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Background. Esophageal cancer (EC) had the sixth-highest mortality rate of all cancers due to its poor prognosis. Immune cells and
mutation genes infuenced the prognosis of EC, but their combined efect on predicting EC prognosis was unknown. In this study,
we comprehensively analyzed the immune cell infltration (ICI) and mutation genes and their combined efects for predicting
prognosis in EC. Methods. Te CIBERSORTand ESTIMATE algorithms were used to analyse the ICI scape based on the TCGA
and GEO databases. EC tissues and pathologic sections from Huai’an, China, were used to verify the key immune cells and
mutation genes and their interactions. Results. Stromal/immune score patterns and ICI/gene had no statistical signifcance in
overall survival (OS) (p> 0.05). Te combination of ICI and tumor mutation burden (TMB) showed that the high TMB and high
ICI score group had the shortest OS (p � 0.004). We recognized that the key mutation gene NRF2 was signifcantly diferent in the
high/low ICI score subgroups (p � 0.002) and positivity with mast cells (MCs) (p< 0.05). Trough experimental validation, we
found that the MCs and activated mast cells (AC-MCs) were more infltration in stage II/III (p � 0.032; p � 0.013) of EC patients
and that NRF2 expression was upregulated in EC (p � 0.045). AC-MCs combined with NRF2 had a poor prognosis, according to
survival analysis (p � 0.056) and interactive analysis (p � 0.032). Conclusions. We presume that NRF2 combined with AC-MCs
could be a marker to predict prognosis and could infuence immunotherapy through regulating PD-L1 in the EC.

1. Introduction

With the rapid growth and aging of the world’s population,
cancer will be the main reason for the rising burden of
disease in the 21st century. Esophageal cancer (EC) is the
sixth leading cause and has the eighth highest incidence rate
in the world. In China, 90% of EC is esophageal squamous
cell carcinoma (ESCC), and esophageal adenocarcinoma
(EAC) is more common in western countries [1]. Traditional
technologies such as radiotherapy, chemotherapy, surgery,
and trimodality are the main therapy methods for EC [2],
but the fve-year survival rate is still less than 15% [3]. Hence,
many researches were aimed to fnding meaningful thera-
peutic and prognostic biomarkers for EC in order to im-
prove the prognosis and prolong the lives of patients.

Recently, immunotherapy had been proven to have
prospective results for EC therapy; however, the immuno-
therapy’s efectiveness was afected by the complex tumor
microenvironment (TME), so not all patients are benefted
from these therapeutic interventions [4]. Te majority of
research studies indicated that tumor-associated immune
cells, especially innate immune cells such as macrophages,
dendritic cells, and mast cells (MCs), were related to im-
munotherapy and tumoral responses [5–7]. MCs were bone
marrow-derived cells which could be recruited into tumor
tissue by SCF, chemokine factors, and so on. Hypoxia, the
accumulation of (lactic acid, adenosine, PGE2, IFN-c, etc.)
and low pH in TME could activate MCs discharge particles
to pro- and antitumoral by IgE/FcεRI pathway [8–10].
Activated mast cells (AC-MCs) have been recognized as an

Hindawi
Journal of Oncology
Volume 2023, Article ID 4211885, 13 pages
https://doi.org/10.1155/2023/4211885

https://orcid.org/0000-0002-3502-7014
https://orcid.org/0000-0001-8150-6799
mailto:lylvjunjie@163.com
mailto:ranliu@seu.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/4211885


important prognostic indicator and immune therapy target
for cancers [11].

Te prognosis was afected by the complex immune cell
infltration (ICI) in TME. Recently, some researchers created
models according to immune cells and diferential expres-
sion genes (DEGs) to predict prognosis. Apart from this,
somatic mutation genes also infuenced a patient’s prognosis
and immunotherapy response [12]. TP53 mutations afected
the immunophenotype in gastric cancer and infuenced the
patient’s prognosis [13]. In addition, some clinical trials also
indicated that KEAP1/NRF2 mutations can be regarded as
predictive markers for immunotherapy and prognosis
makers for cancer [14]. Tumor mutation burden (TMB) is
defned as the total number of somatic gene coding errors,
base substitutions, gene insertions, or gene deletions de-
tected per million bases. Some research studies suggest that
TMB is associated with the emergence of neoantigens which
trigger antitumor immunity [15, 16]. Tumor patients with
higher TMB had higher survival rates [17, 18]. A few somatic
mutations in tumor DNA can be translated into neo-
antigens, which could be present on the surface of cells in the
form of the major histocompatibility complex and recog-
nized by the immune system [19]. However, the combined
efects of ICI and TMB in predicting prognosis remained
unknown.

