

n)s · · · ∩ (wL
n)š = ∅.

(c) (wH
n , g

H
n ) = {(wn, gn)| |gn(w)| > ǫ2} under the high

gradient circumstance.

(d) Consider that the part of the loss function that meets with

this condition is composed of ť segments as

(wH
n )1, · · · , (w

H
n )t, · · · , (w

H
n )ť ∈ wH

n ;

∀t, the loss is continuously differentiable on (wH
n )t, where

(wH
n )1 ∪ · · · ∪ (wH

n )t · · · ∪ (wH
n )ť = wH

n ;

(wH
n )1 ∩ · · · ∩ (wH

n )t · · · ∩ (wH
n )ť = ∅.

Assumption 2. The gradient g : R
ň → R

ň is ℓ-tightly-

Lipschitz continuous and satisfies the following.

(a) The Lipschitz constants of gLn and gHn are

ℓLn = max{(ℓLn)1, · · · , (ℓ
L
n)s, · · · , (ℓ

L
n)š}

and

ℓHn = max{(ℓHn )1, · · · , (ℓ
H
n )t, · · · , (ℓ

H
n )ť},

respectively. In addition, (ℓLn)s and (ℓHn )t are the Lipschitz

constants of (gLn)s and (gHn )t, respectively.

(b) The Lipschitz constant ℓn of the gradient gn in dimension

n satisfies ℓn = max{ℓLn, ℓ
H
n}.

Theorem 1. Under Assumption 1 and Assumption 2, suppose

that ℓLn < ℓHn and (ℓLn)
G < (ℓHn )

G, where the superscript G

means that the GAF acts on the gradient. In addition, suppose

that the Lipschitz constant of the gradient ℓ = max{ℓn|n =
1, · · · , ň}, (ℓ)G = max{(ℓn)

G|n = 1, · · · , ň}, and ℓLn < ℓHn .



5

Then,

(ℓ)G < ℓ. (17)

Proof: By Lemma 2 and Definition 2, ∀t, it follows that

(ℓHn )t = max
||(gHn )t − (g̃Hn )t||

||(wH
n )t − (w̃H

n )t||

> max
||(gHn )

G
t − (g̃Hn )

G
t ||

||(wH
n )t − (w̃H

n )t||
= (ℓHn )

G
t .

(18)

Under Assumption 2(a), (18) gives

(ℓHn )
G < ℓHn . (19)

Recalling Assumption 2(b), ℓLn < ℓHn , and (ℓLn)
G < (ℓHn )

G

gives (ℓn)
G = max{(ℓLn)

G, (ℓHn )
G} = (ℓHn )

G and ℓn =
max{ℓLn, ℓ

H
n} = ℓHn . Together with (19), one obtains

ℓn > ℓGn . (20)

Since ℓ = max{ℓn|n = 1, · · · , ň}, (ℓ)G = max{(ℓn)
G|n =

1, · · · , ň}, we have (ℓ)G < ℓ. The proof is complete.

Assumption 3. The loss function L : Rň → R is c-tightly-

strongly convex and satisfies the following.

(a) The strong convexity constants of L(wL
n) and L(wH

n ) are

cLn = min{(cLn)1, · · · , (c
L
n)s, · · · , (c

L
n)š}

and

cHn = min{(cHn )1, · · · , (c
H
n )t, · · · , (c

H
n )ť},

respectively. In addition, (cLn)s and (cHn )t are the strong

convexity constants of L((wL
n)s) and L((wH

n )t), respec-

tively.

(b) The strong convexity constant cn of L(wn) in dimension

n satisfies cn = min{cLn, c
H
n}.

Theorem 2. Under Assumptions 1 and 3, suppose that cLn <
cHn and (cLn)

G < (cHn )
G for wn ∈ [wa

n, w
b
n]. In addition,

assume that the derivative of ǵ with respect to gn satisfies

ǵ′(gn) > 1 for any |gn| ≤ ǫ0. In addition, suppose that

the strong convexity constant c = min{cn|n = 1, · · · , ň},
(c)G = min{(cn)

G|n = 1, · · · , ň}. Then,

cG > c. (21)

Proof: By Lemma 1 and Definition 3, ∀s, it follows that

(cLn)s = min
||(gLn)s − (g̃Ln)s||

||(wL
n)s − (w̃L

n)s||

< min
||(gLn)

G
s − (g̃Ln)

G
s ||

||(wL
n)s − (w̃L

n)s||
= (cLn)

G
s .

(22)

Under Assumption 3(a), (22) gives

(cLn)
G < cLn. (23)

Recalling Assumption 3(b), cLn < cHn , and (cLn)
G < (cHn )

G

gives (cn)
G = min{(cLn)

G, (cHn )
G} = (cLn)

G and cn =
min{cLn, c

H
n} = cLn. Together with (23), c = min{cn|n =

1, · · · , ň}, and (c)G = min{(cn)
G|n = 1, · · · , ň}, one obtains

(21). The proof is complete.

Theorem 3. Under Assumptions 1, 2, and 3, suppose that

cLn < cHn , (cLn)
G < (cHn )

G, ℓLn < ℓHn , and (ℓLn)
G < (ℓHn )

G for

wn ∈ [wa
n, w

b
n]. In addition, assume that the derivative of ǵ

with respect to gn satisfies ǵ′(gn) > 1 for any |gn| ≤ ǫ0. Then,

ζG < ζ, where ζG is the condition number of L with the GAF

and ζ is the condition number without the GAF.

Proof: The condition number is defined as ζ = ℓ/c in

literatures [47], [48]. Recalling (17) and (21), we obtain ζG =
(ℓ)G/(c)G < ℓ/c = ζ. The proof is complete.

Assumption 4. Assume that stochastic gradient descent

(SGD) (Algorithm 1 in [49]) is taken as the optimizer and

the following conditions are met [49].

(a) The lower bound of the loss L is a scalar Lbound.

(b) ∀k ∈ N, ∃µG and µ satisfy µG ≥ µ > 0 and make

∇L(wk)
⊤
Eξk [g(wk, ξk)] ≥ µ||∇L(wk)||

2

and

||Eξk [g(wk, ξk)]|| ≤ µG||∇L(wk)||,

where E[·] denotes the operation of taking the expecta-

tion; ξk is a random seed in iteration k that takes a

set of samples from the whole samples; g(wk, ξk) is an

unbiased estimate of L(wk) on sampled data.

