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Abstract

Cellular senescence involves epigenetic alteration, e.g. loss of H3K27me3 in Ink4a-Arf locus. Using mouse embryonic
fibroblast (MEF), we here analyzed transcription and epigenetic alteration during Ras-induced senescence on genome-wide
scale by chromatin immunoprecipitation (ChIP)-sequencing and microarray. Bmp2 was the most activated secreted factor
with H3K4me3 gain and H3K27me3 loss, whereas H3K4me3 loss and de novo formation of H3K27me3 occurred inversely in
repression of nine genes, including two BMP-SMAD inhibitors Smad6 and Noggin. DNA methylation alteration unlikely
occurred. Ras-activated cells senesced with nuclear accumulation of phosphorylated SMAD1/5/8. Senescence was bypassed
in Ras-activated cells when Bmp2/Smad1 signal was blocked by Bmp2 knockdown, Smad6 induction, or Noggin induction.
Senescence was induced when recombinant BMP2 protein was added to Bmp2-knocked-down Ras-activated cells.
Downstream Bmp2-Smad1 target genes were then analyzed genome-wide by ChIP-sequencing using anti-Smad1 antibody
in MEF that was exposed to BMP2. Smad1 target sites were enriched nearby transcription start sites of genes, which
significantly correlated to upregulation by BMP2 stimulation. While Smad6 was one of Smad1 target genes to be
upregulated by BMP2 exposure, Smad6 repression in Ras-activated cells with increased enrichment of Ezh2 and gain of
H3K27me3 suggested epigenetic disruption of negative feedback by Polycomb. Among Smad1 target genes that were
upregulated in Ras-activated cells without increased repressive mark, Parvb was found to contribute to growth inhibition as
Parvb knockdown lead to escape from senescence. It was revealed through genome-wide analyses in this study that Bmp2-
Smad1 signal and its regulation by harmonized epigenomic alteration play an important role in Ras-induced senescence.
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Introduction

Cellular senescence was first described as the limited replicative

capacity of primary cells in culture [1]. Activated oncogenes can

induce premature form of cellular senescence, and cells fall into

irreversible arrest to block cellular proliferation [2,3]. In addition

to cell death programs such as apoptosis and autophagy,

oncogene-induced senescence is recognized as a potent barrier

against oncogenic transformation, suppressing unscheduled pro-

liferation of early neoplastic cells [4–7].

Replicative senescence and oncogene-induced senescence are

known to comprise activation of tumor suppressor pathways

including p16Ink4a-Rb and p19Arf (p14ARF in human)-p53

signaling cascades. Genetic and epigenetic inactivation of these

genes in cancer supported their crucial roles in senescence as

barriers to tumorigenesis [8,9]. Although the roles of RB and p53

signaling pathways in senescence are undisputed, it has become

clear that other factors are also involved. Expression of secreted

factors, or ‘‘senescence-messaging secretome’’, has been proposed

as an example of such mechanisms [10,11]. The induction of

senescence required several secreted factors including members of

Wnt, insulin, transforming growth factor-b, plasmin and interleu-

kin signaling cascades [11].

Epigenetic mechanism is also suggested to play important roles

in senescence. When human fibroblasts senesced, heterochromatic

regions condensed to form senescence-associated heterochromatic

foci, where regions with histone H3K9 trimethylation (H3K9me3)

gathered [12], and were recently shown to restrain DNA damage

response [13]. Expression of Jhdm1b, a demethylase specific for

H3K36me2, caused cell immortalization or leukemic transforma-

tion depending on its demethylase activity on p15Ink4b, and its

knock down resulted in cellular senescence [14,15]. INK4A and

ARF region in young cells was repressed by H3K27me3 imposed

by the Polycomb Group proteins, and the repressive mark was lost

during oncogene-induced senescence, resulting in expression of

p16 and p19; the loss of repressive mark was also detected when
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mouse embryonic fibroblast (MEF) underwent stress-induced

senescence around seven passages [16–19]. Jmjd3, a histone

demethylase for H3K27, was found to be essential in senescence,

and its knock down lead to escape from senescence sustaining

repression of p16 by H3K27me3 [20,21].

In the previous studies, we comprehensively analyzed aberrant

promoter DNA methylation in colorectal cancer and reported

three distinct DNA methylation epigenotypes [22,23]. Distinct

methylation epigenotypes significantly correlated to different

oncogene mutation statuses, suggesting that epigenotypes of

cancer might perhaps be requisite phenotype of aberrant

methylation to escape from oncogene-induced senescence by

inactivation of critical factors of senescence [23,24]. To gain

insight in phenotype of critical gene inactivation in oncogene-

mutation(+) cancer, we aim to clarify critical genes/signals/

phenomena in oncogene-induced senescence in normal cells in this

study.

Here we perform genome-wide analyses of epigenetic and gene

expression changes in Ras-indeced senescence using mouse

embryonic fibroblasts (Figure S1). We show that Bmp2/Smad1

signal is critical in Ras-induced senescence, and is regulated by

coordinated epigenomic alteration. We further examine down-

stream target genes of this critical signal on genome-wide scale,

and show that the epigenomic regulation of the signal involves

disruption of negative feedback loop, and that activated down-

stream targets actually include a gene to contribute to growth

arrest.

Results

Gene expression analysis
To induce cellular senescence, mouse embryonic fibroblasts

after two passages (MEFp2) was infected with retrovirus of

oncogenic Ras (RasV12) with N-terminal FLAG tag and cultured

through day 10 (Figure S2A). RasV12-infected cells (RasV12 cells)

showed significant increase in number of SA-bgal(+) cells,

compared to MEFp2, MEF passed three more times without

infection (MEFp5), mock-infected cells (Mock cells), and wild type

Ras (RasG12)-infected cells (Figure 1A and Figure S2B).

Global gene expression analysis was performed using expression

array. In RasV12 cells on day 10, 822 genes were upreglated and

735 genes downregulated, by .5-fold compared to MEFp2

(Tables S1, S2). Gene annotation enrichment analysis suggested

that genes related to secreted protein (P= 1.8610219), extracellu-

lar region (P = 1.2610221), and differentiation/development

(P= 3.8610210), e.g. Bmp2 and Igfbp3, were upregulated, support-

ing the importance of secreted factor expression in senescence.

Genes related to cell cycle (P = 7.2610222) such as Cdc6 and Mcm5

were enriched in downregulated genes, indicating growth arrest.

Also genes related to secreted protein (P= 7.9610218) and

extracellular region (P= 9.2610214) such as Bmp4 and Tgfb2 were

enriched in downregulated genes, suggesting that dynamic control

of secretome by activation and repression of secreted factors

occurred during senescence.

Epigenomic alteration analysis
To analyze epigenomic gene regulation during Ras-induced

senescence, we selected H3K4me3 as an active mark and

H3K27me3 as a repressive mark, and mapped them by

Chromatin immunoprecipitation (ChIP)-sequencing. As reported,

H3K27me3 mark at p16Ink4a-p19Arf locus in MEFp2 was markedly

lost in RasV12 cells (Figure 1A). ChIP-sequencing of H3K4me3

showed concurrent gain of the active mark around p16

transcription start site (TSS), which reflected increase of p16

expression in RasV12 (Figure 1B). By quantitative ChIP-PCR,

significant gain of H3K4me3 and loss of H3K27me3 were

validated in RasV12 cells, compared to MEFp2 (Figure 1C). Gain

of H3K4me3 and loss of H3K27me3 were also detected at

intermediate level in Mock and RasG12 cells (Figure 1C).

Expression of p16 was also partially increased in Mock and

RasG12 cells, at the similar level to MEFp5 (Figure 1B). These

indicated that p16 expression could be induced partially by gain of

H3K4me3 and H3K27me3 during passages, which was in

agreement with the previous report of gradual H3K27me3 loss

in stress-induced senescence during 5–7 passages [16,18], but

more marked alteration occurred at this locus in Ras-induced

senescence. Enrichment of Ezh2, a member of the Polycomb

Group proteins, was also analyzed by ChIP-PCR, and it was

significantly decreased around p16 TSS in RasV12 cells compared

to MEFp2 (Figure 1D).

When analyzing distribution of 36-bp reads mapped around

TSS of 20,232 genes, the mapped reads were enriched within

62 kb of TSS, mainly 61 kb of TSS (Figure S3A), for both

H3K4me3 and H3K27me3. We counted mapped reads within a

window of genomic region, so that the number of mapped reads

per million reads within a window is regarded as epigenetic status

of the center position of the window. Within 62 kb from TSS of

each gene, the maximum number of mapped reads per million

reads in a window size of 300 bp (H3K4me3) or 500 bp

(H3K27me3) was regarded as the epigenetic status of each gene.

