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Despite the ongoing “war on cancer,” cancer remains one of the major causes of human

morbidity and mortality. A new paradigm of targeted therapies holds the most promise for

the future, making identification of tumor-specific therapeutic targets of prime importance.

ERBB2/HER2, best known for its role in breast cancer tumorigenesis, can be targeted

by two types of pharmacological manipulation: antibody therapy against the extracellular

receptor domain and small molecule compounds against the intracellular tyrosine kinase

domain. Aberrant activation of ERBB2 by gene amplification has been shown to partici-

pate in the pathophysiology of breast, ovarian, gastric, colorectal, lung, brain, and head

and neck tumors. However, the advent of next-generation sequencing technologies has

enabled efficient identification of activating molecular alterations of ERBB2. In this review,

we will focus on the functional role of these somatic mutations that cause ERBB2 recep-

tor activation. We will additionally discuss the current preclinical and clinical therapeutic

strategies for targeting mutationally activated ERBB2.

Keywords: ERBB2/HER2, activating somatic mutation, reversible and irreversible tyrosine kinase inhibitors,

targeted therapies, resistance, lung cancer, breast cancer

INTRODUCTION

Rising incidences of neoplasia worldwide are estimated to translate

into 13 million cancer deaths by 2030 (World Health Organi-

zation, 2012). In order to develop more effective and less toxic

targeted cancer therapies, we must utilize our knowledge of malig-

nant cell biology and design tailored antineoplastic compounds

against diverse biological targets to supplement current standard

treatment modalities, such as surgical resection, chemotherapy,

and radiation therapy, to eradicate this frequently fatal disease.

Although encouraging response rates are achieved in a few types

of cancer with these standard treatment options, the majority of

patients lack sufficient therapeutic options for long-term survival,

especially those with advanced disease. Hence, additional therapies

are urgently needed.

Because neoplastic cells frequently show “addiction” to muta-

tionally activated oncogenes (Weinstein, 2002; Sharma and Settle-

man, 2010), such oncogenes comprise the most promising group

of drug targets discovered to date. In the mid 1980s, the recep-

tor tyrosine kinase (RTK) ERBB2 (also known as HER2 – Human

Epidermal Growth Factor Receptor (EGFR) 2) was identified to

be an oncogenic driver (Padhy et al., 1982; Bargmann et al., 1986;

Di Fiore et al., 1987; Slamon et al., 1987). ERBB2 was first targeted

with the monoclonal antibody, trastuzumab, which was approved

by the Food and Drug Administration (FDA) in 1998. Although the

addition of trastuzumab to chemotherapy significantly prolonged

survival in patients with ERBB2-overexpressing breast or gastric

cancers (Piccart-Gebhart et al., 2005; Romond et al., 2005; Joensuu

et al., 2006; Bang et al., 2010), these clinical benefits failed to trans-

late in improved survival of patients with ERBB2-overexpressing

non-small cell lung cancers (NSCLCs) (Gatzemeier et al., 2004;

Langer et al., 2004).

Oncogenic signaling by RTKs can also be abrogated by inhi-

bition of tyrosine kinase activity with small molecules. Imatinib

mesylate demonstrated proof of principle by successfully inhibit-

ing constitutive signaling through the BCR-ABL fusion protein in

chronic myelogenous leukemia (Druker et al., 2001). Additional

tyrosine kinase inhibitors (TKIs) targeting various cellular sig-

naling pathways have entered the clinic since imatinib mesylate

was approved by the FDA in 2001, including inhibitors target-

ing ERBB2 in breast cancer (Geyer et al., 2006) and the related

RTK, EGFR, in lung adenocarcinomas (Ku et al., 2011). The

emergence of sophisticated genomic methodologies like next-

generation sequencing enabled high-throughput detection of

known and novel oncogenic mutations, and in particular revealed

the presence of activating mutations of ERBB2 in a variety of

tumor types. These novel oncogenic alterations of ERBB2 poten-

tially offer unique therapeutic opportunities to a broader range of

patients than previously anticipated by analysis of ERBB2 ampli-

fication alone. However, it appears that it may be more difficult

to successfully target ERBB2 mutation than ERBB2 amplification

or EGFR mutation. Translation of this discovery to the clinic thus

remains a major challenge.
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THE ERBB/HER RECEPTOR FAMILY