(c) ∀k ∈ N, ∃M ≥ 0 and MV ≥ 0 make

Eξk [||g(wk, ξk)||
2]− ||Eξk [g(wk, ξk)]||

2

≤M +MV ||∇L(wk)||
2.

Theorem 4. Consider a stochastic convex optimization prob-

lem. Under Assumptions 1, 2, 3, and 4, suppose that cLn <
cHn , (cLn)

G < (cHn )
G, ℓLn < ℓHn , and (ℓLn)

G < (ℓHn )
G for

wn ∈ [wa
n, w

b
n]. In addition, assume that the derivative of

ǵ with respect to gn satisfies ǵ′(gn) > 1 for any |gn| ≤ ǫ0.

Suppose that the SGD [49] is the optimizer and the learning

rate η equals to a constant µ/(ℓMG) through all iteration,

where MG := MV + µ2
G. Denote the expectation of the gap

between the minimum L∗ and L(wk) as E[L(wk)−L∗], Then,

E[L(wk) − L∗] converges faster with the GAF than without

the GAF for k = 2, 3, · · · .

Proof: Following similar proof steps of Theorem 4.6 in

[49], one obtains

E[L(wk+1)−L∗]−
ηℓM

2cµ
≤ (1−ηcµ)(E[L(wk)−L∗]−

ηℓM

2cµ
).

(24)

Recalling η = µ/(ℓMG) and rearranging yields

E[L(wk+1)− L∗]

≤ (1−
cµ2

ℓMG

)(E[L(wk)− L∗]−
M

2cMG

) +
M

2cMG

.
(25)

By using (25) for k, k − 1, k − 2, · · · , we have

E[L(wk)− L∗]

≤ (1−
cµ2

ℓMG

)k−1(E[L(w1)− L∗]−
M

2cMG

) +
M

2cMG

.

(26)

Following the same procedures, a conclusion is drawn that



6

after using the GAF as

E[L(wk)− L∗]

≤ (1−
(c)Gµ2

(ℓ)GMG

)k−1(E[L(w1)− L∗]−
M

2(c)GMG

)+

M

2(c)GMG

.

(27)

Since (ℓ)G < ℓ, (c)G > c, (ℓ)G > (c)G, and µ2 ≤ MG

from [49], then it follows that

0 ≤ 1−
(c)Gµ2

(ℓ)GMG

< 1−
cµ2

ℓMG

< 1.

Thus, E[L(wk) − L∗] converges faster with the GAF than

without the GAF for k = 2, 3, · · · . The proof is complete.

Theorem 3 demonstrates that the GAF alleviates the ill-

conditioned problem since the condition number is reduced.

Theorem 4 shows that under some conditions (similar to strong

convexity and gradient Lipschitz), SGD equipped with the

GAF converges faster than the original SGD, and it has a

linear convergence rate if M = 0.

After modifying gradients by the GAF, one obtains an

equivalent loss surface. The equivalent loss surface refers to

a loss surface that does not use a GAF, while it is equivalent

to the original loss surface that uses a GAF. With the aid

of the auto integral’s implementation by symbolic computing

framework, in the example shown in Fig. 1, the parameters of

the loss surface are set to be separable for simplicity:

L = w2
1 + 0.2w2

2. (28)

In Fig. 1, 3D view and contour view are both provided.

Equivalent loss surfaces after acting the GAF are presented

in Fig. 1. The original loss surface (Fig. 1(a) and Fig. 1(b)) is

steep/narrow in one direction but flat/wide in another, which

means it is an ill-conditioned problem. By using the GAFs,

equivalent loss surfaces are significantly less ill-conditioned

(see Fig. 1(c) through Fig. 1(h)). For gradient clipping, the

value clipping method slightly suppresses the ill-conditioned

problem (Fig. 1(i) and Fig. 1(j)), while the norm clipping one

exacerbates the ill-conditioned degree (Fig. 1(k) and Fig. 1(l)).

C. Vanishing and Exploding Gradient Problems

This subsection discusses the GAF’s effects in vanishing and

exploding gradient problems. First, we give some intuitions

about why GAF works in these situations, and then take

the arctan-type GAF as an example to show the formal

evidence. ResNet deals with vanishing and exploding gradient

problems by involving identity skip connection, which makes

the coefficient in front of the gradient in backpropagation close

to 1 [50]. This approach eases vanishing/exploding gradient

problems to some extent [50]. The GAF addresses vanishing

and exploding gradient problems from a different perspective.

Although the gradient may vanish or explode through layers,

its sign remains. The GAF enlarges the tiny gradient and

restricts the large gradient, and thus avoids vanishing and

exploding gradient problems to some extent.

In order to facilitate the analysis of the determination of

hyperparameters (see Section IV-B), the following theoretical

discussions are based on abounded GAF (the arctan-type

GAF is chosen as an example, and see Section III-A for its

formal description). To ease the vanishing gradient problem,

we provide the following theorem.

Theorem 5. Consider an arctan-type GAF. Suppose that αβ >
1, then ∃ǫ3 > 0 that makes ∀gn ∈ {(0, ǫ3) ∪ (−ǫ3, 0)}, there

is |ǵ(gn)| > |gn|.

Proof: Define f(gn) = ǵ(gn)−gn = αarctan(βgn)−gn,

whose derivatives of the first-order and the second-order can

be obtained separately as follows:

f ′(gn) =
αβ

1 + (βgn)2
− 1, (29)

f ′′(gn) =
−2αβ3gn

[1 + (βgn)2]2
. (30)

Evidently, f ′(gn) > 0 is guaranteed if αβ > 1 and gn is close

to 0, which proves that f(gn) is a monotonically increasing

function. For gn tending to 0+, the limit of f(gn) can be

calculated as

lim
gn→0+

f(gn) = lim
gn→0+

αarctan(βgn)− gn > f(0) = 0.

For gn tending to +∞, the limit of f(gn) can be calculated

as

lim
gn→+∞

f(gn) = lim
gn→+∞

αarctan(βgn)− gn = −∞ < 0.