A wider window was necessary for H3K27me3 because distribu-

tion of H3K27me3 was rather wide than H3K4me3 (Figure 1A

and Figure S3A). The number of genes with repressive

H3K27me3 mark was generally decreased in RasV12 cells (Figure

S3B), in agreement of the previous reports [20,21] that expression

of Jmjd3 was increased during senescence, whereas expression of

Ezh2 was decreased (Figure S4). It was expected that genes

activated by losing H3K27me3 might exist other than p16 and

p19, because of the decrease of genes with H3K27me3 mark in

RasV12 cells.

Author Summary

To avoid becoming cancer cells, cells have a barrier system
to block cellular proliferation by falling into irreversible
growth arrest, so-called cellular senescence. For future
strategy of cancer treatment, it is important to understand
how cancer occurs, and investigation of the underlying
mechanism in senescence can lead to clarification of the
carcinogenesis mechanism. Epigenetic mechanism includ-
ing DNA methylation and histone modification may be
important to regulate gene expressions properly in
senescence. Here, taking advantage of recent technical
and methodological advance of genome-wide analyses,
we examine epigenome and gene expression alteration in
senescence induced by Ras oncogene. We identify that
Bmp2-Smad1 signal is critical. We further examine
downstream target genes of this critical signal on a
genome-wide scale. We show dynamic and coordinated
H3K27me3 alteration, e.g. activation of Bmp2 by loss of
H3K27me3, repression of the signal inhibitors and the
negative feedback loop by gain of H3K27me3, and
selective activation of downstream target genes that
may contribute to growth arrest. Our findings are helpful
in understanding the importance of epigenetic regulation
and a critical signal in the physiological barrier system
against oncogenic transformation and the importance of
disruption of BMP-SMAD signal in cancer, and they may
provide an idea how cancer with Ras mutation occurs.

Bmp2-Smad1 Signal in Senescence
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Integrated analysis of epigenomic alteration and
expression
Among 20,232 genes with epigenomic alteration analyzed,

16,793 genes were also analyzed for expression on array (Figure

S5). For epigenetic status of H3K4me3, 9,164 genes in MEFp2

and 8,841 genes in RasV12 showed .4 reads per million reads

around TSS, and regarded as H3K4me3(+). Similarly, 7,140 and

7,354 genes respectively with ,3 reads per million reads were

regarded as H3K4me3(-). Markedly higher expression levels of

H3K4me3(+) genes than H3K4me3(-) genes were confirmed by

comparing the mean of expression levels (Figure S5A). For

H3K27me3, 2,612 and 2,370 genes with .1.5 reads per million

reads around TSS were regarded as H3K27me3(+), and 13,205

and 12,841 genes with ,1 were as H3K27me3(-) in this study.

H3K27me3(+) genes were markedly repressed than H3K27me3(-)

genes (Figure S5B).

Among 284 genes losing H3K27me3 in RasV12 cells, 30 genes

losing H3K27me3 and gaining H3K4me3 simultaneously, like

p16, showed significant enrichment in upregulated genes among

the 284 genes (P = 0.000007, Kolmogorov-Smirnov test,

Figure 2A). Among the 30 genes (listed in Table S3), Bmp2, a

secreted factor for BMP/SMAD pathway, was found to be the

most upregulated secreted factor and activated more than p16
(Figure 2A). Interestingly, 110 genes modified bivalently in MEFp2

showed loss of H3K27me3 and sustained H3K4me3 mark in

RasV12 cells, but did not show significant enrichment in

upregulated genes (P = 0.9, Figure 2A).

Figure 1. Epigenomic alteration of Ink4a-Arf locus. (A) H3K4me3 and H3K27me3 mapped by ChIP-sequencing. Y-axis, number of mapped
reads per million reads, within window size of 300 bp for H3K4me3 and 500 bp for H3K27me3. 1, 2, 3; regions for ChIP-PCR. Right panels showed
SA-bgal(-) in MEFp2 and SA-bgal(+) in RasV12 cells. (B) Real-time RT-PCR for p16, normalized to Ppib. Fold expression levels compared to MEFp2
were shown. p16 expression was partially increased in MEFp5, Mock and RasG12 due to stress-induced senescence during passages, but markedly
increased in RasV12 cells. (C) Real-time ChIP-PCR for H3K4me3 and H3K27me3. In each sample of MEFp2, Mock cells, RasG12 cells and RasV12 cells,
relative enrichment compared to Actb was shown. Actb, a control region for H3K4me3. Gcgr and Dkk1, control regions for H3K27me3. Gain of
H3K4me3 and loss of H3K27me3 around p16 TSS were partially detected in Mock and RasG12 cells indicating partial epigenetic alteration during
passages, but markedly detected in RasV12 cells. (D) Real-time ChIP-PCR for Ezh2. Ezh2 enrichment was significantly decreased around p16 TSS
(*P,0.05, t-test).
doi:10.1371/journal.pgen.1002359.g001

Bmp2-Smad1 Signal in Senescence
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Not only genes with H3K27me3 loss, but also there were as

many as 239 genes showing H3K27me3 gain in RasV12 cells.

Nine genes gaining H3K27me3 and losing H3K4me3 simulta-

neously showed significant enrichment in downregulated genes

(P = 0.0004, Figure 2B. Genes are listed in Table S4). Very

interestingly, two of the nine genes were Smad6 and Nog, inhibitors

for BMP-SMAD pathway [25]. The majority, 189 of the 239

genes, had neither modification in MEFp2 with very low

expression levels. These genes acquired de novo H3K27me3 mark

in RasV12 cells, but did not show any more downregulation

(P = 1, Figure 2B).

Upregulation of Bmp2 in senescence
Around TSS of Bmp2, a secreted factor for BMP-SMAD

pathway, loss of H3K27me3and gain of H3K4me3 were validated

by quantitative ChIP-PCR (Figure 3A, 3B). ChIP-PCR also

showed that Ezh2 enrichment was significantly decreased around

Bmp2 in RasV12 cells (Figure S6).

ChIP-PCR showed that H3K4me3 and H3K27me3 levels in

MEFp2 were sustained in Mock and RasG12, but specifically

altered in RasV12 cells (Figure 3B). Quantitative RT-PCR showed

very low level of Bmp2 expression in MEFp2, Mock cells and

RasG12 cells, but marked increase to 91.6-fold in RasV12 cells

(Figure 3C). Bmp2 activation thus occurred specifically in Ras-

induced senescence, different from p16 that partially showed

increased expression and histone methylation alteration during

passages (Figure 1C).

Retrovirus to express shRNA against Bmp2 (shBmp2) was

infected together with RasV12 infection, to knock down Bmp2 to

0.04–0.08 fold on days 3, 7, and 10 (Figure 3D). Bmp2-knocked-

down RasV12 cells escaped from senescence with decreased

number of SA-bgal(+) cells compared to RasV12 cells. While

Smad1/5/8 is known to serve principally as substrates for BMP

receptors [26], western blotting analysis revealed phosphorylation

of Smad1/5/8 in RasV12 cells (Figure 3E). Decrease of Smad1/

5/8 phosphorylation level was also shown in Bmp2-knocked-down

RasV12 cells (Figure 3E), and continual cell growth faster than

Mock cells (Figure 3F). To confirm that this escape from

senescence was specifically due to Bmp2 knockdown, Bmp2-

knocked-down RasV12 cells were cultured with recombinant

Figure 2. Genes with H3K27me3 alteration. (A) 284 Genes losing H3K27me3 mark, i.e. from.1.5 in MEFp2 to,1.0 in RasV12 cells (K27 column),
were sorted by the fold expression change between MEFp2 and mean of RasV12 cells day3, 7, and 10 (Expression column). Upregulated genes were
sorted upward (red). 30 genes losing H3K27me3 and gaining H3K4me3 simultaneously showed significant enrichment upward (Change K27RK4
column, {P= 0.000007, Kolmogorov-Smirnov test), e.g. p16. Bmp2 was found to be the most activated secreted factor among the 30 genes, and
activated more than p16. Genes are listed in Table S3. 110 genes with bivalent modification in MEFp2 lost H3K27me3 and sustained H3K4me3 mark in
RasV12 cells (BiRK4), but did not show significant enrichment upward (P = 0.9). (B) 239 genes gaining H3K27me3 mark, i.e. from ,1.0 in MEFp2 to
,1.5 in RasV12 cells (K27 column). 189 genes had neither modification in MEFp2 (K27 column and K4 column), generally showed very low expression,
and did not show significant enrichment downward (P = 1, (-)RK27). However, 9 genes gained H3K27me3 and lost H3K4me3 simultaneously, showed
significant enrichment downward (K4RK27, *P = 0.0004), and included Smad6 and Nog. Genes were listed in Table S4.
doi:10.1371/journal.pgen.1002359.g002