The proto-oncogene ERBB2 is a member of the ERBB/HER RTK

family, additionally comprised of EGFR (EGFR/HER1/ERBB1),

HER3/ERBB3, and HER4/ERBB4 (Hynes and Lane, 2005). Upon

extracellular ligand binding, these four receptors mediate nor-

mal cell proliferation and cell survival via two major signaling

pathways: Ras-Raf-MAPK and PI3K/Akt/mTOR. Whereas EGFR

and ERBB4 have known extracellular ligands and possess active

tyrosine kinase domains, no direct high-affinity ligand has been

identified for ERBB2 (Carraway et al., 1994; Sliwkowski et al., 1994;

Burgess et al., 2003). Furthermore, ERBB3 binds several different

ligands, but has little or no tyrosine kinase activity, and is possibly

able only to weakly autophosphorylate (Shi et al., 2010).

ACTIVATION OF ERBB2

Signaling specificity of each ERBB receptor is transmitted

through unique patterns of C-terminal autophosphorylation sites

(Olayioye et al., 2000; Yarden and Sliwkowski, 2001). Further com-

plexity is added by receptor dimerization, which can occur either

between two identical (homodimerization) or two different (het-

erodimerization) ERBB receptors. Under resting conditions, these

cell surface receptors are found as monomers folded in a so-called

“closed/tethered” autoinhibited conformation to prevent dimer-

ization (Ferguson et al., 2003). Conformational rearrangement

into an “open/extended” state occurs upon ligand binding to the

extracellular domain. This process exposes the dimerization arm to

establish the core of the dimer interface with a homologous region

of a partner molecule. The extracellular dimeric structure facili-

tates reciprocal transactivation of the intracellular tyrosine kinase

portions of each receptor. The uniqueness of ERBB2 among its

family members is not only characterized by its inability to directly

bind any known EGF family ligand, but also by being permanently

fixed in the active conformation. Consequently, kinase autoinhi-

bition to prevent uncontrolled receptor activation is not mediated

by the ectodomain, but by a loop connecting the αC helix and β4

sheet within the kinase domain (Fan et al., 2008).

At least in part due to its constitutively active conformation,

ERBB2 is the preferred dimerization partner for other ERBB family

members. Although the existence of four receptors allows several

different pairings and subsequently distinct patterns of down-

stream pathway engagement, ERBB2 heterodimers demonstrated

increased potency in conveying extracellular signals (Yarden and

Sliwkowski, 2001). It comes as no surprise that the most powerful

signaling heterodimer – composed of ERBB2 and ERBB3 – func-

tions as an oncogenic unit (Holbro et al., 2003; Hsieh and Moasser,

2007; Lee-Hoeflich et al., 2008). Lack of catalytic kinase activity

does not prevent ERBB3 from heterodimerizing with other ERBB

molecules. In fact, the primary oncogenic signaling apparatus of

ERBB2-ERBB3 is crucial for activation of the PI3K/Akt pathway

(Soltoff et al., 1994). Although ERBB2 possesses no direct dock-

ing sites for PI3K, ERBB3 mediates this process with six tyrosine

binding sites for the regulatory subunit of PI3K (Prigent and Gul-

lick, 1994; Soltoff et al., 1994). Indeed, clinical data by Tokunaga

et al. (2006) shows positive correlation of ERBB2-expressing breast

cancers and increased activation of Akt.