At this point, it is known that there exists a point ǫ3 ∈ (0,+∞)
such that f(ǫ3) = 0 holds. Also, recalling Equation (30), one

has f ′′(gn) < 0 for gn ∈ (0,+∞), which means that −f(gn)
is a convex function. Since f(ǫ3) = 0 and f(0) = 0, according

to Jensen’s inequality, for τ ∈ (0, 1),

−f(τ · 0 + (1− τ)ǫ3) = −f((1− τ)ǫ3)

< −τf(0)− (1− τ)f(ǫ3) = 0.
(31)

Then a conclusion is drawn that f(gn) > 0 when gn ∈ (0, ǫ3),
which indicates that the following equation holds.

f(gn) = αarctan(βgn)− gn > 0.

Similarly, f(gn) = αarctan(βgn) − gn ∈ (−ǫ3, 0) for gn <
0. So far, it can be concluded that |ǵ(gn)| > |gn|, ∀gn ∈
{(0, ǫ3) ∪ (−ǫ3, 0)}. The proof is thus completed.

One can deduce from Theorem 5 that if the input gradient

is small, the GAF with large αβ makes the output gradient

value greater than the input one. In other words, the gradient

close to 0 is enlarged, which is an advantageous solution to

the vanishing gradient problem. For the exploding gradient

problem, the arctan-type GAF restricts the gradient within a

certain range since the arctan function is bounded. To sum up,

the GAF with tunable factors α and β is an efficient solution

to both the vanishing gradient problem and the exploding

gradient problem.

D. Saddle Point Problem

In the training of deep neural networks, the saddle point

problem is a shackle that limits model performance. The



7

(a) Original (3D)

0.2

0.
2

0.2

0.
2

0.4

0.
4 0.4

0.
4

0.6

0.
6 0.6

0.
6

0.8

0.
8 0.8

0.
81

1 1

1

-1 0 1
-1

-0.5

0

0.5

1

(b) Original (contour) (c) Arctan-type GAF (3D)

0.1

0.1

0.2

0.
2

0.2

0.2

0.3

0.
3

0.3

0.3

0.3

0.4

0.
4

0.4

0.
4

0.5 0.5

0.5
0.5

0.6 0.6

0.6 0.6

-1 0 1
-1

-0.5

0

0.5

1

(d) Arctan-type GAF (con-
tour)

(e) Tanh-type GAF (3D)

0.1

0.1

0.2

0.2

0.
2

0.3

0.3

0.3

0.3

0.4

0.
4

0.4

0.4

0.40.5 0.5

0.5 0.5

0.6 0.6

0.6 0.6

0.7 0.7

0.7 0.7

0.8 0.8

0.8 0.8

-1 0 1
-1

-0.5

0

0.5

1

(f) Tanh-type GAF (contour) (g) Log-type GAF (3D)

0.2

0.2

0.
2

0.4

0.
4

0.4

0.
4

0.6

0.
6 0.6

0.
60.8

0.
8 0.8

0.
81

1 1

1

1.2 1.
2

1.
2 1.2

1.4

1.
4

1.
4 1.4

-1 0 1
-1

-0.5

0

0.5

1

(h) Log-type GAF (contour)

(i) Clipping at norm 0.1 (3D)

0.05

0.05

0.1

0.
1

0.1

0.
1

0.15

0.
15

0.15

0.
15

0.2

0.
2 0.2

0.
2

0.25

0.
25

0.25

0.
25

0.3

0.
3 0.3

0.
3

0.35

0.
35

0.35

0.
35

0.4

0.
4 0.4

0.
4

0.45

0.
45

0.45

0.
45

0.5

0.
5 0.5

0.
5

0.55

0.
55

0.55

0.
55

-1 0 1
-1

-0.5

0

0.5

1

(j) Clipping at norm 0.1

(contour)
(k) Clipping at value α (3D)

0.1

0.1

0.
1

0.2

0.
2 0.2

0.
2

0.3

0.
3 0.3

0.
3

0.4

0.
4 0.4

0.
4

0.5 0.
5

0.
5 0.5

-1 0 1
-1

-0.5

0

0.5

1

(l) Clipping at value α (con-
tour)

Fig. 1: Equivalent loss surfaces of three types of GAFs and two kinds of gradient clipping methods.

GAF enables the model to escape the saddle point. A three-

dimensional loss surface near a saddle point is illustrated in

Fig. 2(a). The formal result about the behavior of the GAF

near a saddle point is given in what follows.

(a) Original loss surface (b) Equivalent loss surface after us-
ing the GAF

Fig. 2: Sketch for the effect of the GAF near a saddle point.

Theorem 6. Consider an arctan-type GAF. ∃ǫ3 > 0 and αβ >
1 that makes ∀gOi ∈ {(0, ǫ3) ∪ (−ǫ3, 0)}, the GAF-equipped

gradient descent optimizer escapes faster than the original

one, where i ∈ [k+1, k+δ]. That is, |wO
k+δ−wO

k | < |w
G
k+δ−

wG
k |, where the subscript O symbolizes the original parameter,

the subscript G refers to the parameter activated by the GAF;

the parameter near the saddle point are denoted as w, and a

total of δ steps are considered after the kth step.

Proof: The basic form of the gradient descent is wk+1 =
wk − ηĝk. Consider a total of δ steps after the kth step, then

the gradient descent for both the original and GAF-equipped

cases can be respectively written as

wO
k+δ = wO

k − η

δ
∑

i=k

ĝOi

and

wG
k+δ = wG

k − η

δ
∑

i=k

ĝGi ,

where η is the learning rate, i means the ith step, and ĝ is

the gradient. Since the gradient near the saddle point is close

to 0, based on Theorem 5, ∃ǫ3 > 0 and β > 1 that makes

∀gOi ∈ {(0, ǫ3) ∪ (−ǫ3, 0)}, there is

|gOi | < |g
G
i |.

It further yields
∣

∣

∣

∣

∣

η
δ

∑

i=k

ĝOi

∣

∣

∣

∣

∣

<

∣

∣

∣

∣

∣

η
δ

∑

i=k

ĝGi

∣

∣

∣

∣

∣

.

Thus,

|wO
k+δ − wO

k | < |w
G
k+δ − wG

k |.

The proof is thus completed.

In order to give an alternative point of view, a sketch of an

equivalent loss surface near a saddle point is provided in Fig.