Bmp2-Smad1 Signal in Senescence
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Figure 3. Bmp2 upregulation in senescence. (A) Maps around TSS of Bmp2 showing gain of H3K4me3 and loss of H3K27me3. 1, 2; regions for
ChIP-PCR. (B) Real-time ChIP-PCR showing H3K4me3 gain and H3K27me3 loss specifically in RasV12 cells. There was no alteration in Mock cells and
RasG12 cells, thus no alteration during passages. (C) Real-time RT-PCR analysis for Bmp2, showing upregulation to 92-fold specifically in RasV12 cells.
There was no increase in Mock cells and RasG12 cells, thus no alteration during passages. (D) Real-time RT-PCR showing knock-down of Bmp2 to 0.05–

Bmp2-Smad1 Signal in Senescence
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BMP2 protein (rBMP2, R&D systems #355-BM) at 0, 20 and

200 ng/mL in culture medium with 10% serum. The cells showed

increased number of SA-bgal(+) cells in dose-dependent manner,

even to the level of RasV12 cells when rBMP2 was at 200 ng/mL

(Figure 3G, 3H). The level of Smad1/5/8 phosphorylation was

increased when rBMP was added (Figure 3I), and growth curve

showed growth arrest similar to senescent RasV12 cells (Figure 3F).

These results indicated that Bmp2 upregulation plays an important

role in Ras-induced senescence. There was no increase of SA-

bgal(+) cells when Mock cells or MEF cells without infection were

exposed to rBMP2 at 200 ng/mL, indicating that increase of

BMP2 alone is not enough to induce cellular senescence

(Figure 3G).

Repression of Smad6 in senescence
As for Smad6, a specific inhibitor for BMP-SMAD pathway, gain

of H3K27me3 and loss of H3K4me3 in RasV12 cells were found

and validated by quantitative ChIP-PCR (Figure 4A, 4B).

H3K27me3 and H3K4me3 levels in MEFp2 were sustained in

Mock and RasG12 cells, and altered specifically in RasV12 cells.

This indicated that these alterations of histone methylation were

not detected in stress-induced senescence during passages, but

specifically occurred in Ras-induced senescence, like Bmp2.
Markedly decreased expression of Smad6 to 0.05-fold specifically

in RasV12 cells was also validated by quantitative RT-PCR, while

there was no repression of Smad6 during passages (Figure 4C).

Ezh2 enrichment was also analyzed by ChIP-PCR (Figure 4D).

This histone methyltransferase for H3K27 was significantly

increased around TSS of Smad6 in RasV12 cells. It was indicated

that Ezh2 was recruited to this de novo H3K27 trimethylation site,

and that repression mechanism by de novo H3K27me3 was still

active although Ezh2 expression level itself was downregulated

during senescence, and Jmjd3 expression level was upregulated

(Figure S4A).

Smad6 with N-terminal Myc tag was introduced to MEF by

retroviral infection together with RasV12 virus, and their

simultaneous expression was confirmed by cellular immunofluo-

rescence (Figure 4E and Figure S7). Western blotting analysis and

cellular immunofluorescence showed decrease of Smad1/5/8

phosphorylation in Smad6-introduced RasV12 cells compared to

RasV12 cells (Figure 4F, 4G). Smad6-introduced RasV12 cells

showed decreased number of SA-bgal(+) cells compared to

RasV12 cells (Figure 4H and Figure S8) and showed continual

cell growth faster than Mock cells or Smad6-introduced Mock cells

(Figure 4I). These data indicated that Smad6 repression was

important in Ras-induced senescence.

Repression of Nog in senescence
Nog, another inhibitor for BMP-SMAD pathway, was repressed

to 0.06-fold in RasV12 cells also by losing H3K4me3 and gaining

H3K27me3 (Figure 5A, 5B). Introduction of Nog cDNA by

retrovirus infection together with RasV12 resulted in its

overexpression and escape from senescence (Figure 5B–5D).

To clarify whether Nog at the physiological expression level

could inhibit cellular senescence, Nog-transgenic (Nog-Tg) mice

under Krt19 promoter [27] was used next, since the transgene was

expected not to be modified with de novo H3K27me3. Krt19 was

expressed in MEFp2 at much higher level compared to brain and

testis, confirming that Krt19 promoter is active in MEF (Figure S9).

Nog-Tg female mouse was crossed with C57B6, to establish and

pool Tg(-) and Tg(+) MEFs from embryos of the same mother.

Tg(+) MEF showed Nog expression at similar level to wild type

MEFp2 and Tg(-) MEF (Figure 5E). While Tg(-) MEF showed Nog

repression by RasV12 infection similarly to wild type MEF, Tg(+)

MEF did not show Nog repression by RasV12 infection and

showed continual growth faster than Tg(-) MEF (Figure 5E–5G).

These indicated that Nog repression was also important in Ras-

induced senescence.

No detection of DNA methylation alteration
It was reported that oncogenic Ras induces DNA methylation-

mediated epigenetic inactivation in NIH3T3 cells [28], and that

EZH2 directly controls DNA methylation [29,30]. We therefore

performed bisulfite sequencing to analyze DNA methylation

statuses of 59 regions of Smad6 and Bmp2 where increase or

decrease of Ezh2 was confirmed (Figure 4D, Figure S6). There was

no methylation alteration of these regions in RasV12 cells

compared to MEFp2 (Figure 6A). Also, Dnmt1 expression level

was not altered during Ras-induced senescence (Figure 6B). To

gain insight whether oncogenic Ras induces DNA methylation-

mediated inactivation in MEF on genome-wide scale, we

performed methylated DNA immunoprecipitation (MeDIP)-seq

in MEFp2 and RasV12 cells (Figure 6C, 6D). Although MeDIP is

reported to be not accurate to detect DNA methylation in low-

CpG regions, it is powerful screening method to detect candidate

methylation regions in high-CpG regions, e.g. promoter CpG

islands [22,23,31]. Increase of methylation was detected only in

three candidate genes, and the increase was considered as a noise

in genome-wide analysis because the increase was not validated by

bisulfite sequencing (Figure 6D, 6E). Bisulfite sequencing was

performed for five more genes which showed slight increase of

methylation in MeDIP-seq, but there was no methylation

alteration in RasV12 cells compared to MEFp2 (Figure 6F).

Ras-induced senescence of human fibroblast IMR90
Human fibroblast IMR90 was infected with RasV12 retrovirus

(RasV12-IMR90 cells). It was confirmed by SA-bgal staining on

day 7 that cells fell into premature senescence (Figure S10A). Real-

time RT-PCR showed that BMP2 expression was markedly

increased to 145-fold in RasV12-IMR90 cells, while SMAD6 and

NOG expressions were decreased to 0.32-fold and 0.15-fold,

respectively (Figure S10B). Nog was introduced in IMR90 by

0.08 fold by shRNA on days 3, 7, 10. Closed square, infected with RasV12 cells. Vertical-striped, infected with RasV12 and shBmp2. (E) Western blot
analysis showing increased level of Smad1/5/8 phosphorylation in RasV12 cells, and decrease in Bmp2-knocked-down RasV12 cells. RasV12 with N-
terminal FLAG was detected using anti-FLAG antibody. Numbers under bands of phosphorylated Smad1/5/8 and pan-Smad1 showed densities
relative to the band for RasV12 cells (left panel), and the ratio of densities for phosphorylated Smad1/5/8 to pan-Smad1 was decreased to 0.38-fold in
Bmp2-knocked-down RasV12 cells (right panel). (F) Growth curve. Bmp2-knocked-down RasV12 cells (red solid) showed continual growth faster than
Mock cells (black dotted). Growth of Bmp2-knocked-down Mock cells (co-infection of shBmp2 and Mock retroviruses, data not shown) was similar to
Mock cells. When cultured with rBMP2 (blue solid), the cells senesced like RasV12 cells (red dotted). (G) The number of SA-bgal(+) cells (%). When 0, 20,
and 200 ng/mL of rBMP2 protein (R&D systems #355-BM) were added to Bmp2-knocked-down RasV12 cells in culture medium with 10% serum, the
number of SA-bgal(+) cells was increased in dose-dependent manner. The number of SA-bgal(+) cells was not increased when Mock cells or MEF
without infection was exposed to 200 ng/mL of rBMP2 protein. (H) SA-bgal staining. Bmp2-knocked-down RasV12 cells showed decreased number of
SA-bgal(+) cells compared to RasV12 cells. When cultured with rBMP2 protein, the number of SA-bgal(+) cells was increased (representative result at
200 ng/mL rBMP2). (I) Western blot analysis showing increased level of Smad1/5/8 phosphorylation when exposed to 200 ng/mL of rBMP2.
doi:10.1371/journal.pgen.1002359.g003