In this study, we established multiple immune score
models and TMB to predict prognosis and immunotherapy.
Our results indicated that the combined immune score with
TMB was related to prognosis and PD-L1, and we recog-
nized the key mutation gene NRF2. We also found that
NRF2 was related to AC-MCs. Based on these results, we
analyzed the combined efects of NRF2 and AC-MCs for
prognosis by TCGA database and experiment verifcation.
Our results showed that there is an interaction between
NRF2 and MCs, especially the higher NRF2, which had
a worse survival rate. In total, we thought NRF2 combined
with AC-MCs could be used to predict the prognosis for EC
and provide a new direction for the prognostic study of
esophageal cancer.

2. Materials and Methods

2.1.ECDatasetsandSamples. A total of 524 EC samples were
downloaded from the TCGA-GDC database (https://portal.
gdc.cancer.gov/) and the GEO database (https://www.ncbi.
nlm.nih.gov/geo/). Te RNA sequencing (RNA-seq; frag-
ments per kilobase million value) data and the clinical in-
formation (BCR-XML) including futime, survival state, age,
gender, grade, stage, and the TNM stage system were
downloaded from TCGA-EC. Te microarray data
(GSE68698, GSE69925, and GSE161533) were downloaded
from the GEO. To increase the readability of the data, the
FPKM values were transformed into TPMs (transcripts per
kilobase million), which were identical to the results of
microarrays, and clinical information (BCR-XML) was
transformed into a matrix. Te “limma” R package and the
“sva” R package were used to merge the RNA array. Te
“ComBat” algorithm was used to decrease the likelihood of
batch efects from diferent biological and technical biases

between diferent datasets. Because the clinical information
in GEO is limited, we only use the clinical features from
TCGA when analyzing the results, which refer to the clinical
information. In addition, we collected 33 ESCC patients’
tissues and 30 ESCC pathological sections who had not
received therapy from Huai’an First Hospital, in 2021. Te
detailed information about the patient is listed in Table 1.
Tis study was performed in accordance with the principles
of the Helsinki Declaration and was performed, reviewed,
and approved by the Ethics Committee of Zhongda Hospital
of Southeast University; the grant number is
2021ZDKYSB004.

2.2. Estimation of Stromal and Immune Scores. Te
“CIBERSORT” algorithm is a deconvolution algorithm and
was used to quantify the infltration level of the distinct im-
mune cells based on the input reference gene sets and repeated
1000 times to ensure stability.Te “ESTIMATE” algorithmwas
used to calculate the immune scores, stromal scores, and es-
timate scores by the “estimate” R package. At the same time, we
analyzed the prognostic value of immune stores and stromal
scores and their relationship with clinical features.

2.3. ICI Clusters. We used the R packages “biomanager” and
“consensus” to divide the samples into diferent clusters
according to the immune cells’ relative fraction levels in EC.
And the prognostic values in diferent ICI groups were
indicated by the “survival” and “survminer” R packages. Te
immune cells in the difernt clusters were reshaped by
“ggpubr” package. Results were visualized through heat
maps by the “pheatmap” R package.

2.4. DEGs Associated with the ICI Phenotype and Gene
Clusters. DEGs in diferent ICI clusters were determined by
setting the signifcance cutof to p< 0.05 (adjust) and
logFC>1, which was performed by the “limma” R package.
According to DEGs, the samples were divided into diferent
types using the “biomanager” and “consensus cluster plus” R
packages. Immune cells in diferent gene clusters were an-
alyzed by “ggpubr.”We also analyzed the prognostic value of
diferent gene clusters as indicated by the “survival” and
“survminer” R packages.

2.5. ICI Scores. First, unsupervised clustering was used to
deal with the samples in TCGA and GEO according to DEG
values, which were positively or negatively correlated with
the cluster signature and described as ICI gene signatures A
and B, respectively. Second, the “Boruta” R package was used
for dimension reduction of the ICI gene signatures A and B
and to extract feature genes. Tird, principal component 1
was extracted as the signature score by using the principal
component analysis (PCA). Finally, the formula that defned
the ICI score of each patient was
ICIscore � 􏽐 PC1A − 􏽐 PC1B, and we divided the ICI score
into a high ICI score group and a low ICI score group.
According to the ICI score, the functional enrichment an-
alyses of GO and KEGG pathways were analyzed using the
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“clusterProfler” R package for the feature genes in the high
ICI score group and the low ICI score group. In order to
know the prognostic signifcance of the ICI score, we also
analyze the connection between clinical features and ICI
score based on the TCGA database.