2(b). This figure reveals that the loss surface around a saddle

point is deformed to be steeper such that the optimizer escapes



8

Algorithm 1 SGDM with the GAF

Require: α, β: factors required by the GAF.

Require: w
0: initial value of the weight vector.

Require: M(x(i);w(i)): the prediction of the trained model

on input samples x
(i) for each iteration.

Require: L: the loss function; η: the learning rate; µm:

momentum factor; υ0: initial velocity. k← 0

while L is not small enough do

k ← k + 1

κ samples {x(1), · · · ,x(κ)} are selected from the training

set whose corresponding labels are {y(1), · · · , y(κ)}

ğk ← ∇w

∑κ

i=1L(M(x(i);wk),y
(i))/κ

gk ← µmgk−1 − ηğk

ǵk ← ǵ(gk)

wk ← wk + ǵ
(k)

end while

return wk

faster from the saddle-point region.

IV. EXPERIMENTS

In this section, implementation of the GAF, hyperparameter

determination process, experiment settings, and comparative

experimental results are elaborated in detail.

A. Implementation

This subsection explains how the GAF is embedded in an

optimizer. Suppose that there are κ samples {x(1), · · · , x(κ)}
in a training batch. The corresponding labels for the aforemen-

tioned training samples are {y(1), · · · , y(κ)}; M(x(i);w(i))
is the output of the trained model on input samples x

(i) for

each iteration, where w
(i) is the weight vector. Take SGDM

as an example, and let η stand for the learning rate in an

optimization process and µm be the coefficient of momentum

in the SGDM optimizer. The implementation of the GAF

embedded in SGDM is as follows. First, compute the gradient

g in the stochastic training process:

ğk = ∇w

∑κ

i=1
L(M(x(i);w(i)),y(i))/κ. (32)

Then, perform a standard momentum step, and replace the

original gradient with the GAF-activated one. The detailed

process is presented in Algorithm 1. For other gradient-based

optimizers, such as SGD and Adam, we directly act the GAF

on the gradient. Due to its simple implementation, GAF is

convenient to be nested into modern deep learning frameworks

such as PyTorch and TensorFlow. The cost of implementing

the GAF algorithm is merely adding a few lines to the code of

the SGDM optimizer, and the cost of additional calculations

is negligible since it is just an element-wise activation on

the gradient with the computational complexity O(ň). For

example, it costs only 1.2 s extra training time in one epoch

on CIFAR-100 with ResNet-50 model in our experiments (42
s for one epoch).

B. Hyperparameter Determination

−0.10 −0.05 0.00 0.05 0.10
w

0

50

100

150

200

L

Training loss

Test loss

(a) ResNet-18, CIFAR-10

−0.02 −0.01 0.00 0.01 0.02
w

0.0

0.5

1.0

1.5

2.0

L

Training loss

Test loss

(b) Enlarged view of (a)

−0.10 −0.05 0.00 0.05 0.10
w

0

50

100

150

200

L

Training loss

Test loss

(c) DenseNet (k = 12, depth=
121), CIFAR-100

−0.02 −0.01 0.00 0.01 0.02
w

0.0

0.5

1.0

1.5

2.0

L

Training loss

Test loss

(d) Enlarged view of (c)

Fig. 3: Realistic loss curves near the optimum point after

training on CIFAR.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

1

2

3
Quadric
Type 1
Type 2

Fig. 4: Sketch of different types of loss curves.

Generally, the values of α and β are determined according

to the range of gradient distribution in the training process

of the original model (this rule can be relaxed; see the end

of this subsection). There are several steps to determine the

hyperparameters involved in the GAF.

(a) Train an original network without using the GAF and

record the maximal gradient in the training process.

(b) Draw the loss curve according to the visualization method

provided in [22] and determine what kind of GAF should

be used. Examples of this visualization method are given

in Fig. 3. Among all kinds of loss curves, the quadric

curve is optimal from the perspective of optimization

due to the following reason. Theoretically, for a quadric

curve, once the optimal step size 1/ℓ is taken, no matter

where the initial point is, the gradient descent optimizer

takes only one step to reach the minimum, where ℓ is

the Lipschitz constant of the gradient. Specifically, for

regions in the loss curve that is flatter than the quadric

curve, we increase the gradient (Type 1 with the loss

L < 1 in Fig. 4); for regions sharper than the quadric

curve, we decrease the gradient (Type 2 with the loss

L < 1 in Fig. 4). For regions with near-zero gradient, the



9

first case requires αβ > 1 for the arctan-type GAF, while

the latter one requires αβ < 1.

0 20000 39000
10-3

10-2

10-1

Fig. 5: Maximal gradient magnitudes during the training

process of ResNet-18 on CIFAR-10.

(c) For regions with large gradient Lipschitz constant (e.g.,

regions with L > 2 for both Type 1 and Type 2 in

Fig. 4), it requires that the large gradient is restrained.

In practice, we observed that the region with a relatively

large gradient exists in many datasets and models. The

first basis is that if we dramatically increase the learning

rate at the beginning of the training process, the training

generally fails. The second basis is given in Fig. 3.

For ResNet-18 on CIFAR-10 and DenseNet on CIFAR-

100, the corresponding loss curves are with large-gradient

regions. Besides, as can be seen in Fig. 3, restraining the

large-gradient region makes the curve to be closer to the

quadric shape. The third basis is given in Fig. 5. In the

training process of ResNet-18 on CIFAR-10, the maximal

gradient magnitude exceeds 0.1. Considering the weight

is generally with a small magnitude, the maximal gradient

magnitude is relatively large.

(d) According to the maximal gradient magnitude during the

training process, set an α so as to restrain the large

gradient. The reason for setting such an α is to make

sure that the GAF bounds the gradients within a limited

range so that the exploding gradient problem and the ill-

conditioned problem are alleviated.

In practice, the shape of the loss curve is usually similar

to the Type 1 in Fig. 4, as shown in Fig. 3. Theoretically,

for a bounded GAF (e.g., arctan or tanh), setting an α to

restrict the maximal gradient value and a β to make αβ > 1
is beneficial to the Type 1 in Fig. 4. As presented in Section

III in the revised manuscript, this setting is able to address the

vanishing/exploding gradient problems, saddle point problems,

and ill-conditioned problems in one shot. In practice, there is

no need to draw the loss curve for each individual model-

dataset pair. One reason is that the computational cost is high.