Bmp2-Smad1 Signal in Senescence
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Figure 4. Smad6 repression in senescence. (A) Loss of H3K4me3 and gain of H3K27me3 around TSS of Smad6, shown by ChIP-sequencing. 1, 2, 3;
regions for ChIP-PCR. (B) Real-time ChIP-PCR showing H3K4me3 loss and H3K27me3 gain specifically in RasV12 cells. There was no alteration in Mock
cells and RasG12 cells, thus no alteration during passages. (C) Real-time RT-PCR analysis of Smad6, showing repression to 0.05-fold specifically in
RasV12 cells. There was no repression in Mock cells and RasG12 cells, thus no alteration during passages. (D) Real-time ChIP-PCR for Ezh2 showing
increased enrichment of Ezh2 around Smad6 TSS in RasV12 (*P,0.05). (E) Cellular immunofuorescence for RasV12 and Smad6. RasV12 with N-terminal
FLAG and Smad6 with N-terminal Myc were detected using anti-FLAG and anti-Myc antibodies. Simultaneous expression of RasV12 and Smad6
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retroviral infection with RasV12, and Nog-induced RasV12-

IMR90 cells showed continual cellular growth (Figure S10C),

suggesting that BMP2-SMAD1 is also an effector program in

human fibroblasts.

Downstream target genes of Bmp2-Smad1 signal
analyzed by ChIP-sequencing
Since Bmp2 upregulation, Smad6 repression, and Nog repression

were shown to contribute to Ras-induced senescence, downstream

target genes of Bmp2-Smad1 signal are further analyzed on

genome-wide scale.

Smad1 binding sites in MEF were analyzed by exposing MEF to

rBMP and ChIP-sequencing using anti-Smad1 antibody (Figure 7A

and Figure S11). Smad1 mostly bound to gene regions; 1,103

(75%) out of 1,479 Smad1 binding sites were located within 10 kb

from 20,232 RefSeq genes, and 818 sites (55%) were within 5 kb

from their TSS. Using GADEM (http://www.niehs.nih.gov/

research/resources/software/gadem/) [32], GGGGCGGGGC

was extracted as highly enriched motif within Smad1 binding

region in both whole genomic and TSS regions (Figure 6B, Figure

S12). Using DME (http://rulai.cshl.edu/dme/) [33], it was

confirmed that very similar motifs e.g. GGGCGGGGC

proteins in Smad6-introduced RasV12 cells was confirmed (See also Figure S7). (F) Western blot analysis showing increased level of Smad1/5/8
phosphorylation in RasV12, and decrease in Smad6-introduced RasV12 cells. Numbers under bands of phosphorylated Smad1/5/8 and pan-Smad1
showed densities relative to the band for RasV12 cells (left panel), and the ratio of densities for phosphorylated Smad1/5/8 to pan-Smad1 was
decreased to 0.25-fold in Smad6-introduced RasV12 cells (right panel). (G) Cellular immunofuorescence of phosphorylated Smad1/5/8. Nuclear
accumulation of phosphorylated Smad1/5/8 was detected in RasV12 cells, but not in Smad6-introduced RasV12 cells. (H) SA-b-gal staining. The
number of SA-b-gal(+) cells were significantly decreased in Smad6-introduced RasV12 cells compared with RasV12 (See also Figure S8). (I) Growth
curve. Smad6-introduced RasV12 cells showed continual growth faster than Mock cells or Smad6-introduced mock cells.
doi:10.1371/journal.pgen.1002359.g004

Figure 5. Nog repression in senescence. (A) Maps around TSS of Nog, showing increase of H3K4me3 and decrease of H3K27me3. (B) Real-time RT-
PCR analysis of Nog, showing repression to 0.06-fold in RasV12 cells, and overexpression to 159-fold in Nog-introduced RasV12 cells. (C) SA-bgal
staining. The number of SA-bgal(+) cells were decreased in Nog-introduced RasV12 cells compared with RasV12 cells. (D) Growth curve. Nog-
introduced RasV12 cells showed continual growth. (E) Real-time RT-PCR analysis. WT, wild-type C57/B6 MEF. Tg(-), Krt19-Nog transgene (-). Tg(+),
Krt19-Nog transgene (+). Nog was repressed to 0.09–0.15 fold by RasV12 infection in Tg(-) MEF, similar to wild type MEF. Nog expression in Tg(+) MEF
was detected at physiological level, and was not repressed by RasV12 infection. The increase of Nog expression from day 3 to day 10 might be due to
selection. (F) The number of SA-bgal(+) cells were less in Tg(+) MEF than Tg(-) MEF after RasV12 infection. (G) Tg(+) MEF showed faster growth
compared to Tg(-) MEF, after Rasv12 infection.
doi:10.1371/journal.pgen.1002359.g005
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Figure 6. No detection of DNA methylation alteration. (A) Bisulfite sequencing of 59 regions of Smad6 and Bmp2. Positions were shown with
TSS regarded as +1. Open circle, unmethylated CpG site. Closed circle, methylated CpG site. Nine to 10 clones were analyzed in each region, and
aligned vertically; 10 – 36 CpG sites within the analyzed regions were aligned horizontally. Since H3K27me3 mark in Smad6 was stretched towards
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(Figure 7B) or GGGGCGGGGM (Figure S13) were enriched.

This was in good agreement with the canonical SMAD1-bound

GC-rich elements [26,34,35] and the previous report that the

sequence GGCGGGGC was enriched within Smad1/5 binding

regions in ES cells and pulled down SMAD proteins [36]. Genes

with Smad1 binding site at TSS regions were significantly

enriched in active genes in MEF, especially in genes upregulated

by rBMP exposure (Figure 7C), suggesting that Smad1 binding

correlates to gene upregulation. Smad1 target genes upregulated

most by rBMP exposure included Smad6, which was upregulated

by 4.5-fold in MEF (Figure 7D, 7E). These indicated that Bmp2/

Smad1 signal in MEF could be controlled by negative feedback

through Smad1 regulation on Smad6.

Smad1 target genes repressed or activated during
senescence
However, Smad6 was repressed in RasV12 cells by H3K27me3,

so when Bmp2-knocked-down RasV12 cells was exposed to

rBMP2, Smad6 level was still suppressed lower than the level in

MEFp2 (Figure 7E). Smad1 target genes repressed in RasV12 cells

were not limited to Smad6. H3K27me3 gain during Ras-induced

senescence was detected in 50 Smad1 target genes, which were

enriched in genes repressed in RasV12 cells, e.g. Atoh8. Atoh8 was

highly upregulated in BMP2 exposure, but repressed in RasV12

cells with decrease of H3K4me3 from 8.7 to 1.8 and increase of

H3K27me3 mark from 1.0 to 1.8 (Figure 7C, Figure 8A and 8B.

Gene list is available in Table S5). It was reported that Atoh8 was,

like Id1, suggested to be a direct target of BMP-SMAD signal [37].

On the contrary, Smad1 target genes without increased

repressive mark were shown to keep upregulation. Among 838

Smad1 target genes, 581 with no increase of H3K27me3, or 156

showing decrease of H3K27me3, were significantly enriched in

genes upregulated in RasV12 cells (P = 0.01 and P=0.004,

respectively, Figure 8A). If Bmp2/Smad1 signal is critical in

senescence, the most upregulated target genes are expected to

include genes with growth suppressor function. To choose such

candidate genes, the most upregulated target genes were screened

using promoter methylation data of our previous methylated

DNA-immunoprecipitation (MeDIP)-chip analyses of human

cancer cells [22,23] (Table S6), since such genes may possibly be

frequently inactivated in human cancer. The most upregulated

targets then included Parvb, which showed promoter methylation

in human cancer cell lines HCT116 and DLD1 (Table S6). When

MEF senesced, Parvb showed increase of H3K4me3 from 8.6 to

16.8, and decrease of H3K27me3 from 1.0 to 0.6 (Figure 8B).