Three principal mechanisms of oncogenic activation of ERBB2

have been identified to date: (i) amplification and overexpression,

(ii) molecular alterations of the receptor, and (iii) inhibition of

phosphatase activity (Ocana and Pandiella, 2013). Increased num-

bers of receptor molecules populating the cell surface increase the

likelihood of dimerization and receptor tyrosine phosphorylation,

even in the absence of ligand binding (Zhang et al., 2006; Endres

et al., 2011). ERBB2 overexpression or amplification was initially

discovered in approximately one third of human breast cancers

and is associated with more aggressive tumors and poorer out-

come (Slamon et al., 1987). Other human tumor types have also

been reported to harbor ERBB2 amplification or overexpression,

including lung cancers (Pellegrini et al., 2003; Langer et al., 2004),

gastric cancers (Tanner et al., 2005; Bang et al., 2010), ovarian can-

cers (Tuefferd et al., 2007; Vermeij et al., 2008), prostate cancers

(Minner et al., 2010), salivary gland tumors (Cornolti et al., 2007),

and bladder cancers (Lae et al., 2010).

Mutational activation of ERBB2 can result from three types

of somatic molecular alterations: small insertions and missense

mutations in the kinase domain (Figure 1A), missense mutations

in the extracellular domain (Figure 1B), or large deletions of the

extracellular domain that yield the truncated form of ERBB2,

p95HER2 (Figure 1C). The molecular characteristics, treatment

opportunities, and potential mechanisms of resistance of these

three classes will be discussed in the next sections.

Constitutive ERBB2 activation can also be achieved by insuf-

ficient dephosphorylation of the receptor. Although in rare cases

ERBB receptors may transphosphorylate each other in the absence

of ligand, overexpression, or mutations, intracellular phosphatases

rapidly act as a fail-safe mechanism to dephosphorylate the recep-

tor and terminate signaling (Ullrich and Schlessinger, 1990).

Recently, studies by two different groups provided the first evi-

dence that phosphatase activity is essential to control oncogenic

ERBB2 signaling. Sun et al. (2011) demonstrated that muta-

tional inactivation of the phosphatase PTPN12 caused activation

of ERBB2 in triple negative breast cancer cell lines. Similarly,

Vermeer et al. (2012) analyzed breast cancer cell lines to under-

stand the correlation between decreased PTPN13 expression and

poorer overall survival. The authors found a novel signaling com-

plex consisting of ERBB2 and EphrinB1 which is regulated by

transient association with PTPN13 and Src. In absence of the phos-

phatase PTPN13, activated Src associates with the ERBB2 kinase

domain and phosphorylates EphrinB1, which induces Erk1/2

phosphorylation (Vermeer et al., 2012).

ERBB2 MUTATIONS IN CARCINOGENESIS

The clinical success of gefitinib, an inhibitor of EGFR, in a subset

of lung cancers harboring activating mutations within the kinase

domain of EGFR led to the investigation of analogous mutations of

ERBB2. ERBB2 kinase domain mutations were found to occur in

2–4% of lung adenocarcinomas (Stephens et al., 2004; Shigematsu

et al., 2005; Buttitta et al., 2006) and cause increased survival, inva-

siveness, and tumorigenicity in cell-based transformation assays

(Wang et al., 2006). Similarly to NSCLC driven by EGFR muta-

tion, the clinical and pathological characteristics of patients with

ERBB2 mutations have been attributed to patients of the female

sex, Asian ethnicity, never-smoker status, and adenocarcinoma

subtype. However, a recent study of 1,478 U.S. patients with lung

adenocarcinomas found no association of ERBB2 mutation with
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FIGURE 1 | Somatic activating mutations in ERBB2. Depicted is a

simplified schematic of three known subclasses of ERBB2-mutants. (A) and

(B) Activating mutations in the full-length protein. A star indicates the position

of the activating mutation (A in the kinase domain, B in the extracellular

domain). (C) Large deletions of the extracellular domain that yield the trucated

form of ERBB2, p95HER2.

sex and race, but confirmed that mutations of the kinase domain

of ERBB2 are mutually exclusive with EGFR, KRAS, and ALK

mutations (Arcila et al., 2012).