Another reason is that we find that there are two hyperpa-

rameter sets ({α = 0.1, β = 20} and {α = 0.2, β = 10})
that are robust across a variety of experiments such as image

classification (see Tables I and II) and object detection (see

Table IV). Since training the original model from scratch

is also computationally expensive and the maximal gradient

magnitude usually appears in the early stage of the training

process, it is unnecessary to go through the whole training

process. In practical applications, it is suggested that firstly

try {α = 0.1, β = 20} and {α = 0.2, β = 10} (just like 0.1 is

often the first attempt for the learning rate). If they work not

well, then follow the steps (a) through (d).

C. Setup of Experiments

The comparison experiment is conducted on ImageNet,

CIFAR-100, CIFAR-10, and PASCAL VOC datasets. Im-

ageNet is a large-scale image classification dataset. There

are 1.28 million and 50, 000 images in the training set and

validation set of ImageNet, respectively. Following [34], [35],

[43], for experiments on ImageNet, validation set is used for

testing with single crop of size 224 × 224. On ImageNet,

mix precision training is utilized, and all models are trained

for 150 epochs with batch size 64, initial learning rate 0.1,

momentum 0.9, and weight decay 0.00004. Cosine annealing

with the warmup for 5 epochs is used as the learning rate

scheduler. CIFAR-100 and CIFAR-10 both consist of 60, 000
images, for a total of 50, 000 training images and 10, 000 test

images with size of 32×32. In addition, the training epoch for

experiments conducted on CIFAR is 200. The momentum is

set to be 0.9, and the weight decay is specified as 0.0005. The

initial learning rate is set as 0.1, and the cosine annealing [51]

is employed as the learning rate decay strategy. Besides, the

batch size is set as 256 for CIFAR. For the object detection

task, the PASCAL VOC dataset is used. Specifically, training

and validation sets of both PASCAL VOC 2007 and PASCAL

VOC 2012 are used for training, and the test set of PASCAL

VOC 2007 is used for testing. The metrics of the performance

are average precision (AP) and mean of AP (mAP). On

PASCAL VOC, all models are trained for 120 000 iterations

with batch size 32, initial learning rate 0.001, momentum

0.9, and weight decay 0.0005. Besides, cosine annealing

with the warmup for 500 iterations is used as the learning

rate scheduler. Moreover, the loss function leveraged in all

experiments is cross-entropy. No additional tricks are used

in these experiments. All models are trained from scratch

to achieve fairness as much as possible. All experimental

programs are performed in Python 3.7.10 and PyTorch 1.8.1
framework. The GPUs on which the experiments depended are

10 RTX 2080 Ti (for ImageNet and PASCAL VOC), 2 RTX

3090 (for CIAFR-100 and CIFAR-10), and 2 Quadro RTX

8000 (for CIAFR-100 and CIFAR-10).

D. Comparison Experiments

The comparison experiments are mainly conducted to in-

vestigate the effect of embedding the GAF in the performance

of neural network models. ResNet-18, ResNet-34, ResNet-50,

SE-ResNet-18, SE-ResNet-34, and SE-ResNet-50 are evalu-

ated on ImageNet [30], [31]. The comparisons on ImageNet

between the original method, two types of gradient clipping

methods, and the GAF are conducted, with the corresponding

results presented in Table I. This table shows that the effect

of the gradient value clipping method on performance is

unstable, while the gradient norm clipping method brings

degradation. By contrast, the GAF significantly improves the

performance of all models shown in Table I. DenseNet-

CIFAR, DenseNet-169, DPN-26, GoogLeNet, ResNet-50, and



10

TABLE I: Test Accuracies of SGDM on ImageNet with and without GAF

Model Setting Top-1 validation accuracy (%) Top-5 validation accuracy (%)

ResNet-18 - 69.67 89.00

ResNet-18 w/ value clipping Threshold = 0.1 70.14 (+0.47) 89.29 (+0.29)

ResNet-18 w/ norm clipping Threshold = 0.1 69.11 (-0.56) 88.55 (-0.45)

ResNet-18 w/ GAF Arctan (0.1, 20) 70.71 (+1.04) 89.57 (+0.57)

ResNet-18 w/ GAF Arctan (0.2, 10) 70.41 (+0.74) 89.47 (+0.47)

ResNet-34 - 73.03 90.79

ResNet-34 w/ value clipping Threshold = 0.1 72.43 (-0.60) 90.92 (+0.13)

ResNet-34 w/ norm clipping Threshold = 0.1 72.61 (-0.42) 90.70 (-0.09)

ResNet-34 w/ GAF Arctan (0.1, 20) 73.64 (+0.61) 91.30 (+0.51)

ResNet-34 w/ GAF Arctan (0.2, 10) 73.49 (+0.46) 91.34 (+0.55)

ResNet-50 - 75.22 92.15

ResNet-50 w/ value clipping Threshold = 0.1 74.90 (-0.32) 92.04 (-0.11)

ResNet-50 w/ norm clipping Threshold = 0.1 75.15 (-0.07) 92.24 (+0.09)

ResNet-50 w/ GAF Arctan (0.1, 20) 75.91 (+0.69) 92.60 (+0.45)

ResNet-50 w/ GAF Arctan (0.2, 10) 76.02 (+0.80) 92.64 (+0.49)

SE-ResNet-18 - 70.63 89.65

SE-ResNet-18 w/ value clipping Threshold = 0.1 70.78 (+0.15) 89.58 (-0.07)

SE-ResNet-18 w/ norm clipping Threshold = 0.1 69.89 (-0.74) 88.99 (-0.66)

SE-ResNet-18 w/ GAF Arctan (0.1, 20) 71.15 (+0.52) 90.14 (+0.49)

SE-ResNet-18 w/ GAF Arctan (0.2, 10) 71.54 (+0.91) 90.24 (+0.59)

SE-ResNet-34 - 72.75 90.94

SE-ResNet-34 w/ value clipping Threshold = 0.1 73.05 (+0.30) 90.97 (+0.03)

SE-ResNet-34 w/ norm clipping Threshold = 0.1 72.77 (+0.02) 90.91 (-0.03)

SE-ResNet-34 w/ GAF Arctan (0.1, 20) 73.64 (+0.89) 91.67 (+0.73)