Real-time RT-PCR validated increase of Parvb expression in

RasV12 cells, and also when exposed to rBMP2 (Figure 8C).

When Parvb was knocked down to 0.05-fold by shRNA, SA-bgal(+)

cells were partially decreased and cells showed continual growth

(Figure 8D and Figure S14). Western blot analysis showed

decrease of Akt phosphorylation in exposure to a growth factor

or serum when Parvb with C-terminal V5 tag was introduced in

MEF (Figure 8E).

Discussion

In this study, we examined H3K4me3 and H3K27me3 marks for

genome-wide analysis of epigenomic changes, revealing that

activation of Bmp2-Smad1 signal is important in Ras-induced

senescence and it is regulated by dynamic epigenomic alteration in

coordinated manner. Different from p16, H3K4me3 and

H3K27me3 marks on Bmp2 was not altered during passage in cell

culture, but specifically altered in RasV12 cells to induce its marked

upregulation, leading to Smad1/5/8 phosphorylation and cellular

senescence. Decrease of Ezh2 and increase of Jmjd3 were detected in

RasV12 cells at similar levels to MEFp5, Mock cells and RasG12

cells. This may contribute to partial increase of p16 expression in

MEFp5, Mock cells and RasG12 cells, and partial decrease of

H3M27me3 mark on p16 in stress-induced senescence during

passages as reported [16,18]. However, the alterations on p16 were

more markedly detected in RasV12 cells, and the alterations on

Bmp2 and Smad6 were specifically detected in Ras-induced

senescence and did not occur during passages. It is noteworthy

that de novo formation of H3K27me3 occurs on Smad6 in RasV12

cells in spite of general decrease of Ezh2 and increase of Jmjd3.

The mechanism how these epigenetic regulations are pro-

grammed is largely unknown, but one possible answer might be

non-coding RNA [38,39]. PRC2 was reported to be recruited in

trans to its target gene by virtue of its association with HOTAIR, a

2.2 kb non-coding RNA in the HOXC locus [40]. Oncogenic Ras

inhibited expression of ANRIL (antisense non-coding RNA in the

INK4 locus); ANRIL showed binding to CBX7 within PRC1 and

SUZ12 in PRC2, and was important in repressing the protein-

coding genes of INK4b/ARF/INK4a locus in cis to regulate

senescence [41,42]. Ezh2 recruitment was increased in Smad6,

and decreased in Bmp2 and p16 (Figure 1D, Figure 4D, Figure S6).

It would be interesting to analyze whether any non-coding RNAs

recruit PRC to Smad6 and Bmp2 in cis or trans, and their expression

alterations contribute to epigenetic alterations of these genes

during Ras-induced senescence.

Gene repressions by other epigenetic mechanism than Poly-

comb, such as H3K9 methylation, would be interesting to be

analyzed next. Human fibroblasts in senescence are reported to

suppress DNA damage response by forming heterochromatic foci,

where regions with methylated H3K9 gathered [12]. Amplifica-

tion of SETDB1, a methyltransferase for H3K9, was recently

reported to play an accelerating role in melanoma onset [13],

while knockout of Suv39h1, another histone methyltransferase for

H3K9, caused escape from senescence of lymphocytes [43],

suggesting necessity of adequate control of H3K9 methylation.

Genome-wide analyses of methylated H3K9 and other epige-

nomic marks as well would be helpful to obtain the whole picture

of epigenomic alteration and its importance in senescence.

exon 1 and intron 1 (Figure 3A), two regions (a and b) were analyzed for Smad6. There was no DNA methylation alteration in Smad6 and Bmp2. (B)
Real-time PCR for Dnmt1. Dnmt1 expression level was not altered in Ras-induced senescence, or during passages. (C) Validation of enrichment of
methylated DNA in MeDIP. MeDIP-PCR was performed for 59 regions of Nnat and p16 (region 1 in Figure 1A), and fold enrichment relative to p16 was
shown. Nnat is an imprinted gene and a positive control for DNA methylation(+) region, and enrichment of methylated DNA in MeDIP was validated.
(D) Analysis of MeDIP-seq. When analyzing 61 kb of TSS of 20,232 genes, only 3 genes showed increase of MeDIP status from ,2 reads per million
reads in MEFp2 to .4 reads per million reads in RasV12 cells. (E) Validation of MeDIP-seq result. Among the three candidate methylated genes, Adcy4
and Sdpr were chosen for validation by bisulfite sequencing. The methylation statuses of these genes, however, were not altered in Ras-induced
senescence. (F) Bisulfite sequencing for 59 regions of other genes. Among genes showing slight increase of MeDIP status, bisulfite sequencing was
performed for five chosen genes: Sfrp1 (from 0.7 reads in MEFp2 to 1.6 reads in RasV12 cells), Glt25d2 (from 0.9 to 2.5), Itga11 (0.6 to 2.7), Shisa2 (0.6 to
2.0), and Gypc (0.8 to 1.9). Sfrp1, Glt25d2, and Itga11 were representatively shown. These five genes were unmethylated in both MEFp2 and RasV12
cells.
doi:10.1371/journal.pgen.1002359.g006
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As for DNA methylation, it was reported that oncogenic Ras

induces DNA methylation-mediated epigenetic inactivation in

NIH3T3 cells and that 28 responsible genes including DNMT1

are required for the methylation [28]. DNA methylation statuses

at 59 regions of Smad6 and Bmp2 were not altered, however,

indicating that expression changes of these genes during

senescence were not due to DNA methylation. Dnmt1 level was

not altered in RasV12 cells, either. Increase of methylation was

detected only in three candidate genes by MeDIP-seq analysis, and

the increase was considered as a noise in genome-wide analysis

because the increase was not validated by bisulfite sequencing.

Five more genes were chosen for bisulfite sequencing, because

Sfrp1 was reported to be methylated by oncogenic Ras in

NIH3T3[28], and four other genes were chosen randomly from

genes with slight increase of methylation in MeDIP-seq. There was

no methylation alteration in RasV12 cells compared to MEFp2,

either. Although MeDIP is not accurate to detect DNA

methylation in low-CpG regions [22,31], it was suggested that

DNA methylation unlikely occurs in Ras-induced senescence, at

least high-CpG regions e.g. promoter CpG islands. The

discrepancy between the previous report of NIH3T3 and our

MEF result may be because MEF falls into cellular arrest by

oncogenic stress and there might be no time enough to induce

DNA methylation alteration. In NIH3T3, cells transform by

Figure 7. Smad1 targets in MEF, analyzed by ChIP-sequencing. (A) Among 1,479 Smad1 binding sites identified, 1,103 sites (75%, blue and
orange) were located within 10 kb from 20,232 RefSeq genes, and 818 sites (55%, blue) were within 5 kb from their TSS. (B) GGGGCGGGGC was
obtained as an enriched motif by GADEM [32], in Smad1 binding region within both whole genomic (All, ln(E-value) =2279.2) and TSS regions (TSS,
ln(E-value) =2115.8). Very similar motifs were obtained by DME [33]. (See also Figures S9 and S10) (C) Correlation of Smad1 binding to gene
upregulation. Left, expression levels in MEF at 0–24 hours after rBMP2 exposure. Genes were sorted by fold-expression level between 0 h and the
mean of 3 h and 6 h. Right, 838 genes possessing Smad1 binding site in TSS region (black bars). Upper panel, genes with maximum GeneChip score
during 24 h .25 (i.e. active genes). Lower panel, genes with maximum GeneChip score ,25. Smad1 binding was significantly enriched in the upper
panel of active genes ({P= 2610257, Fisher’s exact test), especially upward within the upper panel (thus genes upregulated by rBMP exposure,
*P = 2610211, Kolmogorov-Smirnov test). Most upregulted genes included Atoh8, Smad6, Parvb (red, Smad1 target), and Nog (black, non-Smad1-
target). (D) Smad1 binding site around Smad6 TSS. (E) Real-time RT-PCR showing Smad6 upregulation in MEF by rBMP2 exposure. In Bmp2-knocked-
down RasV12 cells, Smad6 was suppressed lower than the level in MEFp2 even when exposed to rBMP2.
doi:10.1371/journal.pgen.1002359.g007