The most prevalent alteration of ERBB2 involves the in-frame

insertion/duplication A775_G776insYVMA within exon 20, a

sequence also present in exon 20 of the EGFR gene (Stephens et al.,

2004). Similar in-frame insertion mutations were also identified

in ovarian cancers (Anglesio et al., 2008). These insertions induce

a conformational change of the autoinhibitory αC-β4 loop, thus

narrowing the ATP-binding cleft and promoting enhanced kinase

activity (Gazdar et al., 2004; Fan et al., 2008). In vitro studies

have shown that this ERBB2-mutant potently transphosphorylates

EGFR in the absence of ERBB ligands rendering EGFR susceptible

for dimerization (Wang et al., 2006). Single nucleotide missense

substitutions of this region of ERBB2 have also been reported

in breast cancer, gastric cancer, and colorectal cancer (Lee et al.,

2006b).

Although oncogenic tyrosine kinase mutations frequently alter

the ATP-binding pocket, we recently identified an alternate mech-

anism of ERBB2 activation resulting from extracellular domain

mutations that cause reduction-sensitive covalent dimerization

(Greulich et al., 2012). These missense substitutions cluster in

subdomain II, a region characterized by 11 disulfide bonds (Cho

et al., 2003), and impact intramolecular disulfide bond forma-

tion (Greulich et al., 2012). Mutation of cysteine residues in this

region that participate in intramolecular disulfide bonds, such

as S335C (Greulich, unpublished observation), or mutation of

residues important to stabilization of disulfide-bonded loops, such

as G309E, can both promote intermolecular disulfide bond for-

mation, resulting in constitutively dimerized and activated ERBB2

(Greulich et al., 2012).

Reduction-sensitive dimerization is not the only mechanism by

which ERBB2 extracellular domain mutations constitutively acti-

vate enzymatic activity; ERBB2 S310F and S310Y mutations, found

in 1–2% of lung cancers and breast cancers, behave more similarly

to the ERBB2 kinase domain mutants in that they cause elevated

C-terminal tail phosphorylation without evidence of covalent

dimerization. Of note, the S310F lesion was also detected in 1/316

ovarian cancers (Cancer Genome Atlas Research Network, 2011)

and in a bladder cancer cell line, 5637 (Barretina et al., 2012).

Whereas activating mutations within the kinase domain of

ERBB2 show close homology to their counterparts within EGFR,

the extracellular domain mutations are not as closely mirrored.

Oncogenic mutations affecting the ectodomain of EGFR have been

identified in subdomain I, II, and IV (Lee et al., 2006a). Although

the mechanism of receptor activation has not yet been character-

ized for these EGFR extracellular domain mutations, it is tempting

to speculate that the underlying tumorigenic mechanism is caused

by a less tethered conformation of the extracellular domain as

most amino acid substitutions localize to interdomain interfaces

(Lee et al., 2006a).

The third type of mutant ERBB2 is structurally different from

the first two, as these derivatives lack substantial parts of the

extracellular domain and are termed p95HER2 or HER2 carboxyl

terminal fragments (CTF) (reviewed in Arribas et al., 2011). These

truncated ERBB2 proteins have been predominantly found in

breast cancers and cause resistance to trastuzumab (Molina et al.,

2002; Scaltriti et al., 2007). Only a few cases of lung adenocarci-

noma were reported to harbor these mutations (Cappuzzo et al.,

2012). Two distinct mechanisms yield p95HER2 fragments: alter-

native mRNA translation from internal initiation codons (posi-

tions 611 and 678, respectively) and proteolytic shedding of the
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ectodomain of the full-length receptor (Christianson et al., 1998;

Anido et al., 2006). Strikingly, in vitro studies of the membrane-

anchored p95HER2 fragment known as 611-CTF (100–115 kDa)

revealed more rapid and acute activation of different signaling

pathways compared with the full-length receptor and the 648-CTF

fragment (Pedersen et al., 2009). Additionally, this hyperactive

p95HER2 fragment was shown to promote more aggressive and

metastatic breast cancer progression by induction of a specific gene

set (Pedersen et al., 2009). The pathological features attributed to

overexpression of 611-CTF are postulated to be a result of its short

extracellular domain, which contains five cysteines. Thus again,

constitutive generation of activated homodimers is assumed to

be maintained by intermolecular disulfide bonds (Pedersen et al.,

2009).