SE-ResNet-34 w/ GAF Arctan (0.2, 10) 73.74 (+0.99) 91.50 (+0.56)

SE-ResNet-50 - 75.57 92.25

SE-ResNet-50 w/ value clipping Threshold = 0.1 75.49 (-0.08) 92.32 (+0.07)

SE-ResNet-50 w/ norm clipping Threshold = 0.1 75.33 (-0.24) 92.37 (+0.12)

SE-ResNet-50 w/ GAF Arctan (0.1, 20) 76.32 (+0.75) 92.96 (+0.71)

SE-ResNet-50 w/ GAF Arctan (0.2, 10) 76.30 (+0.73) 92.95 (+0.70)

TABLE II: Test Accuracies of SGDM on CIFAR-100 with and without different GAFs

Model w/o GAF Tanh (0.1, 20) Tanh (0.2, 10) Log (0.1, 20) Log (0.2, 10) Arctan (0.1, 20) Arctan (0.2, 10)

DenseNet-CIFAR 76.22 76.74 (+0.52) 77.30 (+1.08) 76.90 (+0.68) 76.72 (+0.50) 76.90 (+0.68) 76.91 (+0.69)

DenseNet-169 79.99 80.71 (+0.72) 80.29 (+0.30) 80.70 (+0.71) 80.40 (+0.41) 80.37 (+0.38) 79.77 (-0.22)

DPN-26 79.05 79.97 (+0.92) 79.90 (+0.85) 79.63 (+0.58) 79.76 (+0.71) 79.50 (+0.45) 79.26 (+0.21)

GoogLeNet 79.78 80.35 (+0.57) 80.56 (+0.78) 80.18 (+0.40) 80.43 (+0.65) 80.25 (+0.47) 80.26 (+0.48)

ResNet-50 79.54 80.43 (+0.89) 80.11 (+0.57) 80.58 (+1.04) 80.49 (+0.95) 79.73 (+0.19) 79.90 (+0.36)

RegNetX-200MF 78.10 78.52 (+0.42) 78.48 (+0.38) 78.71 (+0.61) 78.53 (+0.43) 78.26 (+0.16) 78.14 (+0.04)

RegNetX-200MF are evaluated on CIFAR-100 [30], [52]–

[55]. Note that DenseNet-CIFAR means DenseNet (k = 12,

depth= 121). Two sets of parameter schemes are evaluated

for the GAF, the first one is {α = 0.1, β = 20} (abbreviated

as (0.1, 20)) and the other is arctan {α = 0.2, β = 10}
(abbreviated as (0.2, 10)). In order to evaluate the performance

of different types of GAFs, comparison results of SGDM on

CIFAR-100 are presented in Table II, from which it can be

summarized that all kinds of GAFs improve the performance

of the involved models. In addition to SGDM, Adam optimizer

is also embedded with the GAF and evaluated on both CIFAR-

10 and CIFAR-100, and improvements are also observed, as

shown in Table III. On PASCAL VOC, SSD300 [56] with and

without the GAF are used for comparison. Table IV shows

that after using the GAF, the mAP is improved. Overall, the

GAF consistently and effectively improves the performance of

involved models.

V. CONCLUSION

In this paper, the GAF has been proposed for ameliorating

the ill-conditioned problem, the vanishing gradient problem,



11

TABLE III: Test Accuracies of Adam on CIFAR with and without the GAF

Model
CIFAR-10 CIFAR-100

w/o GAF Arctan (0.1, 20) Arctan (0.2, 10) w/o GAF Arctan (0.1, 20) Arctan (0.2, 10)

ResNet-34 94.14 94.36 (+0.22) 94.44 (+0.30) 74.57 75.07 (+0.50) 75.06 (+0.49)

Pre-Act-ResNet-34 93.63 93.97 (+0.34) 93.96 (+0.33) 73.48 73.75 (+0.27) 73.69 (+0.21)

ResNet-50 93.74 94.41 (+0.67) 94.42 (+0.68) 75.01 75.34 (+0.33) 75.69 (+0.68)

Pre-Act-ResNet-50 94.06 94.15 (+0.09) 94.40 (+0.34) 73.73 74.82 (+1.09) 74.71 (+0.98)

TABLE IV: Test Accuracies of SGDM on PASCAL VOC 2007 with and without GAF

Model Setting mAP aero bicycle bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

SSD300 w/o GAF - 77.71 82.57 85.47 75.54 70.24 52.13 85.81 86.37 88.32 60.85 81.7 77.02 85.02 86.82 84.17 79.57 52.34 77.41 79.15 86.22 77.38

SSD300 w/ GAF Arctan (0.1, 20) 78.01 82.81 83.97 76.64 68.85 53.28 86.72 87.14 86.79 64.32 82.86 75.37 83.82 88.12 84.20 80.30 52.07 77.66 81.82 86.42 77.03

SSD300 w/ GAF Arctan (0.2, 10) 78.21 84.07 84.65 78.01 71.55 54.57 85.30 87.03 87.54 62.84 82.86 74.70 84.77 86.65 85.67 80.61 52.20 78.03 78.84 86.79 77.57

the exploding gradient problem, and the saddle point prob-

lem in one shot. Theoretical analyses have demonstrated

the feasibility and effectiveness of the GAF. Moreover, the

implementation of which requires roughly one line of code.

Comparative experiments for the GAF have been conducted

by exploiting some classical or state-of-the-art convolutional

neural networks on ImageNet, CIFAR, and PASCAL VOC.

The experiments have shown that the trained models’ perfor-

mance equipped with the proposed GAF is significantly better

than the original ones.

The proposed GAF also shows extensive and promising

future research directions. Additional theoretical properties

of the GAF can be further explored, such as how the GAF

influences the generalization. Also, some adaptive adjustment

methods for automatically determine the hyperparameters are

worthy of investigation. On the other hand, from the perspec-

tive of applying the GAF, other applications such as some

natural language processing or reinforcement learning tasks

could be taken into consideration.

REFERENCES

[1] P. Koehn, M. Federico, B. Cowan, R. Zens, and C. Dyer, “Moses: Open
source toolkit for statistical machine translation,” in Ann. Meet. Assoc.

Comput. Linguist. (ACL), Prague, Czech Republic, 2007, pp. 177–180.