Bmp2-Smad1 Signal in Senescence

PLoS Genetics | www.plosgenetics.org 11 November 2011 | Volume 7 | Issue 11 | e1002359



Figure 8. Smad1 target genes repressed and activated in senescence. (A) Repression of Smad1 target genes by H3K27me3. 838 Smad1
target genes in MEF were sorted by fold expression change between MEFp2 and mean of RasV12 day3, 7, and 10 (Expression column). 50 genes
showed increase of H3K27me3 reads in RasV12 by 0.4 or more (qcolumn), and were significantly enriched downward (*P = 0.004, Kolmogorov-
Smirnov test), i.e. repressed. Genes were listed in Table S5. 581 genes with no increase of H3K27me3 reads (not shown), or 156 genes showing
decrease of H3K27me3 reads by 0.4 or more (Qcolumn), were significantly enriched upward (P = 0.01, and {P= 0.004, respectively), i.e. upregulated.
The former included Atoh8 and Smad6, and the latter included Parvb. (B) Maps around TSS of Parvb and Atoh8. (C) Real-time RT-PCR of Parvb. Parvb
expression was increased in RasV12 cells, or in exposure to rBMP2 in MEF. Compared to the level in RasV12 cells, Parvb expression level was
approximately half (0.5160.07 fold) when Bmp2 was knocked down (Ras+shBmp2), and increased to the similar level (0.9460.06 fold) when exposed
to rBMP. (D) Growth curve. Parvb-knocked-down RasV12 cells showed continual growth. (E) Western blot analysis of Akt phosphorylation. Parvb with
C-terminal V5 was detected using anti-V5 antibody. MEF’s with Parvb cDNA introduction and mock infection were stimulated by 50 ng/mL Igf1 or
10% fetal bovine serum (FBS). Akt was phosphorylated by Igf1 or serum stimulation in Mock cells, which showed very low Parvb expression (See also
Figure S14A). Akt phosphorylation by Igf1 or serum stimulation was decreased in Parvb-introduced cells.
doi:10.1371/journal.pgen.1002359.g008
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oncogenic Ras, and may have time enough to acquire DNA

methylation during continuing proliferation. Or, two independent

cells, NIH3T3 (ATCC #CRL-1658) and K-ras-transformed

NIH3T3 (ATCC #CRL-6361), were compared in the previous

NIH3T3 study [28], so the result might be different if one

NIH3T3 clone is analyzed at time courses before and after

induction of activated Ras.

As for BMP-SMAD signals, utilization of four BMP type 1

receptors depends on BMP ligands; BMP2 and BMP4 utilize

BMPR1A and BMPR1B, BMP6 and BMP7 bind principally to

ACVR1, and BMP9 is a ligand for ACVRL1 and ACVR1 [26].

We reported that Smad6 inhibited BMPR1A/BMPR1B prefer-

entially to ACVR1/ACVRL1, and inhibited BMP2-induced

Smad1/5 phosphorylation more prominently than BMP6-induced

Smad1/5 phosphorylation [44]. This is in agreement with the

current results that Smad6 could cause decreased phosphorylation

of Smad1/5 and escape from senescence, and that coordination of

Bmp2 upregulation and Smad6 repression was critical in Ras-

induced senescence.

Our genome-wide analysis showed that Smad6 was a Smad1

target gene that could be highly upregulated by exposure to

BMP2, but strongly repressed in RasV12 cells with de novo

H3K27me3 mark. Previous reports showed that BMP-activated

Smad1/5 activates Smad6 expression through interaction with the

Smad6 promoter [45,46]. These suggested that Smad6 repression

with de novo H3K27 methylation blocks negative feedback loop to

sustain the effect of upregulated Bmp2, i.e. activation of Bmp2-

Smad1 signal in Ras-induced senescence. In other words, dynamic

H3K27me3 alteration is suggested to repress selectively the genes

which could negatively control senescent signal, and to activate

selectively genes which could positively affect senescent signal

(Figure 9). In fact, another BMP-SMAD inhibitor, Nog, was also

repressed by increased H3K27me3 mark. While ChIP-seq analysis

did not show Smad1 binding site around Nog TSS, Nog was also

highly upregulated by rBMP2 exposure (Figure 6C) and repressed

by increased H3K27me3 mark in RasV12 cells (Figure 5A, 5B).

This might suggest that Nog repression could also be a disruption of

negative feedback loop, though Nog is not a direct downstream

target of Bmp2-Smad1.

Parvb, which possessed Smad1 binding site around its TSS, was

upregulated in exposure to BMP2 or in RasV12 cells, and its

knock down lead to escape from senescence. While PARVA was

reported to bind to integrin-linked kinase (ILK) and play a

critical role in cell survival by promoting membrane recruitment

of Akt and its activation by phosphorylation, PARVB was

reported to compete PARVA in binding to ILK and reverse its

oncogenic effect by repressing ILK kinase activity [47,48]. As

PARVB introduction was reported to suppress cellular growth of

breast cancer cells with decreased Akt phosphorylation [49,50],

Parvb introduction in MEF also decreased phosphorylation of Akt

in exposure to a growth factor or serum (Figure 7E). It was

suggested that Parvb might be one of Bmp2-Smad1 target genes

playing a positive role in growth inhibition, at least partly, and

selectively and effectively activated through simultaneous

inactivation of negative regulators. We chose Parvb on the

assumption that candidate genes downstream of BMP-SMAD

might be inactivated by DNA methylation in full-blown cancers,

but other downstream genes that were not methylation target in

analyzed cancer cell lines might also play a positive role in

senescence.

Figure 9. Schema of epigenetic regulation of Bmp2/Smad1 signal. Negative factors for senescence were inactivated selectively and
epigenetically, and positive factors/signals for senescence were activated selectively and epigenetically.
doi:10.1371/journal.pgen.1002359.g009
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Aberrations in BMP-SMAD signal have been frequently

reported in human cancer. Juvenile polyposis syndrome, an

inherited syndrome with high risk of colorectal cancer, is caused

by germline mutation of BMPR1A or SMAD4 [51], and

importance of BMP signal is supported by its mouse model with

transgenic Nog expression or with Bmpr1a inactivation [52,53].

BMP2 expression was lost in microadenoma of familial adeno-

matous polyposis, while BMP2 was expressed in mature colonic

epithelial cells, promoting apoptosis and differentiation and

inhibiting proliferation [54]. Inactivation of BMPR1A, BMPR2,

and SMAD4 was frequently observed in sporadic colorectal

cancer, correlating to loss of Smad1/5/8 phosphorylation [55].

Colon epithelial polyps were developed even by alteration of BMP

pathway in the stromal microenvironment, using mice with

conditional inactivation of Bmpr2 in the stroma [56]. About

prognosis, Smad6 expression was reported to be elevated in 40%

of non-small cell lung cancer, and correlated to poorer outcome

[57]. BMP2 upregulation was reported in senescence of other cell

types, such as vascular smooth muscle cells [58]. Considering

frequent RAS gene mutation in cancer, e.g. colon (,40%) and

non-small cell lung cancers (,30%) [59], further experiments are

to be performed to clarify which cell types Bmp2-Smad1 signal is

critical in oncogene-induced senescence, and whether Bmp2-

Smad1 signal and its target genes are disrupted in cancer with

association to oncogene mutation.

Materials and Methods

Full information of Material and Methods is also described in

Supporting Materials and Methods (Text S1).

Cells and viral infection
MEF was established from 13.5 embryonic day embryos of

C57/B6 as reported [60]. After cells were passed twice (MEFp2),

cells were infected with retroviruses for 48 hours. Then cells were

exposed to 4 mg/mL puromycin for selection during days 0–3, and

were passed on days 3, 7, and 10. Human fibroblast IMR90

(JCRB9054) was purchased from Health Science Research

Resources Bank (Osaka, Japan), and 2 mg/mL puromycin were

used for selection after retrovirus infection. Total RNA was

collected using TRIzol (Invitrogen, Carlsbad, CA). This study was

certified by Animal Ethics Committee in Tokyo University.

MEF of Nog-trangenic (Nog-Tg) mice
Nog-Tg mice using keratin 19 gene promoter and mouse Nog

cDNA were previously established [27], and were crossed with

wild type C57/B6 mice five times to obtain C57/B6 background.

Nog-Tg female mouse was crossed with C57B6, and Tg(-) and

Tg(+) MEFs were established from 13.5 embryonic day embryos of

the same mother. Each embryo was minced separately, and Tg(-)

and Tg(+) MEFs were pooled after genotyping each MEF, and

used for experiments.