ERBB2 AS A THERAPEUTIC TARGET

Two different strategies for targeting ERBB2 have successfully

entered the clinic: antibodies directed against the extracellular

domain of the receptor, and small molecule TKIs acting on the

intracellular kinase domain.

The mechanism of action of monoclonal antibodies toward

ERBB2-overexpressing cancer cells include removal of ERBB2

from the cell surface by endocytosis to diminish intracellular

signaling, and induction of an immune system-mediated anti-

tumor response. Several ERBB2-directed monoclonal antibodies

have been developed, including trastuzumab and pertuzumab.

Whereas trastuzumab interacts with subdomain IV of the extra-

cellular domain (Cho et al., 2003), pertuzumab binds subdomain

II, which harbors the dimerization arm and thus inhibits recep-

tor dimerization (Franklin et al., 2004). Trastuzumab can also

be conjugated to DM1, an inhibitor of tubulin polymerization

derived from maytansine, to efficiently deliver DM1 to ERBB2-

overexpressing cancer cells (Lewis Phillips et al., 2008). Despite

promising preclinical data, clinical development of ertumaxomab,

a bispecific antibody capable to bind mature T cells and ERBB2,

was discontinued (Kiewe et al., 2006).

Small molecule TKIs are typically competitive inhibitors, pre-

venting ATP from binding to its natural site within the kinase

region due to the higher affinity of the TKI for the ATP-binding

pocket. ERBB family TKIs fall into two categories: reversible

inhibitors, like erlotinib, gefitinib, and lapatinib, that can be

released from the receptor; and irreversible inhibitors, such as afa-

tinib, neratinib, pelitinib, and dacomitinib, that covalently modify

the receptor. Although the in vitro efficacy of the irreversible

inhibitors was demonstrated to be superior to that of reversible

inhibitors, irreversible ERBB blockade requires biosynthesis for

receptor recovery, both a benefit and a drawback (Sanchez-Martin

and Pandiella, 2012).

From the oncologist’s point of view, irreversible inhibition is

highly desired for tumor control. However, ERBB signaling is also

vital to non-malignant tissues, and inhibition of ERBB2 is asso-

ciated with unwanted toxicities. For instance, trastuzumab can

provoke cardiotoxicity, especially when administered in combi-

nation with anthracyclines (Slamon et al., 2001). Thus, careful

evaluation is required prior to utilization of more potent irre-

versible inhibitors, which may result in increased toxicity. It is

possible that non-competitive inhibitors could serve as a valuable

alternative, particularly to combat eventual resistance to current

TKIs (Ocana and Pandiella, 2013).

Despite robust preclinical and encouraging clinical data in vari-

ous cancer types, a third class of antineoplastic agents active against

ERBB2, HSP90 inhibitors, has still not been approved by the FDA.

HSP90 is a chaperone that governs the conformational maturation

and folding of ERBB2. Inhibition of HSP90 leads to ubiquitylation

and proteasomal degradation of ERBB2 and its downstream sig-

naling partners. In a Phase II study, combination treatment with

trastuzumab and the HSP90 inhibitor tanespimycin (also known

as 17-AAG) was demonstrated to be active in patients with breast

cancer who had progressed on trastuzumab therapy (Modi et al.,

2011).

Given our current knowledge of the biology of activating

mutations of ERBB2, single agent antibody-based treatment

strategies may be of limited clinical relevance. In particular,

truncated p95HER2 fragments naturally evade antibody binding

due to the absence of the extracellular domain and binding of

trastuzumab to ectodomain- or kinase domain-mutated ERBB2

forms presumably fails to prevent ligand-mediated ERBB3-ERBB2

signaling (Agus et al., 2002). Our in vitro data furthermore indi-

cates that, whereas survival of Ba/F3 cells expressing mutants of

G309 and S310 was effectively inhibited upon trastuzumab treat-

ment, other ectodomain-mutants were less responsive (Greulich

et al., 2012). Further in vivo investigation will be required to deter-

mine response in a more physiological setting. Additionally, it

would be of interest to evaluate whether pertuzumab is able to

bind and impact survival of cancer cells expressing ectodomain-

mutants. It remains unclear whether combinatorial treatment of

trastuzumab and pertuzumab would be effective, given recent data

obtained from ERBB2-positive metastatic breast cancer (Baselga

et al., 2012).