[2] A. Asaei, M. Cernak, and H. Bourlard, “Perceptual information loss
due to impaired speech production,” IEEE/ACM Trans. Audio, Speech,

Language Process., vol. 25, no. 12, pp. 2433–2443, Dec. 2017.

[3] Z. Cai and N. Vasconcelos, “Cascade R-CNN: Delving into high quality
object detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.

(CVPR), Salt Lake City, UT, USA, 2018, pp. 6154–6162.

[4] Z. Xie, L. Jin, X. Luo, Z. Sun, and M. Liu, “RNN for repetitive motion
generation of redundant robot manipulators: An orthogonal projection-
based scheme,” IEEE Trans. Neural Netw. Learn. Syst., in press with
DOI: 10.1109/TNNLS.2020.3028304.

[5] G. Peng, C. Yang, W. He and C. L. P. Chen, “Force sensorless admittance
control with neural learning for robots with actuator saturation,” IEEE
Trans. Ind. Inform., vol. 67, no. 4, pp. 3138–3148, Apr. 2017.

[6] L. Jin, J. Yan, X. Du, X. Xiao, and D. Fu, “RNN for solving time-
variant generalized Sylvester equation with applications to robots and
acoustic source localization,” IEEE. Trans. Ind. Inform., vol. 16, no.
10, pp. 6359–6369, Oct. 2020.

[7] H. Huang. T. Zhang, C. Yang and C. L. P. Chen, “Motor learning and
generalization using broad learning adaptive neural control,” IEEE.

Trans. Ind. Inform., vol. 67, no. 10, pp. 8608–8617, Nov. 2020.

[8] S. Ruder, “An overview of gradient descent optimization algorithm,”
arXiv preprint arXiv:1609.04747, 2016.

[9] L. Bottou, “Stochastic gradient descent tricks,” Neural Netw.: Tricks of

the Trade, Springer, Berlin, Heidelberg, pp. 421–436, 2012.

[10] S. Messaoud, A. Bradai, and E. Moulay, “Online GMM clustering and
mini-batch gradient descent based optimization for industrial IoT 4.0,”
IEEE. Trans. Ind. Inform., vol. 16, no. 2, pp. 1427–1435, Feb. 2020.

[11] N. Qian, “On the momentum term in gradient descent learning algo-
rithms,” Neural Netw., vol. 12, no. 1, pp. 145–151, 1999.

[12] G. Qu and N. Li, “Accelerated distributed Nesterov gradient descent,”
IEEE Trans. Autom. Control, vol. 65, no. 6, pp. 2566–2581, Jun. 2020.

[13] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.
E. Hubbard, and L. D. Jackel, “Handwritten digit recognition with a
backpropagation network,” in Adv. Neural Inf. Proces. Syst. (NIPS),
San Francisco, CA, USA, 1990, pp. 396–404.

[14] F.P. Beik, K. Jbilou, M. Najafi, and L. Reichel, “Golub-Kahan bidi-
agonalization for ill-conditioned tensor equations with applications,”
Numerical Algorithms, vol. 84, no. 4, pp. 1535–1563, 2020.

[15] X. Wang, Y. Qin, Y. Wang, S. Xiang, and H. Chen, “ReLTanh: An
activation function with vanishing gradient resistance for SAE-based
DNNs and its application to rotating machinery fault diagnosis,” Neu-

rocomputing, vol. 363, pp. 88–98, Jul. 2019.

[16] S. Kanai, Y. Fujiwara, and S. Iwamura, “Preventing gradient explosions
in gated recurrent units,” in Adv. Neural Inf. Proces. Syst. (NIPS), Los
Angeles, USA, 2017, pp. 435–444.

[17] A. Cherukuri, E. Mallada, S. Low, and J. Cortés, “The role of convexity
in saddle-point dynamics: Lyapunov function and robustness,” IEEE

Trans. Autom. Control, vol. 63, no. 8, pp. 2449–2464, Aug. 2018.

[18] C. Labar, E. Garone, M. Kinnaert, and C. Ebenbauer, “Newton-based ex-
tremum seeking: A second-order Lie bracket approximation approach,”
Automatica, vol. 105, pp. 356–367, 2019.

[19] H. Huang, C. Yang, and C. L. P. Chen, “Optimal robot-environment
interaction under broad fuzzy neural adaptive control,” IEEE Trans.

Cybern., vol. 51, no. 7, pp. 3824–3835, Jul. 2021.

[20] L. Wei, L. Jin, C. Yang, K. Chen, and W. Li, “New noise-tolerant neural
algorithms for future dynamic nonlinear optimization with estimation on
Hessian matrix inversion,” IEEE Trans. Syst., Man, Cybern., Syst., vol.
51, no. 4, pp. 2611–2623, Apr. 2021.

[21] D. Yannand, P. Razvan, G. Caglar, C. Kyunghyun, G. Surya, and B.
Yoshua, “Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization,” in Adv. Neural Inf. Proces. Syst.
(NIPS), Montreal, Canada, 2014, pp. 2933–2941.

[22] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the
loss landscape of neural nets,” in Adv. Neural Inf. Proces. Syst. (NIPS),
Montreal, Canada, 2018, pp. 6389–6399.

[23] N. S. Keskar, J. Nocedal, P. T. P. Tang, D. Mudigere, and M. Smelyan-
skiy, “On large-batch training for deep learning: Generalization gap and
sharp minima,” arXiv preprint arXiv:1609.04836, 2016.

[24] B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Srebro, “Exploring
generalization in deep learning,” in Adv. Neural Inf. Proces. Syst.

(NIPS), Los Angeles, USA, 2017, pp. 5947–5956.

[25] W. Wen, W. Yandan, Y. Feng, X. Cong, W. Chunpeng, C. Yiran,
and L. Hai, “SmoothOut: Smoothing out sharp minima to improve
generalization in deep learning,” arXiv preprint arXiv:1805.07898,
2018.

[26] J. Gutieandez-Veron, “An acceleration of the continuous Newton’s

http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1805.07898


12

method,” Journal of Computational and Applied Mathematics, vol. 354,
pp. 213–220, 2019.