2.6. Somatic Alteration Data Analysis. Te related somatic
mutation datasets for EC were downloaded from the
TCGA-GDC database. Tumor mutation burden (TMB) is
defned as the total number of somatic coding errors in
genes, base substitutions, and gene insertion and deletion
errors in EC. Te “ggpubr” R package was used to analyze
the TMB for high ICI scores and low ICI scores. Te mu-
tation genes with high ICI scores and low ICI scores were
identifed through the “maftool” R package, and the top 30
genes with the highest mutation frequency were listed.

2.7. Toluidine Blue Staining. Toluidine blue staining was
used to detect the number and distribution of MCs in ESCC.
Parafn-embedded tissues were dewaxed in diferent con-
centrations of alcohol, subsequently stained with toluidine
blue (Solarbio, China) for 15min, and washed with PBS 3
times. Photomicrographs of ten felds were taken at diferent
magnifcations using the camera (ZEISS, Germany), and the
mean value was used to describe the number and distri-
bution of MCs in EC. Te AC-MCs rate was calculated by
the ratio of the AC-MCs number to the total MCs number.

2.8. Q-PCR andWestern Blot Analyzed the Expression ofMCs
Related Genes and NRF2. We analyzed the relative genes in
ESCC tumor tissue and para-tumor tissue. Trizol was used to

extract RNA from tumor tissue and para-tumor tissue. Te
RAN was cDNA obtained by reverse transcription according
to the protocol (Vazyme, China). SYBR green was used to
complete the related expression. Te Q-PCR procedure fol-
lowed the protocol (Vazyme, China). Te primer sequences
were as follows: 95°C 3min, 95°C 30 s, 60°C 15 s, 72°C, 30 s for
40 cycles, and solubility curve.Te primer sequence is listed in
Table S1. In addition, tissues were addedto RIPA and lysed in
an ultrasound machine. After being divided by SDS-PAGE,
the proteins were transferred onto PVDF membranes and
then blocked with 5% skim milk for 2 h, subsequently in-
cubated with primary antibodies of NRF2 (1 :1000), TPSB2
(1 :1000), and GAPDH (1 : 5000) overnight at 4°C and next
incubated with secondary antibodies for 1 h at room tem-
perature. Te target protein was visualized by the ECL Gel
Image System and analyzed by the software Image J.

2.9. Statistical Analysis. All statistical analyses were ac-
complished with R version 4.0.3, GraphPad Prism 8, and
SPSS version 25.0. Te comparison between the two groups
was tested by the Wilcoxon test and T test; otherwise, it was
tested by Kruskal–Wallis H and ANOVA. Te survival
curves for the subtypes were accomplished with the
Kaplan–Meier plotter. Te chi-square test was used to an-
alyze the correction between the ICI score subtypes and
somatic mutation frequency. Te chi-square test was used to
analyze the classifed variable. And the correlation analysis
was completed by Pearson’s analysis. Univariate and mul-
tivariate Cox regression models were used to analyze the
prognosis. Te interaction of NRF2 and AC-MC was ana-
lyzed by interactive analysis. All analyses were two-tailed,
and p< 0.05 was regarded as the statistically signifcant level.

Table 1: Te relationship between MCs with clinicopathological features of ESCC.

Clinicopathological
features N MC (x ± s) P N FcεR1G (x ± s) P

Gender
Male 8 25.87± 15.22 0.299 21 2.09± 6.46 0.69
Female 13 33.07± 33.4681 4 1.04± 1.99

Age
≤65 16 24.37± 17.52 0.033∗ 9 0.41± 0.61 0.15
>65 5 49.40± 46.39 16 2.77± 7.37

Diferentiation
High diferentiation 4 43.00± 11.91 5 0.24± 0.22
Middle diferentiation 10 32.10± 37.69 0.446 14 3.07± 7.87 0.568
Low diferentiation 7 20.57± 13.22 6 0.64± 0.46

