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Activation of endogenous angiotensin converting
enzyme 2 prevents early injuries induced by
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Abstract

Diabetic retinopathy (DR) is a serious complication of diabetes mellitus that may result in blindness. We evaluated the effects of
activation of endogenous angiotensin converting enzyme (ACE) 2 on the early stages of DR. Rats were administered an
intravenous injection of streptozotocin to induce hyperglycemia. The ACE2 activator 1-[[2-(dimethylamino) ethyl] amino]-
4-(hydroxymethyl)-7-[[(4-methylphenyl) sulfonyl] oxy]-9H-xanthone 9 (XNT) was administered by daily gavage. The death of
retinal ganglion cells (RGC) was evaluated in histological sections, and retinal ACE2, caspase-3, and vascular endothelial
growth factor (VEGF) expressions were analyzed by immunohistochemistry. XNT treatment increased ACE2 expression in
retinas of hyperglycemic (HG) rats (control: 13.81+£2.71 area%; HG: 14.29 +4.30 area%; HG + XNT: 26.87 £ 1.86 area%;
P <0.05). Importantly, ACE2 activation significantly increased the RCG number in comparison with HG animals (control: 553.5 £
14.29; HG: 530.8 £ 10.3 cells; HG +XNT: 575.3 £ 16.5 cells; P<0.05). This effect was accompanied by a reduction in the
expression of caspase-3 in RGC of the HG+XNT group when compared with untreated HG rats (control: 18.74 £ 1.59;
HG: 38.39 £ 3.39 area%; HG + XNT: 27.83 + 2.80 area%; P <0.05). Treatment with XNT did not alter the VEGF expression in
HG animals (P> 0.05). Altogether, these findings indicate that activation of ACE2 reduced the death of retinal ganglion cells by

apoptosis in HG rats.
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Introduction

Diabetic retinopathy (DR) is one of the most frequent
complications of diabetes mellitus (DM). It may be present
in both type 1 and type 2 DM (1), and is a highly common
cause of blindness (2). Increased incidence of DM and DR
is an important concern in developing countries, and
represents a significant health problem worldwide (3).
Both experimental and clinical studies have shown the
crucial role of sustained hyperglycemia in the pathogen-
esis of chronic diabetic complications. This metabolic
status results in lesions in retinal small vessels, which
are the most important clinical change in DR. High
plasma glucose levels make the blood circulation
inadequate, and activate biological systems that restore
the oxygen supply to tissues through stimulation of
angiogenesis (4,5).

The traditional view of the pathophysiology of DR is
that damage in the microcirculation is due to the long
duration of the disease. However, recent studies indicate
that lesions in neuronal and glial cells may appear early in
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the development of DR (6,7). Therefore, the first years of
DM are the most appropriate for the introduction of
effective therapeutic interventions to prevent irreversible
changes in the eye (8). DR treatment includes increased
metabolic control, laser therapy, pharmacological ap-
proaches (antiangiogenic and anti-inflammatory therapies,
enzymatic vitreolysis, and intravitreal injections), and
surgery (8).

The renin-angiotensin system (RAS) is a peptidergic
hormone system, which plays a central role in the
pathophysiology of the eye. Different components of the
RAS have been identified in the eye, such as angiotensin
(Ang) Il and angiotensin Il type 1 receptor (AT1) (9-13).
Abnormal functioning of the RAS is associated with many
visual disorders, and is critically involved in the pathogen-
esis and progression of retinopathy induced by hypergly-
cemia (14,15). Evidence indicates that Ang IlI, acting
through AT1 receptors, induces the development and
progression of retinopathy by causing damages to the
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micro- and macrocirculation, in addition to inducing the
death of neuronal and glial cells (6,7). Thus, drugs that
reduce the Ang Il actions might have beneficial effects on
DR (16—18), although it has been reported that these drugs
have limited effects in this disease (15). However, recent
studies have demonstrated the existence of a novel
metabolic system within the RAS composed of Ang-(1-7),
angiotensin-converting enzyme (ACE) 2, and Mas recep-
tors in the eye (9,12,19). This system acts as a counter-
regulator of the ACE/Ang II/AT1 effects. Indeed, it has been
found that activation of intrinsic ACE2 decreases the
intraocular pressure of glaucomatous rats (19), as well as
the inflammatory process observed in uveitic mice (20).
Nevertheless, the role of the Ang-(1-7)/ACE2/Mas system
in DR has not been fully investigated.