[27] J. Chen, D. Zhou, Y. Tang, Z. Yang, Y. Cao, and Q. Gu, “Closing the
generalization gap of adaptive gradient methods in training deep neural
networks,” in Proceedings of the International Joint Conference on

Artificial Intelligence, online, 2020.
[28] G. Wang, G. B. Giannakis, and J. Chen, “Learning ReLU networks

on linearly separable data: Algorithm, optimality, and generalization,”
IEEE Trans. Signal Process., vol. 67, no. 9, pp. 2357–2370, May 2019.

[29] S. Wu, G. Li, L. Deng, L. Liu, and D. Wu, “L1-Norm batch normaliza-
tion for efficient training of deep neural networks,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 30, no. 7, pp. 2043–2051, Jul. 2019.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.

(CVPR), Las Vegas, USA, 2016, pp. 770–778.
[31] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proc.

IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Salt Lake City,
USA, 2018, pp. 7132–7141.

[32] C. Yang, D. Huang, W. He, and L. Cheng, “Neural control of robot
manipulators with trajectory tracking constraints and input satura-
tion,” IEEE Trans. Neural Netw. Learn. Syst., in press with DOI:
10.1109/TNNLS.2020.3017202.

[33] D. Hendrycks and K. Gimpel, “Gaussian error linear units (GELUs),”
arXiv preprint arXiv:1606.08415, 2016.

[34] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation
functions,” arXiv preprint arXiv:1710.05941, 2017.

[35] D. A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep
network learning by exponential linear units (ELUs),” in Proc. IEEE

Conf. Learn. Repr. (ICLR), San Juan, Puerto Rico, 2016.
[36] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-

normalizing neural networks,” in Adv. Neural Inf. Proces. Syst. (NIPS),
Los Angeles, USA, 2017, pp. 971–980.

[37] A. Veit, M.J. Wilber, and S. Belongie, “Residual networks behave like
ensembles of relatively shallow networks,” in Adv. Neural Inf. Proces.

Syst. (NIPS), Barcelona, Spain, 2016, pp. 550–558.
[38] J. Zhang, T. He, S. Sra, and A. Jadbabaie, “Why gradient clipping

accelerates training: A theoretical justification for adaptivity,” in Proc.

IEEE Conf. Learn. Repr. (ICLR), New Orleans, Louisiana, 2019.
[39] M. Wess, S. M. P. Dinakarrao, and A. Jantsch, “Weighted quantization-

regularization in DNNs for weight memory minimization toward HW
implementation,” IEEE Trans. Comput.-Aided Design Integr. Circuits

Syst., vol. 37, no. 11, pp. 2929–2939, Nov. 2018.
[40] H. Wang, P. X. Liu, J. Bao, X. -J. Xie and S. Li, “Adaptive neural

output-feedback decentralized control for large-scale nonlinear systems
with stochastic disturbances,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 31, no. 3, pp. 972–983, Mar. 2020.

[41] R. Ge, F. Huang, C. Jin, and Y. Yuan, “Escaping from saddle points –
online stochastic gradient for tensor decomposition,” in Conf. Learn.

Theory (COLT), Paris, French, 2015, pp. 797–842.
[42] G. Xavier and Y. Bengio, “Understanding the difficulty of training

deep feedforward neural networks,” in Int. Conf. Art. Intell. Statist.

(AISTATS), Chia Laguna, Sardinia, Italy, 2010, pp. 249–256.
[43] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

in Proc. IEEE Conf. Learn. Repr. (ICLR), San Diego, CA, USA, 2015.
[44] Z. Chen, V. Badrinarayanan, CY. Lee, and A. Rabinovich, “GradNorm:

Gradient normalization for adaptive loss balancing in deep multitask
networks,” in Proc. IEEE Conf. Learn. Repr. (ICLR), 2018, pp. 794-
803.

[45] H. Yong, J. Huang, X. Hua, and L. Zhang, “Gradient centralization: A
new optimization technique for deep neural networks,” in Proc. Eur.

Conf. Comput. Vis. (ECCV), 2020, pp. 635–652.
[46] P. V. O’neil, Advanced engineering mathematics. Cengage learning,

2017.
[47] C. Guille-Escuret, M. Girotti, B. Goujaud, I. Mitliagkas, “A study

of condition numbers for first-order optimization,” in International
Conference on Artificial Intelligence and Statistics, online, 2021.

[48] D. Gutman and J. Pena, “The condition number of a function relative
to a set,” Mathematical Programming, pp. 1–40, 2020.

[49] L. Bottou, E. Frank, and M. Jorge, “Optimization methods for large-
scale machine learning,” Siam Review, vol. 60, no. 2, pp. 223–311,
2018.

[50] K. Loshchilov and F. Hutter, “Identity mappings in deep residual
networks,” in Proc. Eur. Conf. Comput. Vis. (ECCV), Amsterdam,
Netherlands, 2016, pp. 630–645.

[51] I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent with
warm restarts,” in Proc. IEEE Conf. Learn. Repr. (ICLR), Toulon,
France, 2017.

[52] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit. (CVPR), 2017, pp. 4700–4708.
[53] Y. Chen, J. Li, H. Xiao, X. Jin, S. Yan, and J. Feng, “Dual path

networks,” in Adv. Neural Inf. Proces. Syst. (NIPS), 2017, pp. 4470–
4478.

[54] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2015, pp.
1–9.

[55] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. Dollár,
“Designing network design spaces,” in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit. (CVPR), Virtual, 2020, pp. 10428–10436.
[56] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, CY. Fu, and A.

Berg, “SSD: Single shot multibox detector,” in Proc. Eur. Conf. Comput.
Vis. (ECCV), 2021, pp. 21–37.

[57] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley,
“On the effectiveness of least squares generative adversarial networks,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 12, pp. 2947–2960,
Dec. 2019.

[58] Z. Jie and W. Lu, “Dependency-guided LSTM-CRF for named entity
recognition,” in Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural

Language Processing (EMNLP-IJCNLP), 2019, pp. 3853–3863.

http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1710.05941

	I Introduction
	II Related Work
	III Theoretical Analysis
	III-A Description of the GAF
	III-B Ill-conditioned Problem and Convergence Analysis
	III-C Vanishing and Exploding Gradient Problems
	III-D Saddle Point Problem

	IV Experiments
	IV-A Implementation
	IV-B Hyperparameter Determination
	IV-C Setup of Experiments
	IV-D Comparison Experiments

	V Conclusion
	References