T
T1-T2 7 42.28± 42.13 0.160 7 1.24± 1.31 0.345
T3-T4 14 24.35± 16.29 8 2.19± 7.01

N
N0 13 20.23± 14.60 0.119 10 0.99± 1.15 0.179
N1–N3 8 46.75± 36.95 15 2.54± 7.67

M
M0 — — — 22 0.79± 0.97 <0.001∗
M1 — — 3 10.24± 17.24

Stage
I 4 26.25± 19.25 0.032∗ — —
II 8 15.00± 10.46 12 1.05± 1.06 0.095
III 8 50.12± 34.36 13 2.72± 8.26
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3. Results

3.1. Te Characteristic of ICI in the TME of EC. 22 human
immune cells were calculated through the CIBERSORT al-
gorithm according to the TCGA and GEO databases and
found to have diferential expression in tumor tissues and
para-carcinoma tissues. Tese results suggested that the rel-
ative fractions of Tregs and resting MCs in the tumor tissue
were lower than those in para-carcinoma tissue, but the
naive CD4 T cells, activated CD4 memory T cells, M0
macrophages, activated DCs, activated MCs, and neutrophils
in the tumor tissues were higher compared with para-
carcinoma tissues (Figure 1(a)). Te “corrplot” R package
was used to generate a correlation coefcient heatmap to
visualize the landscape of 22 immune cells’ interactions in
TME (Figure 1(b)). Additionally, the ESTIMATE algorithm
was used to calculate the immune scores and stromal scores
according to the levels of immune cells in EC. According to
the clinical information from the TCGA database, we ex-
plored the relationship between clinical features and estimate
scores. Tese results suggested that the immune scores and
stromal scores were not associated with survival time, but
clinical stage and T stage were related to stromal scores, and T
stage was related to immune scores (Figures 1(c)–1(f)).

3.2. Diferent Patterns Were Used to Predict the Prognosis.
We analyzed the prognosis value of stromal scores and
immune scores, but the results suggested that the score
patterns were unrelated to prognosis (Figures S1(A) and
S1(B)). So, we try to create new patterns according to im-
mune cells and DEGs to predict the prognosis. First, the ICI
types were divided into three clusters (Figure S1(C)).
However, the three ICI clusters have no signifcant survival
diference in EC (Figure 2(a)). Ten, we constructed another
subtype according to DEG (Figure S1(D)). Similarly, dif-
ferent gene clusters were unrelated to prognosis
(Figure 2(b)). However, the ICI clusters and gene clusters
were all related to PD-L1 (Figures 2(d) and 2(e)). So, we
analyzed the immune cells and DEGs in the clusters, and we
found that PD-L1 was more highly expressed in cluster
C. Te main immune cells in cluster C were CD8+T cells,
CD4+T follicular helper cells, T cells gamma delta, NK cells,
M1 macrophages, DCs, Tregs, and MCs (Figures 2(g) and
2(h)). At the same time, we also analyzed the relationship
between the immune cells in cluster C and PD-L1, and the
results suggested that PD-L1 is positively related to CD8+T
cells and DCs but negatively related to Tregs (Figure 2(f)).
Te heatmap delineated the transcriptomic profle of all
DEGs in three gene clusters and gene types (Figures S1E and
S1F). To achieve quantitative indicators of the ICI landscape
in EC patients, PCA was used to calculate two aggregate
scores according to the ICI score A from ICI signature gene
A and the ICI score B from ICI signature gene B (Table S2).
In this research, the individual score of patients was com-
puted through the ISA and ISB of each patient. All the

patients were divided into two groups (high ICI score and
low ICI score). We analyze the prognostic value of the ICI
score. Te survival rate in the two ICI score groups has no
statistical diference (Figure 2(c)), but statistical analysis
showed that survival status and the TN stage system were
related to ICI score (Figures S2E–S2G). Meanwhile, we
analyzed the main pathways in high ICI scores, such as
adherens junction, cell cycle, Hedgehog signaling pathway,
TGF-β signaling pathway, andWnt signaling pathway, while
the main pathways in the low ICI score were the B cell
receptor signaling pathway, drug metabolism cytochrome
P450, intestinal immune network for IgA production, pri-
mary immunodefciency, and T cell receptor according to
KEGG (Figure 2(i)). Functional enrichment analysis sug-
gested that the main functions of the high ICI score group in
the biological process were response to virus, type I in-
terferon signal pathway, and response to tumor necrosis
factor, but in the low ICI score group were extracellular
matrix organization and endodermal cell diferentiation.Te
main functions enriched in the cellular component of the
high ICI score group were the extracellular matrix immu-
nological synapse, membrane raft, anchored component of
membrane, and apical plasma membrane, while in the low
ICI score group, they were the endoplasmic reticulum lu-
men, extracellular matrix, and fbrillar collagen trimer
(Figures S2A–S2D). Tese results suggested that the ICI
score may be related to the prognosis of EC.