Cumulative evidence suggests that ACE2 activation is
an innovative and efficient therapeutic strategy to treat
cardiac fibrosis, pulmonary hypertension, vascular throm-
bosis, endothelial dysfunction, diabetic cardiomyopathy,
autonomic dysfunction induced by hyperglycemia, glau-
coma, and uveitis (19,21-26). Thus, in this present study,
we hypothesized that activation of endogenous ACE2
might lead to improvements in the early stages of DR.
To test this hypothesis, we investigated whether the
compound 1-[[2-(dimethylamino) ethyl] amino]-4-(hydro-
xymethyl)-7-[[(4-methylphenyl) sulfonyl] oxy]-9H-xanthone
9 (XNT), an ACE2 activator, is able to modulate neuronal
and vascular biomarkers of DR in hyperglycemic rats.

Material and Methods

Animals

Male Wistar rats (3 months of age) weighing 180-220
g were obtained from the animal facility of the Instituto de
Ciéncias Biolégicas (CEBIO, Universidade Federal de
Minas Gerais, Brazil). The animals were housed in a
temperature-controlled room (22-23°C) with a 12-12 h
light-dark cycle. Water and food were available ad libitum.
The experimental protocols were performed in accord-
ance with institutional guidelines approved by the Ethics
Committee in Animal Experimentation of the Universidade
Federal de Minas Gerais (CETEA-UFMG), Brazil, which
are in accordance with the National Institutes of Health
(NIH) Guidelines for the Care and Use of Laboratory
Animals (protocol #11/11). In addition, this study con-
formed to the Association for Research in Vision and
Ophthalmology (ARVO) Statement for the Use of Animals
in Ophthalmic and Vision Research.

Diabetes induction and XNT treatment

Rats were anesthetized with an intraperitoneal injec-
tion of a mixture of ketamine (70 mg/kg) and xylazine
(10 mg/kg). They were then administered with a single
intravenous injection of streptozotocin (STZ; 50 mg/kg)
diluted in sodium citrate buffer (10 mM, pH 4.5) to induce
hyperglycemia. Non-hyperglycemic control rats (CTRL)
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were injected with ~0.2 mL of sodium citrate buffer.
Ten days after hyperglycemia induction with STZ,
the rats were assessed for blood glucose levels, and
animals with a fasting blood glucose concentration over
126 mM were considered hyperglycemic (HG) (25). After
confirmation of hyperglycemia, XNT (1 mg/kg per day;
HG+ XNT group) or vehicle (saline pH 2-2.5; equivalent
volume; HG group) was administered by daily gavage for
30 days. CTRL animals received daily gavage of saline for
30 days.

Histological analysis

Animals were enucleated, two small sagittal sections
were made in the nasal and temporal sides of the eyes,
and then the eyes were immersed in Bouin’s fluid for
approximately 24 h. Following the fixation, the eyes were
dehydrated in different concentrations of ethanol (70, 80,
90, 95, and 100%). Diaphanization was done in xylene
and the eyes were embedded in Paraplast. Serial sections
with a thickness of 6 um were obtained using a microtome
(HM335E, Microm, USA). For histological analysis and
counting of retinal ganglion cells (RGC), sections were
stained with hematoxylin and eosin (HE). RGC were
manually counted in the whole extension of the neuronal
retina (n=5-6 in each group) using a microscope (BX 53,
Olympus, USA).

Immunohistochemical analysis

An immunohistochemistry technique was used to
evaluate the expression of ACE2 (n=9 in each group),
caspase-3 (n=5-6 in each group), and vascular endothelial
growth factor (VEGF; n=9 in each group). Briefly, 6-um-thick
histological sections were diaphanized and hydrated in
ethanol (100, 95, 90, 80, 70, 50, and 25%). Subsequently,
peroxidase blockade was performed using 3% H.O, for
15 min. This was followed by blockade of unspecific binding
with a solution of 2% bovine serum albumin containing 0.1%
Tween 20 for 1 h in a moist chamber. The primary antibodies
(polyclonal rabbit anti-ACE2, 1:500, GeneTex, USA; poly-
clonal rabbit anti-caspase-3, 1:500, Sigma-Aldrich, USA;
and polyclonal chicken anti-VEGF, 1:50, Sigma-Aldrich)
diluted in the blocking solution were incubated overnight at
4°C in a humid chamber. Then, the samples were incubated
with the secondary antibody for 1 h. The signal amplification
was performed using a streptavidin-biotin-peroxidase kit
LSAB/DAKO (Dako North America, USA) followed by
incubation with 0.025% diaminobenzidine and counter-
stained with Harris’ hematoxylin (Merck, Germany). The
sections were photographed with a 40 x objective and 10
images of the retina per animal were used to quantify the
expression of ACE2, caspase-3, and VEGF. The images
were captured under exactly the same light. Image Pro-Plus
software (Meyer Instruments, Inc., USA) was used to
quantify the expression of these proteins. Positive ACE2
and VEGF expression was considered as the area occupied
by brown pixels in the retina, while caspase-3 expression
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was analyzed using the area occupied by brown pixels only
in the RGC layer.