Retroviral vectors
Retroviral vectors for Ras was constructed by cloning cDNAs

for wild type HRAS (RasG12) and mutated HRAS (RasV12) by

reverse-transcription PCR products from HMEC and SK-BR3

cell RNA, respectively, with N-terminal FLAG tag into pMX

vector that contains puromycin resistance gene (a kind gift from T.

Kitamura). Mock pMX vector (Mock), and vectors containing

RasG12 and oncogenic RasV12 were transfected into plat-E

packaging cells (a kind gift from T. Kitamura) using FuGENE 6

Transfection Reagent (Roche, Germany) to prepare retroviruses.

Smad6 cDNA with N-terminal 6x Myc tag, Nog cDNA with C-

terminal V5 tag, and Parvb cDNA with C-terminal V5 tag were

also cloned into pMX vector. To knock down Bmp2 or Parvb,

double strand oligonucleotide DNA to express small hairpin RNA

against Bmp2 (shBmp2) or Parvb (shParvb), respectively, was cloned

into RNAi-Ready pSIREN-RetroQ Vector (Clontech, CA). Viral

packaging for Smad6, Nog, shBmp2 and shParvb retrovirus

vectors was also done using plat-E cells. Retroviruses of RasV12

and Nog for human fibroblast were prepared using Retrovirus

Packaging Kit Ampho (#6161, TaKaRa Bio Inc, Shiga, Japan).

Expression array analysis
For genome-wide transcription analysis, GeneChip Mouse

Genome 430 2.0 Array (Affymetrix) was used as described [61].

The GeneChip data were analyzed using the Affymetrix

GeneChip Operating Software v1.3 by MAS5 algorithms, to

obtain signal value (GeneChip score) for each probe. For global

normalization, the average signal in an array was made equal to

100. Gene annotation enrichment analysis was done at DAVID

Bioinformatics Resources (http://david.abcc.ncifcrf.gov/). Array

data is available at GEO datasets (#GSE18125).

ChIP, MeDIP, and sequencing
MEFp2 and infected cells at day 10 were cross-linked with 1%

formaldehyde for 10 min and were prepared for ChIP. ChIP using

anti-H3K4me3 (ab8580, abcam, rabbit polyclonal), H3K27me3

(07–142, Upstate, rabbit polyclonal), or Ezh2 (#39103, Active

Motif, rabbit polyclonal) antibody was performed as described

previously [62]. For ChIP using anti-Smad1 antibody (BioMatrix,

mouse monoclonal), MEFp2 cells were starved for 16 hours and

exposed to rBMP2 protein (#355-BM, R&D systems) at 25 ng/

mL in serum-free medium for 1.5 hours. Cells were cross-linked

with 1 mM Disuccinimidyl Glutarate (Thermo Scientific, Rock-

ford, IL) for 20 min and 1% formalin for 10 min, and ChIP was

performed similarly.

For MeDIP, genomic DNA of MEFp2 and RasV12 cells was

fragmented by sonication, and immunoprecipitated by anti 5-

methylcytocine monoclonal antibody (kindly supplied by Dr. K.

Watanabe, Toray Research Center, Inc.), as we previously

reported[22,23,63]. MeDIPed sample and Input sample under-

went MeDIP-PCR to check enrichment of methylated regions in

MeDIPed sample.

Sample preparation for ChIP- and MeDIP-sequencing was

performed according to the manufacturer’s instructions (Illumina),

and sequencing was performed using Solexa Genome Analyzer II

[61]. 36-bp single end reads were mapped to the NCBI Build #36

(UCSC mm8) reference mouse genome, using the Illumina

pipeline software v1.4. The numbers of uniquely mapped reads

for MEFp2 were 10,845,082 (H3K4me3), 11,519,151

(H3K27me3), 9,663,324 (DNA methylation) and 5,688,804

(Input), those for RasV12 cells were 13,246,871 (H3K4me3),

9,894,241 (H3K27me3), 11,319,506 (DNA methylation) and

6,126,206 (Input), and that for Smad1 ChIP-sequencing was

9,417,307. Window sizes of 300 bp for H3K4me3, 500 bp for

H3K27me3, 500 bp for DNA methylation and 300 bp for Smad1,

were used to calculate the number of mapped reads per million

reads at the center of the window. Sequencing data is also

available (#GSE18125).

Immunoblot analysis
Aliquots of protein were subjected to SDS/PAGE and were

transferred to nitrocellulose, and the resulting immunoblots were

visualized using Amersham ECL Plus (GE Healthcare) and LAS-

3000 (Fujifilm, Japan).
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Cellular immunofluorescence
Phosphorylated Smad1/5/8 was detected using antibody

against phospho-Smad1/5/8 (Cell Signaling) as primary antibody,

and green-fluorescent Alexa Fluor 488 dye-labeled anti-rabbit

antibody (Invitrogen) as secondary antibody. RasV12 with N-

terminal FLAG tag and Smad6 with N-terminal Myc tag were

detected using antibody against FLAG (F7425, Sigma, rabbit

polyclonal) and Myc (9E10, Santa Cruz, mouse monoclonal) as

primary antibody, respectively, and Alexa Fluor 594 anti-rabbit

antibody and Alexa Fluor 488 anti-mouse antibody (Invitrogen) as

secondary antibody. Photographs were taken with Biozero BZ-

8100 (KEYENCE, Osaka, Japan).

Senescence-associated b-galactosidase (SA-bgal) analysis
MEFp2 and infected MEFs on day 10, and infected IMR90 on

day 7 underwent SA-bgal staining as previously described [64].

Growth curve
Infected MEFs were counted on days 3, 7, 10, 14, 17, 21 using

Countess automated cell counter (Invitrogen) and seeded at

density of 16105 cells/6-cm dish for every passage. Infected

IMR90 were counted on days 4, 8, 12 and 16 similarly, and seeded

at density of 2.56105 cells/6-cm dish. Mean number of three

dishes was calculated and used to draw growth curve.

Quantitative real-time RT-PCR, ChIP-PCR, and MeDIP-PCR
Real-time PCR was performed using iCycler Thermal Cycler

(Bio-Rad Laboratories) as previously described [65]. The exper-

iment was triplicated and mean and standard error were

calculated and shown. Primer information is in Tables S7 and S8.

Bisulfite treatment and bisulfite sequencing
DNA methylation status was analyzed by bisulfite sequencing as

previously described [65]. Briefly, 500 ng of genomic DNA of

MEFp2 and RasV12 cells underwent bisulfite treatment, and were

finally suspended in 20 mL of distilled water. For bisulfite

sequencing, 1 ml was used as a template for PCR with primers

common for methylated and unmethylated DNA sequences. The

primers and PCR conditions are available at Table S9. PCR

products were cloned into pGEM-T Easy vector (Promega), and

9–10 clones each were cycle-sequenced using T7 and Sp6 primers.

Supporting Information

Figure S1 Schema of experiments. (A) Candidate factors to

induce senescence are to be identified from genes upregulated,

with loss of repressive epigenetic mark and with gain of active

mark. (B) Candidate inhibitors to senescence are to be identified

from genes downregulated, with gain of repressive epigenetic mark

and with loss of active mark.

(TIF)

Figure S2 Induction of activated Ras by retrovirus infection. (A)

Western blot analysis of Ras protein. Expression of Ras protein with

N-terminal FLAG tag was confirmed by western blot analysis using

anti-FLAG antibody. (B) Count of senescence-associated b-

galactosidase (SA-bgal)-positive cells. MEF cells at passage 2

(MEFp2, open box) rarely showed SA-bgal(+) cells. MEF cells at

passage 5 without virus infection (MEFp5, open box) showed slight

increase in number of SA-bgal(+) cells, and two control cells infected

with mock vector (Mock cells, horizontal-striped box) and wild type Ras

(RasG12 cells, crosshatched box) showed similar level of SA-bgal

staining, indicating stress-induced senescence during passages. The

stress response is a consequence of the high oxygen levels that inflict

oxidative damage to the cells resulting in senescence [16]. RasV12-

infected cells (RasV12 cells, closed box) showed marked increase in

number of SA-bgal(+) cells. Representatives were mean and

standard error in three repeated experiments.