3.3. Combine ICI Score with TMB Predict Prognosis. Most
evidence indicated that TMB could be used to evaluate the
predictive prognosis [20, 21]. In the study, we analyzed the
relationship of TMBwith the somatic mutation landscape in the
EC and ICI scores, but the result showed that the TMB showed
no signifcant diferences between the two groups (Figure 3(a)).
Ten, we divided the samples into high/low TMB, and the result
suggested that the survival rate of low TMBwas higher than that
of high TMB (Figure 3(b)). At the same time, when we com-
bined the ICI score with the TMB, we found that the survival
rate in the group with a low TMB and a low ICI score was the
longest, whereas the groupwith a highTMBand ahigh ICI score
was the shortest (Figure 3(c)). Furthermore, we assessed the
distribution of somatic variants in EC driver genes between the
high/low ICI score subgroups.Te top 30 genes with the highest
alteration frequency were further analyzed (Figures S3A and
S3B). We also analyzed that the relative expression of mutation
genes in high/low ICI score subgroups; DYNC2H1, OBSCN,
DNAH11, PIK3CA, MUCSB, NRF2, ARID1A, SACS, LRRK2,
NOTCH1, and SMAD4 were all signifcantly diferent between
the high/low ICI score subgroups (Figure 3(d)). After analyzing
the role of these genes in TMB, we found that NRF2 was related
to TMB (Figure 3(e)). We further analyzed the prognosis value
of NRF2 and indicated that the expression of NRF2 was related
to the survival status, TNM system, and grade Figures S(3C-3F).
However, univariate variables and multivariate Cox regression
models were used to investigate the relationship between the
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Figure 1:Te landscape of ICI in the TME of EC. (a)Te immune cells in EC tissue and para-cancer tissue. (b)Te landscape of 22 immune
cells’ interactions in TME. (c and d) Association of immune scores with T stage (c) and clinical stage (d). (e and f) Association of stromal
scores with T stage (e) and clinical stage (f ). ∗p< 0.05; ∗∗p< 0.01; ∗∗∗p< 0.001.
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NRF2 mutation and the overall survival of EC patients, and the
result revealed that the NRF2 mutation was not an independent
prognostic factor for OS in EC (Table S3).

3.4. Combining AC-MCs with NRF2 Could Predict Prognosis.
Considering the relationship between the TMB and ICI
scores, what follows is the relationship between NRF2 and
immune cells. We found that NRF2 was only related to
MCs (Table S4). Next, we attempt to assess the combined
efect of NRF2 and MCs for predicting prognosis in EC. We
collected 30 EC patients’ tissue slices and their clinical
information to analyze the number and distribution of
MCs/AC-MCs and their prognosis value. MCs were
characterized by blue densely basophilic granules in the

intracytoplasmic, and AC-MCswerecharacterized by many
blue dye particles surrounding the cells. Our results showed
that MCs were mainly in the muscular layer (p< 0.05)
squamous epithelium (0.67 ± 3.46, Figure 4(a)-A/B/C),
tumor nest (4.48 ± 9.63, Figure 4(a)-D/E/F), and muscu-
laris propria (36.33 ± 37.84, Figure 4(a)-G/H/I). We also
calculated the rate of AC-MCs in EC tissue. Te MCs in
patients in stage III were higher than those in patients in I
and II (Table 1). We also analyzed the related gene, which
could activate MCs. Tese results showed that FcεR1A
(Figure 4(b), p< 0.005), NRF2 (Figure 4(b), p< 0.05),
FcεR1G (Figure S4D, p< 0.000), and PD-L1(Figure S4E,
p< 0.05) were all upregulated in tumor tissue (Figures S4D
and S4E), and the protein level of NRF2 and TPSB2 was
also higher expressed in tumor tissue (Figure 4(d)–E). Te
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expression of NRF2 was related to FcεR1A (Figure S4E,
r = 0.515), and PD-L1 was related to FcεR1G (Figure S4G,
r = 0.468). We divided the expression of NRF2 and FcεR1G
into two groups by median, and interaction analysis was
used to explore the interaction of NRF2 and AC-MCs with
TNM. Cox results suggested that NRF2 and MCs were all