Statistical analysis

Data were reported as means+SE. The results
were analyzed using one-way ANOVA followed by the
Newman-Keuls test. All tests were performed using the
GraphPad Prism 5 software (USA). The significance level
was defined as P <0.05.

Results

Effects of XNT administration on ACE2 expression in
retinas

Induction of hyperglycemia in rats did not cause any
significant alteration in the expression of ACE2 in retinas
(13.81£2.71 area% in the CTRL group and 14.29 +4.30
area% in the HG group, P>0.05). However, daily
administration of XNT for 30 days in hyperglycemic
animals increased the expression of this enzyme in
retinas (Figure 1A). Accordingly, quantification of this
finding showed that hyperglycemic rats treated with XNT
presented higher expression of ACE2 in their retinas
(14.29+4.30 area% in the HG group and 26.87 £ 1.86
area% in the HG + XNT group, P <0.05, Figure 1B).

HG + XNT

n=9
HG HG + XNT

CTRL

Figure 1. Administration of 1-[[2-(dimethylamino) ethyl] amino]-
4-(hydroxymethyl)-7-[[(4-methylphenyl) sulfonyl] oxy]-9H-xanthone
9 (XNT) increased angiotensin converting enzyme 2 (ACE2)
expression in retinas of hyperglycemic rats. A, Representative
photomicrographs of retinas of control rats (CTRL), hyperglycemic
untreated rats (HG), and hyperglycemic treated rats (HG + XNT).
RGC: retinal ganglion cells. B, Quantification of ACE2 expression
in retinas of rats. *P<0.05 compared to CTRL and HG groups
(one-way ANOVA followed by the Newman-Keuls test).
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Effects of XNT administration on retinal ganglion cells

Hyperglycemia induced slight damage to retinas, as
shown by a reduction in the counts of RGC (553.5 £ 14.2
cells in the CTRL group and 530.8 £10.3 cells in the
HG group, P>0.05); however, this finding was not statisti-
cally significant. Chronic administration of XNT preserved the
RGC population in retinas of hyperglycemic rats when
compared to untreated hyperglycemic animals (530.8 +
10.3 cells in the HG group and 575.3+£16.5 cells in the
HG+XNT group, P<0.05, Figure 2), indicating that XNT
treatment reduced the cell death of RGC.

Effects of XNT administration on caspase-3 and VEGF
expression

To evaluate the mechanisms of action responsible for the
protective effects of ACE2 activation on viability of RGC, we
analyzed the expression of caspase-3 in these cells. The
photomicrographs in Figure 3A show higher caspase-3
expression in the HG group compared with CTRL (CTRL:
18.74£1.59; HG: 38.39+3.39 area%). Treatment with
XNT for 30 days was able to reduce the expression of
caspase-3 in RGC (38.39+3.39 area% in the HG group
and 27.83+2.8 area% in the HG+XNT group, P<0.05,
Figure 3B).

In addition, the expression of VEGF in retinas of
hyperglycemic rats with or without treatment with XNT was
evaluated. Although a tendency of decreased VEGF
expression was observed in the HG+ XNT group com-
pared with HG animals, no significant difference was

A CTRL HG HG + XNT
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hihamect Fuai et BINCE P o

B 600- L2
2 550-
£
3 5001
3
Q 4501 :
n=5
400

CTRL HG HG + XNT

Figure 2. Histological analysis of retinal ganglion cells (RGC).
A, Representative photomicrographs of retinas showing RGC in
control (CTRL), hyperglycemic untreated (HG), and hyperglycemic
XNT-treated (HG+XNT) animals. B, Quantification of RGC in
retinas of rats. Note that the treatment with XNT prevented the loss
of these cells in HG + XNT rats. *P <0.05 compared to HG group
(one-way ANOVA followed by the Newman-Keuls test).
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HG + XNT