Importantly, tissue-specific properties may hamper thera-

peutic success of antibody-based treatment schedules. Whereas

trastuzumab has recently been approved for the treatment

of metastatic gastric cancer in combination with cytotoxic

agents (Bang et al., 2010), similar studies targeting overex-

pressed/amplified ERBB2 in NSCLC (Gatzemeier et al., 2004;

Langer et al., 2004; Lara et al., 2004b; Zinner et al., 2004; Krug

et al., 2005; Herbst et al., 2007) and prostate cancer (Morris et al.,

2002; Lara et al., 2004a; Ziada et al., 2004) have reported mod-

est or disappointing results. It remains to be determined whether

this primary resistance to trastuzumab results from inaccessi-

bility of the receptor. For example, Nagy et al. (2005) found

that MUC4, a membrane-associated mucin, masked the extra-

cellular domain of ERBB2. In light of this finding, evaluation of

MUC4 overexpression as a possible mechanism for primary resis-

tance to trastuzumab in NSCLC should be done. Indeed, 80–85%

of NSCLCs express MUC4, and adeno- and adenosquamous-

carcinomas are characterized by high levels of MUC4 expression

(68 and 75%, respectively) (Kwon et al., 2007). Further analyses

by Karg et al. (2006) suggest that MUC4 and ERBB2 expression

are positively correlated and might be involved in the repression

of apoptosis and differentiation. However, primary resistance to

trastuzumab in prostate cancer may involve other mechanisms, as

MUC4 expression was not detectable in malignant prostate tissue

(Cozzi et al., 2005).
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The identification of activating mutations within the kinase

domain of ERBB2 offered an additional therapeutic possibility

(Stephens et al., 2004). EGFR-TKIs were shown to be ineffective

against ERBB2 mutations (Wang et al., 2006; Cappuzzo et al., 2007;

Engelman et al., 2007). By contrast, several ERBB2-directed TKIs

showed effective anti-proliferative properties. Despite promising

preclinical data with neratinib (HKI-272; an irreversible ERBB

inhibitor of EGFR and ERBB2) in the ERBB2-mutant NCI-H1781

cell line (Shimamura et al., 2006), clinical evaluation in patients

with EGFR-driven lung adenocarcinomas does not support use

of this inhibitor as a single agent (Wong et al., 2009; Sequist

et al., 2010). However, three of four patients harboring the rare

EGFR mutation G719X (X indicates substitution of glycine by

either serine, cysteine, or alanine) were found to respond to nera-

tinib (Sequist et al., 2010). Strikingly, neratinib showed promising

activity in ERBB2-overexpressing breast cancers and could poten-

tially be approved as a first-line therapy in locally advanced or

metastatic ERBB2-overexpressing breast cancers (Chow et al.,

2009; Limentani et al., 2009; Burstein et al., 2010; Awada et al.,

2013).

Preclinical activity for afatinib (BIBW2992), a second irre-

versible inhibitor of EGFR and ERBB2, was demonstrated in Ba/F3

cells expressing an ERBB2-mutant with an insertional mutation

at codon 776 and in transgenic lung cancer models (Li et al.,

2008). De Greve et al. (2012) recently provided the first evidence

of clinical benefit from treatment with afatinib. In this study,

patients were initially diagnosed with lung adenocarcinoma har-

boring exon 20 ERBB2 mutations and had progressed under var-

ious antineoplastic regimes. Three of five such identified patients

were eligible for treatment response evaluation and two patients

showed rapid metabolic response within 1–2 weeks. Although sin-

gle agent afatinib did not extend overall survival in patients with

advanced, metastatic NSCLC after failure of other therapeutic

options (Miller et al., 2012), it did prolong progression-free sur-

vival and it appears rational to investigate the synergistic effects

of afatinib and paclitaxel in this patient population. Furthermore,

our preclinical data utilizing an inducible mouse model of mutant

ERBB2 (A775_G776insYVMA) in lung epithelium revealed that

the combination of afatinib and an mTOR inhibitor (rapamycin)

were effective in mediating tumor shrinkage (Perera et al., 2009).