(TIF)

Figure S3 Distribution of epigenetic marks. (A) Distribution of

H3K4me3 and H3K27me3 marks around TSS was shown by the

number of mapped Solexa reads per million reads within a

window size of 300 bp and 500 bp, respectively. The distribution

was similar between MEFp2 and RasV12. The peak of H3K4me3

mark was detected at +247 bp for MEFp2, and at +312 bp for

RasV12, and distribution was rather narrow. The peak of

H3K27me3 mark was detected at +698 bp for MEFp2, and at

+420 bp for RasV12, and distribution was rather wide than

H3K4me3. (B) Epigenetic statuses of H3K4me3 and H3K27me3

for each gene were decided by the maximum number of mapped

reads per million reads in a window size of 300 bp and 500 bp,

respectively, within 2 kb 6 TSS of each gene, and distribution of

the epigenetic status of 20,232 genes was shown by heat map. The

number of H3K27me3(+) genes was generally decreased.

(TIF)

Figure S4 Expression analysis of Ezh2 and Jmjd3. Real-time RT-

PCR was performed, and normalized to Ppib, and relative

expression levels compared to MEFp2 was shown. Ezh2 expression

level was decreased in RasV12-induced senescence, but similar

downregulation was observed during three passages without viral

infection, or with mock and RasG12 infection. Similarly, Jmjd3

expression level was increased in RasV12-induced senescence, but

similar upregulation was observed during three passages without

viral infection, or with mock and RasG12 infection.

(TIF)

Figure S5 Relation between expression and histone marks (+/2).

(A) For epigenetic status of H3K4me3, genes with .4 reads per

million reads within a window size of 300 bp were regarded as

H3K4me3(+), and genes with ,3 reads were as H3K4me3(-). Mean

and standard error of expression signal (GeneChip score) were shown.

Markedly high expression was confirmed in H3K4me3(+) genes. (B)

For epigenetic status of H3K27me3, genes with .1.5 reads per

million reads within a window size of 500 bp were regarded as

H3K27me3(+), and genes with ,1 read were as H2K27me3(-).

Markedly low expression was confirmed in H3K27me3(+) genes.

(TIF)

Figure S6 Decreased enrichment of Ezh2 around TSS of Bmp2.

Quantitative ChIP-PCR was performed for ,100 bp upstream

(region 1) and ,300 bp downstream (region 2) of Bmp2 TSS (See

Figure 3A), and shown by relative fold enrichment compared to

Actb (Figure 1D). Decreased enrichment of Ezh2 around Bmp2

TSS was shown (*P,0.05).

(TIF)

Figure S7 Cellular immunofuorescence for RasV12 and Smad6.

RasV12 with N-terminal FLAG and Smad6 with N-terminal Myc

were detected using anti-FLAG and anti-Myc antibodies. Simulta-

neous expression of RasV12 and Smad6 proteins in Smad6-

introduced RasV12 cells was confirmed (See also Figure 4E).

(TIF)

Figure S8 Decreased SA-bgal(+) cells by Smad6 overexpression.

Retrovirus of Smad6 cDNA was infected with Mock or RasV12

retrovirus. Smad6-induced RasV12 cells showed decreased number

of SA-bgal(+) cells compared to RasV12 cells (black box). Smad6

induction did not affect on Mock cells (horizontally striped box).

(TIF)
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Figure S9 Expression of Krt19 in MEF. (A) RT-PCR showed

that MEFp2 showed expression of Krt19 in MEFp2 and not in

brain and testis. (B) Real-time RT-PCR showed that Krt19
expression level in MEFp2 was much higher than brain and testis.

(TIF)

Figure S10 Ras-induced senescence in human fibroblast IMR90.

(A) IMR90 was infected with RasV12 retrovirus. In western

blotting, expression of Ras protein with N-terminal FLAG tag on

day 4 was detected using anti-FLAG antibody (left). SA-bgal

staining on day 7 showed that RasV12-IMR90 cells fell into

senescence (right). (B) Real-time RT-PCR showed that BMP2
expression was markedly increased to 145-fold in RasV12-IMR90

cells, while SMAD6 and NOG expressions were decreased to 0.32-

fold and 0.15-fold, respectively. (C) Nog-induced RasV12-IMR90

cells showed continual cellular growth.

(TIF)

Figure S11 ChIP using anti-Smad1 antibody. (A) There was no

Smad1 binding site detected around Actb, while a Smad1 binding

site was detected at 1 kb upstream of Id1 TSS. open squares, regions

for ChIP-PCR. (B) Smad1 binding at 1 kb upstream of Id1 TSS

was validated by ChIP-PCR.

(TIF)

Figure S12 The motifs within Smad1 binding regions by

GADEM. GADEM version1.3 (http://www.niehs.nih.gov/research/

resources/software/gadem/index.cfm) was used to search for the

motifs with default parameters except -posWt (Weight profile for

positions on the sequence) =1, -pv (P-value cutoff) = 0.00001, -em

(Number of EM steps) = 20, and -fullScan =1. The enriched

sequences were drawn by STAMP (http://www.benoslab.pitt.edu/

stamp/). Ln(E-value) and fold-enrichment to sites in background

sequence were shown. 20 and 10 motifs were obtained in whole

genomic region (All) and TSS regions (TSS), respectively. GGG-

GCGGGGC was commonly detected in both analyses.

(TIF)

Figure S13 The motifs within Smad1 binding regions by DME.

To confirm the GADEM result (Figure S9), the motifs were

searched for by another software DME2 (http://rulai.cshl.edu/

dme/), using ZOOPS model with default parameters except -w

(minimum desired motif width) = 10 and -n (number of motifs to

produce) = 10. The results were drawn by STAMP, including the

tree view at the bottom. It was confirmed that DNA sequences

very similar to GGGGCGGGGC were enriched, such as

GGGGCGGGGM and GGGCGGGGC.

(TIF)

Figure S14 Parvb in Ras-induced senescence. (A) Real-time RT-

PCR showed that Parvb was knocked down by shRNA to 0.05-fold.

(B) Parvb-knocked down RasV12 cells showed partially decreased

number of SA-bgal(+) cells compared to RasV12 cells, though

higher than Mock level.

(TIF)

Table S1 Significant terms with P,10210 were listed. When

there were less than five terms with P,10210, top five terms with

P,1025 were listed for each category. * The term included Bmp2.

(DOC)

Table S2 Significant terms with P,10210 were listed. When

there were less than five terms with P,10210, top five terms with

P,1025 were listed for each category. 1 The term included Smad6.
(DOC)

Table S3 H3K4me3 and H3K27me3 levels were shown by the

maximum number of the mapped Solexa reads per million reads

within a window size of 300 bp and 500 bp, respectively, for 2 kb

around TSS. Expression levels were shown by GeneChip score.

Secreted factors Bmp2 and Igfbp3 were shown to be highly

upregulated with H3K27me3 loss and H3K4me3 gain.

(DOC)

Table S4 H3K4me3 and H3K27me3 levels were shown by the

maximum number of the mapped Solexa reads per million reads

within a window size of 300 bp and 500 bp, respectively, for 2 kb

around TSS. Expression levels were shown by GeneChip score.

Two Bmp2/Smad1 signal inhibitors, Smad6 and Nog, were

included in the nine genes with H3K27me3 gain and H3K4me3

loss.

(DOC)

Table S5 Smad1 target genes were generally upregulated by

Bmp2 stimulation in MEF (Figure 6), but genes with H3K27me3

increase e.g. Smad6 and Atoh8 were repressed in RasV12 cells.

Smad1 target genes without H3K27me3 increase were correlated

to upregulation (Figure 7 and Table S6).

(DOC)

Table S6 Smad1 target genes without H3K27me3 increase were

correlated to upregulation (Figure 7). Among Smad1 target genes

upregulated in RasV12 cells, top ranking 30 genes showing .3-

fold upregulation were listed. None of these genes showed

H3K27me3 increase .0.4. These genes were regarded as

selectively upregulated Smad1 target genes, and expected to

include genes with growth suppressor function. Such genes may

perhaps be frequently inactivated in human cancer e.g. by

promoter methylation. Among these genes, Parvb was chosen to

be examined as Parvb expression was highly induced by BMP2

stimulation in MEF (Figure 6) and our previous methylated DNA

immunopreccipitation (MeDIP)-chip analysis of human cancer cell

lines [22,23] showed PARVB promoter methylation in HCT116

and DLD1 (the most right columns above).

(DOC)

Table S7 Ppib and PPIA were used for normalization.

(DOC)

Table S8 Location of TSS was regarded as +1.

(DOC)

Table S9 Location of TSS was regarded as +1.

(DOC)

Text S1 Supporting Materials and Methods.

(DOC)
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