110 um
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CTRL HG
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Figure 3. Effects of XNT on caspase-3 expression in retinal
ganglion cells (RGC). A, Representative photomicrographs of
retinas of control rats (CTRL), hyperglycemic untreated rats (HG)
and hyperglycemic treated rats (HG+XNT) showing higher
caspase-3 expression in RGC of the HG group (see insets).
Rectangular dotted lines delineate the amplified areas shown in
the inset images. B, When the expression of caspase-3 was
quantified, XNT reduced the apoptosis of RGC of HG rats.
*P<0.05 compared to CTRL group; *P<0.05 compared to HG
group (one-way ANOVA followed by the Newman-Keuls test).

found between these groups (5.38 + 0.51 area% in the HG
group and 4.31+0.32 area% in the HG+XNT group,
P >0.05, Figure 4).

Discussion

The present study was designed to evaluate the
effects of activation of intrinsic ACE2 in retinas of
hyperglycemic rats. We found that XNT was effective in
preventing early damages to retinas. Specifically, XNT
decreased the death of RGC induced by hyperglycemia,
probably by reducing the apoptosis of these cells.
Overall, our data are consistent with previous studies
showing the beneficial effects of ACE2 activation in
ocular diseases (13,19,20). For example, Verma and
coworkers demonstrated that increased expression of
ACE2/Ang-(1-7) in retinas of mice using adeno-associated
virus-mediated gene transfer restored the balance of the
local RAS (13).

Previous studies have demonstrated the presence of
RAS components in eyes (9,12,27-31), including members
of the protective branch, i.e., ACE2, Ang-(1-7) and Mas
(12,19). In accordance with these data, we observed the
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Figure 4. Effects of XNT on vascular endothelial growth factor
(VEGF) expression in retinas. A, Representative photomicro-
graphs of retinas of control rats (CTRL), hyperglycemic untreated
rats (HG), and hyperglycemic treated rats (HG + XNT). The white
arrows show VEGF-positive expression. B, Quantification of
VEGF expression in retinas. No significant differences were
observed among the groups (one-way ANOVA).

presence of ACE2 in retinas of rats, and XNT administration
led to an increase in its expression in HG rats. The
mechanisms by which XNT augments the expression of
ACE2 remain unclear and need more investigation (32).
Some possibilities that need to be verified involve the direct
action of XNT in ACE2 gene expression or a consequence
of a physiological positive feedback mechanism.

Many studies have reported that lesions in neuronal
and glial cells may appear early in diabetes (6,7) and that
sustained hyperglycemia can induce a progressive loss of
retinal neuronal cells (33). Therefore, we quantified the
amount of RGC in retinas of hyperglycemic rats with or
without treatment with XNT. We found that XNT prevented
the decrease in the number of these cells in hyperglycemic
animals. This effect was likely due to the reduction in
apoptosis, because the expression of caspase-3
was lower in hyperglycemic treated rats. These results
corroborate the findings of Oshitari and Roy (34), who
found an increased number of apoptotic neurons and an
upregulated expression of Bax in retinas of STZ-induced
diabetic rats after three weeks of diabetes induction,
suggesting that a Bax-dependent pathway is activated in
neuronal apoptosis induced by hyperglycemia. In humans,
increases in the number of apoptotic cells in retinas were
observed in postmortem diabetic patients when compared
to nondiabetic controls (35). Among all neuronal cell types
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present in retina, RGC seem to be the most susceptible to
hyperglycemia (36). For instance, Kern and Barber (36)
reported a reduction of 23% in RGC in non-obese insulin-
deficient mice. Additionally, RGC are highly sensitive to
cellular damage and neurotoxicity. VEGF is the most
effective angiogenic factor that has been associated with
structural and functional alterations in retinas in response to
hyperglycemia and/or hypoxia. Thus, this vascular factor
has a critical role in the pathogenesis of DR (37,38).
Hyperglycemia causes several alterations in capillaries of
retinas, including the reduction in nitric oxide levels.
Therefore, blood flow in these vessels reduces and a
neovascularization process begins, to supply the ischemia.
This may explain the high levels of VEGF in ocular fluid of
patients with DR (39). In this context, anti-VEGF agents
have emerged as a new treatment for diabetic macular
edema and retinal neovascularization (40). Consistent with
these findings, our results showed a decreased tendency of
VEGF expression in retinas of hyperglycemic rats treated
with XNT. A significant reduction may be found with a longer
time of disease and treatment. Also, the XNT treatment
might lead to an improved endothelial function in hypergly-
cemic treated animals. Indeed, it has been reported that
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