Thus, combinatorial treatment approaches are likely to positively

influence clinical outcome.

Dacomitinib (PF00299804), a third irreversible pan-ERBB

inhibitor, is currently under clinical investigation due to promis-

ing preclinical studies (Engelman et al., 2007; Janne et al., 2011).

The rationale for irreversible TKI development to fight ERBB2-

activating mutations originates from experience with reversible

TKIs targeting EGFR-activating lesions. Despite their initial

response, almost all of these cancers rapidly develop resistance and

result in little overall survival benefit (Maemondo et al., 2010). In

about half of these resistant cancers, a secondary mutation within

the catalytic cleft of the kinase domain is responsible for ineffective

reversible drug activity and subsequent oncogenic proliferation

(details in Section Mechanisms of Resistance).

Following discovery of activating mutations within the ERBB2

extracellular domain, we analyzed the growth inhibitory effects

of neratinib, afatinib, and lapatinib in Ba/F3 cells expressing

the variant mutants (Greulich et al., 2012). Effective abro-

gation of cell survival was observed for all three inhibitors;

however, the reversible inhibitor lapatinib was 5- to 10-fold

less effective than neratinib and afatinib. Cells expressing the

ectodomain-mutants were consistently more sensitive to these

inhibitors than cells expressing the kinase domain mutant,

A775_G776insYVMA.

Thus far, we focused our review on preclinical and clinical

studies evaluating the existing anti-ERBB2 agents on cancers har-

boring activating mutations of ERBB2 as single agents with or

without adjacent chemotherapy. However, the ERBB2 signaling

cascade plays a pivotal role in oncogenesis and obviously affects

a multitude of other key signaling nodes. Thus, combination of

different ERBB2-directed agents (antibody + TKI) or with other

targeted therapies (HSP90 inhibitors, MEK inhibitors, mTOR

inhibitors, etc.) present valid options to combat ERBB2-driven

oncogenesis.

Recent clinical data showed a significant overall survival ben-

efit of patients with heavily pretreated metastatic ERBB2-positive

breast cancer upon dual ERBB2 blockade through trastuzumab

and lapatinib (Blackwell et al., 2012). Further studies are war-

ranted to confirm the superiority of this cytotoxic agent-free

regiment in earlier clinical settings. Another interesting treatment

approach of synergistic efficacy was presented by Garcia-Garcia

et al. (2012). The authors analyzed five different cell lines resis-

tant to trastuzumab and lapatinib. The combination treatment

of lapatinib and INK-128, an mTOR inhibitor, induced increased

apoptosis in both in vitro and in vivo experiments (Garcia-Garcia

et al., 2012). Along the same line, a Phase I study of neratinib

and temsirolimus, an mTOR inhibitor, demonstrated encour-

aging antitumor activity in patients with ERBB2-overexpressing

NSCLCs and breast cancers (Gandhi et al., 2011).

Although activating mutations of ERBB2 were identified in var-

ious tumor types and several potential therapeutic options are at

hand, specific screening for these lesions has not been translated

into clinical routine yet.

MECHANISMS OF RESISTANCE

Despite the plethora of ERBB2 targeted compounds, we currently

lack a sound understanding why tumor shrinkage is short-lived

and only a relatively small percentage of patients benefit from

these therapies. Major mechanisms of primary and acquired resis-

tance to anti-ERBB therapeutics include (reviewed in Tortora,

2011): (1) alteration of the extracellular domain, including mis-

sense substitutions to impede epitope recognition, masking of epi-

topes, or expression of ectodomain-truncated ERBB2 fragments;

(2) second-site mutations in the RTK domain; (3) overexpres-

sion of alternative ERBB ligands or receptors to counteract for

receptor inhibition; (4) alternative signaling from other receptors

such as the insulin-like growth factor-1 receptor (IGF1R) or MET;

(5) aberrant signaling caused by downregulation (p27) or loss

(PTEN) of downstream controllers; and (6) aberrant activation

of secondary downstream growth and survival pathways, such as

Ras-Raf-MAPK, PI3K/Akt/mTOR.