unrelated to OS (Figures S4A and S4B), but the group with
low NRF2 and high FcεR1G was the lowest malignant
(Figure S4C). Most importantly, there is an interaction
between NRF2 and MC (Figure 4(f )). Hence, we thought
that a combination of NRF2 and AC-MCs could be
a prognosis maker for EC.
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4. Discussion

Te majority of studies have demonstrated that the het-
erogeneous TME and TMB participated in tumor pro-
gression, prognosis, and therapeutic for EC. However,
clarifying the modulation of TME and TMB as well as their
combination efects during EC remains a challenge. Our
study comprehensively described the ICI landscape and
somatic mutation gene landscape and constructed diferent
patterns to quantify the ICI and TMB by the “CIBERSORT”
and “ESTIMATE” algorithms to predict prognosis and the
relationship with PD-L1. We found that the combined
immune fltration cells and tumor mutation burden could
predict the prognosis for EC. At the same time, we recog-
nized the key mutation genes NRF2 and immune cells (mast
cells), which played an important role in predicting prog-
nosis. We verifed the combined role of NRF2 and mast cells
in EC patient and found that combined NRF2 and MCs
would be a prognostic target and provide new insight into
the prognosis of EC.

Multiple pieces of evidence have demonstrated that
dysfunctional immune cells in the TME lead to

immunosuppression and promote tumor survival and
progression [22–24]. In this study, we analyzed the ICI
landscape of EC according to the TCGA and GEO databases.
Our results indicated that CD4 T cells, M0 macrophages,
AC-MCs, and activated DCs were increased, but the Tregs
and resting MCs were decreased in tumor tissue. Tregs
suppress the activation and proliferation of multiple types of
immunocompetent cells such as CD4+T cells, CD8+T cells,
B cells, NK, and T cells, as well as suppressive immuno-
reaction [25]. CD4+T cells could increase the secretion of
IL4, IL2 promoting breast cancer progression, and the
mature dendritic cells induced the proliferation of CD4+T
cells [26, 27]. AC-MCs could produce VEGF, PDGF,MMP9,
and PGE2 to promote angiogenesis and tumor migration
[28]. Moreover, AC-MCs’ secreted cytokines could also
infuence the development and function of T cells and B
cells [29]. Apart from evaluating the infltration of single
immune cells, we also attempt to quantify the ICI landscape
to evaluate the prognosis through built-score patterns. In
previous studies, the ESTIMATE algorithm has been used to
analyze the immune scores and stromal scores, and it has
been suggested that the risk model is benefcial for the early
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identifcation of high-risk patients to formulate an in-
dividualized treatment project and improve the possibility of
an immunotherapy response [30, 31]. In our study, based on
the stromal scores and immune scores, we divided the
patients into high-score and low-score groups. We found
that the survival probability in the two groups did not
signifcantly change, but the stromal scores were higher in
stage III, and the higher the immune scores and stromal
scores, the higher the T stage. At the same time, we divided
the samples into three parts based on the infltrated immune
cells. Our results demonstrated that the immune cells which
have immunosuppressive function were focused on ICI
cluster C. PD-L1, a key immune checkpoint, was higher in
ICI cluster C. Previous evidence had shown that immune
cell-related genes could predict disease progression and
immunotherapeutic responses [32, 33]. Based on the
immune-related gene in EC, we divided the patient into
three ICI gene clusters. Te results suggested that ICI gene
cluster C had a more favorable immune-activated type with
the highest density of CD8+T cells, M1 macrophages, acti-
vated DCs, and CD4+ T follicular helper cells [34–36].
Additionally, the expression of PD-L1 was highest in ICI
gene cluster C. Hence, the patients in ICI gene cluster C
might have a better immune response. Te outcome of our
analysis was in accordance with the previous study, which
indicated that ICI clusters and ICI gene clusters in EC might
infuence the expression of PD-L1 [37].