Retrospective studies on tumors expressing truncated

p95HER2 fragments revealed that these tend to be resistant to any

current therapeutic antibody approach as the required epitopes
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are missing (Scaltriti et al., 2007; Sperinde et al., 2010). However,

two independent groups recently generated monoclonal antibod-

ies that specifically recognize 611-CTF (Parra-Palau et al., 2010;

Sperinde et al., 2010). Conceivably, this novel diagnostic tool

is of valuable clinical relevance because it allows discrimina-

tion of which patients will benefit from antibody-based therapies

and which will be resistant. As the studies performed by Scal-

triti et al. (2010) convincingly demonstrated that treatment with

lapatinib effectively inhibits p95HER2, improved treatment strat-

ification is available for patients harboring this particular activat-

ing ERBB2 mutation. Regardless, caution is still warranted since

experiments by Xia et al. (2011) revealed that chronic lapatinib

treatment is capable of inducing nuclear expression of truncated

ERBB2, thereby escaping further therapeutic effectiveness. Addi-

tionally, formation of nuclear lapatinib-induced p95HER2 was

blocked upon proteasome inhibition (Figure 2) (Xia et al., 2011).

It remains to be tested whether this phenomenon is also rel-

evant if: (1) full-length ERBB2 is targeted, or (2) any of the

irreversible TKIs employs a similar strategy to evade antitumor

control.

Analogous to a commonly observed event during TKI treat-

ment of EGFR-driven lung adenocarcinomas, lapatinib appli-

cation was shown to induce secondary mutations within the

ERRB2 kinase domain consequently leading to TKI resistance.

In vitro analyses identified three point mutations, L755S, L755P,

and T798M to confer resistance to lapatinib (Kancha et al., 2011).

Threonine 798 is the ERBB2 “gatekeeper” residue that is located

at the periphery of the nucleotide-binding site of ERBB2 kinase

(Aertgeerts et al., 2011), and regulates access to a deep hydropho-

bic pocket in the active site (Schindler et al., 2000). This event

is analogous to replacement of threonine 790 with methionine

(T790M) in erlotinib-resistant lung adenocarcinoma. The gate-

keeper mutation enhances the affinity of the oncogenic form of

the receptor for ATP, allowing continued proliferation in the pres-

ence of the drug (Yun et al., 2008). The potential of irreversible

EGFR/ERBB2 inhibitors to overcome drug resistance due to gate-

keeper mutations was recently demonstrated in vitro and in vivo

(Kobayashi et al., 2005; Engelman et al., 2007; Minami et al., 2007;

Li et al., 2008; Zhou et al., 2009).

CONCLUDING REMARKS

During the past decades, the ERBB2 signaling cascade gained sig-

nificant importance in the oncogenesis of many tumor types.

The discovery of primary activating mutations and the emer-

gence of acquired secondary mutations represent sophisticated

challenges for effective treatment approaches. Our next steps

in evaluating potential ERBB2-directed therapeutics clearly rely

on: adequate diagnostic properties for specific patient selection

FIGURE 2 | Mechanism of resistance upon continuous lapatinib

treatment. Depicted is a simplified schematic of lapatinib-induced resistance

toward current anti-ERBB2 therapeutics as identified by Xia et al. (2011).

Continuous inhibition of 611-CTF with lapatinib induces nuclear p95HER2L

expression (1). Trastuzumab and lapatinib are ineffective in targeting nuclear

p95HER2L, thereby failing to control oncogenic proliferation (2). As formation

of p95HER2L potentially depends on proteasomal processing, proteasome

inhibition effectively prevents p95HER2L emergence (3).
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and identification of tissue-specific mechanisms of resistance to

initiate well-designed clinical trials of combinational treatment

strategies.
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