In recent years, gene clusters related to immune response
and proliferation were used to predict the outcome of
cancers and identify high-risk patients; the distant
metastasis-free survival in high-score immune gene was
higher than low-score in breast cancer [38]. Te prognosis
value of the ICI score was calculated by the “Boruta algo-
rithm” based on the immune cell-related gene, which has
been proven in head and neck squamous cell carcinoma [39].
In the current study, we assessed the prognosis value of the
ICI score in EC and found that there was no signifcant
diference in OS in high/low ICI scores , but the ICI score
was higher in alive, no lymph node metastasis samples.
Trough KEGG, our results indicated that the high ICI score
mainly regulates the hedgehog signaling pathway, TGF-β
signaling pathway, Wnt signaling pathway, and so on.
Hedgehog signaling could be induced by activated T cells
and NK cells and participate in immunotherapy [40]. Re-
pression of the Wnt signaling pathway would decrease the
expression of PD-L1 and increase the immune-killing efect
of NK cells [41]. Te TGF-β/EMT signaling pathway
infuenced the expression of PD-L1 and promoted immune
escape. All these results demonstrated that the ICI score was
related to the PD-L1 but was not an independent prognosis
marker for EC [37].

Te majority of studies demonstrated that TMB was
related to prognosis and could be a marker for predicting the
efectiveness of immune checkpoint inhibitors in cancer
[42, 43]. Mutation genes related to TMB were crucial
prognostic biomarkers for cancers [32, 44]. In our study, we
analyzed the somatic mutation landscape according to
TCGA. Our results indicated that the high TMB level had
a poor OS, and the combination of the TMB with ICI scores

showed that the high TMB and low ICI group had the worst
OS. Meanwhile, these results indicated that TP53, TTN,
MUC16, LRP1B, and SYNE1 were high-frequency muta-
tions in EC. Especially, NRF2 was not only a high-frequency
mutation gene in EC but also signifcantly diferent in ICI
score groups. Tere was a study that reported that NRF2/
KEAP1 mutations correlate with higher TMB value/PD-L1
expression and potentiate improved clinical outcomes with
immunotherapy [45]. An NRF2 mutation could disrupt the
weak binding of Keap1 with the NRF2-DLG motif and
activate NRF2 to promote tumor progression [46]. Con-
sidering the complexity of mutations, we only detected the
expression of NRF2 and the prognosis value in EC. In our
result, the NRF2 was upregulated in EC, but not an in-
dependent prognostic biomarker, which was diferent from
previous research studies [47]; the reason probably was that
the number of patients was not enough. Meanwhile, we
analyzed the relationship between NRF2 and immune cells
and found that NRF2 was related to MCs. Other studies
indicated that NRF2 could activate MCs, IgG/FcεRI pro-
moted the phosphorylation of Lyn and activated Syk/PI3K,
LAT/p38, and LAT/Raf-1/ERK1/2 pathways, and the AKT-
Nrf2 and p38MAPK-Nrf2 signal pathways play an important
role in hypersensitivity induced by MCs [48, 49]. Hence, we
analyzed the MCs in EC tissue and found that MCs were
irrelevant to OS. Surprisingly, the combination of NRF2
with MCs could afect prognosis. In addition, previous
studies indicated that MCs could express PD-L1 and play
a crucial role in immunosuppression [50]. Our results also
indicated that FcεR1G could activate MCs, and the AC-MCs
were positively related to PD-L1, but the mechanism by
which activated MCs regulated PD-L1-induced immuno-
suppression deserves deep research. Terefore, we thought
combining NRF2 with MCs would be used to predict
prognosis. However, whether the NRF2-activated MCs are
involved in immune suppression in EC needs further study.

In summary, we comprehensively analyzed the ICI
landscape and TMB of EC and found that high ICI and high
TMB had worse prognoses. We also recognized key mu-
tation genes and immune cells and analyzed the common
prognostic value of NRF2 with MCs by experiment verif-
cation and database analysis. Nevertheless, several limita-
tions in our study should be considered. First, due to the
limited patient information from TCGA, a larger sample size
and sufcient information were required for further proof of
our results. Second, the role of NRF2 and MCs participated
in immune regulation and tumor progression in EC needs
further experimental study. Tird, it is not enough to clarify
diferent patterns and MCs that could infuence immuno-
therapeutic efectiveness only by analyzing the relationship
with PD-L1. In all, we found that high ICI and high TMB
could afect the prognosis, and the combination of NRF2
with AC-MCs had a worse prognosis and could be an ef-
fective prognostic factor for EC.
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