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One type of cell-virus interaction leads to more or less severe cytopathic 
effects, which may take various forms (1). However, such cytopathic effects are 
not always observed when virus multiplication occurs, e.g. with influenza A in 
human embryo lung cultures (2). Cases are also known in which severe cyto- 
pathic effects take place but there is no multiplication of virus, e.g. vaccinia in 
macrophage cultures (3). The same virus may be cytopathic when multiplying 
in one cell system but not when multiplying in another, e.g. ECHO 28 (2050- 
JH) which is cytopathic in monkey kidney cells but not in HEp2 cells (4). And 
when multiplying in the same cell system one virus may be cytopathic and 
another not, e.g. influenza B but not influenza A in human embryo lung cells 
(2). Furthermore, Vainio and his colleagues (5) have shown that in the pres- 
ence of antihistamines multiplication of mouse hepatitis virus is not inhibited 
but cell degeneration is markedly reduced. 

All these observations show that severe cell damage is not a necessary conse- 
quence of virus multiplication, but may be due to a process which is sometimes 
set in motion during virus multiplication and sometimes not. In looking for 
such a mechanism our attention was directed to the work of de Duve (6, 7), 
Novikoff (8), and others on lysosomal enzymes, activation of which is believed 
to play an important part in cell damage following exposure to a variety of 
noxious agents. These enzymes, including acid phosphatase, acid ribonuclease, 
acid deoxyribonuclease, acid protease, and ~-glucuronidase, are normally pres- 
ent in a group of cell particles known as lysosomes, which present a variety of 
appearances in electron micrographs (8, 9). In conventional cell fractionation 
procedures, most activity of the lysosomal enzymes is recovered in the mito- 
chondrial fraction, with less in the supernatant (6). During activation the en- 
zymes are released from the lysosomes into the surrounding cytoplasm. In 
fractionated cells the total activity of lysosomal enzymes is then increased, 
and the majority of activity is found in the supernatant fraction (6, 7). I t  can 
readily be appreciated that excessive release of such hydrolytic enzymes into 
the cytoplasm could be damaging to cells. 
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W e  h a v e  inves t iga ted  two systems,  mouse  l iver  cells infected wi th  mouse  

hepa t i t i s  v i rus  ( M H V 3 )  in vivo and  m o n k e y  k idney  cells infected wi th  vacc in ia  

v i rus  in vitro. I n  bo th  cases ac t i va t i on  of lysosomal  enzymes  has been  found  by  

conven t iona l  t echniques  (6, 7). T h e  results  show t h a t  ac t i va t i on  of lysosomal  

enzymes  is associated wi th  the  appea rance  of c y t o p a t h i c  effects, and  the  possi- 

b i l i ty  t h a t  this re la t ionship  m a y  be  causal  is discussed. These  resul ts  are  com- 

p l e m e n t a r y  to h i s tochemica l  s tudies of v i rus - in fec ted  cells descr ibed elsewhere 

(10). 

Material and Methods 

M/ce.--Male mice of strain VSBS/NIMR, weighing 10 to 12 gin, were used. 
Monkey Kidney Cells.--Rhesus monkey kidney cells were kindly supplied by the Biological 

Standards Division of this Institute, Hampstead, and cultivated in fiat bottles for 6 to 7 
days in the following medium: Hanks' saline, 88 parts; lactalbumin hydrolysate, 5 parts; 
calf serum, 5 parts; 4.4 per cent NaHCOs, 1 part; streptomycin, 100 #g per hal; penicillin, 
100 units per ml. On the 7th day the medium was changed to Parker's solution 199, 90 
parts; calf serum, 10 parts. In 8 to 10 days, when the monolayer was confluent, the cells in 
some bottles were infected while others were kept as controls. 

Viruses.--Mouse hepatitis virus, MHV3 (11), was obtained from Dr. A. Gledhill and prop- 
agated and titrated by intraperitoneal injection in weanling mice. Vaccinia virus: the Lister 
Institute egg-adapted strain of vaccinia virus, propagated and titrated in the chorioallantoic 
membranes of ll-day-old chick embryos, was used. Mice were infected intraperitoncally 
with approximately 10 n LD~0 of MHV3 and monkey kidney cells with approximately 10 
pock-forming units per cell. 

Preparation of ttomogenates.--Mouse livers were chilled immediately after death and 
weighed. A 5.5 per cent suspension (wet weight/volume) in ice cold 0.25 ~ sucrose was homog- 
enized under standard conditions in a glass tube fitted with a teflon cylinder rotating at 2000 
m,~. with 0.025 inches clearance. The homogenate was centrifuged at 2000 g in the cold for 
15 minutes, and the deposit (nuclei and cell debris) discarded. The supematant was centri- 
fuged for 1 hour at 12,000 g in a refrigerated centrifuge and the supernatant and resuspended 
deposit (particulate, that is, mitochondrial q- lysosomal) fractions used for enzyme assay. 

Pools of 4 to 6 bottles containing infected and control monolayers of monkey kidney ceils 
were used for each experiment. For effective homogenization it was found necessary to allow 
the cells to swell in hypotonic solution. They were recovered in Gey's solution diluted with an 
equal volume of distilled water, and homogenized in 0.125 ~ sucrose. Otherwise the procedure 
was the same as for liver cells. 

Enzyme Assays.-- 

~-glucuronidase: 0.5 ml of 0.1 ~ sodium acetate buffer, pH 5.0; 0.1 ml of 0.01 xt phenol- 
phthalein--/3-ghicuronide and 0.1 ml enzyme preparation were incubated for 20 minutes at 
37°C. The reaction was stopped by adding 2 ml of 0.4 ~ glycine, the pH of which was adjusted 
to 10.7 with lq NaOI-I. After centrifugation for 10 minutes at 2000 g the samples were diluted 
with an equal volume of distilled water. The amount of phenolphthalein liberated was meas- 
ured in a Unicam S.P. 500 spectrophotometer at 545 m/~. 

Acid phosphatase: 2.0 ml of 0.1 ~ sodium acetate buffer, pH 5.0, 0.2 ml of 0.13 It sodium-- 
O-glycerophosphate, and 0.2 ml enzyme preparation were incubated for 20 minutes at 37°C. 
The reaction was stopped by adding 0.8 ml of 8 per cent perchloric acid and the samples cen- 
trifuged for 10 minutes at 2000 g. Inorganic phosphate was estimated in the supernatant by 
the technique of Lowry and Lopez (12), reading the optical density at 650 m# 10 minutes after 
addition of molybdate. 
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Acid protease, DNAace and RNAace: These were assayed as follows: 0.5 ml of 0.1 K sodium 
acetate buffer, pH 5.0, 0.05 ml of substrate, and 0.2 ml enzyme preparation were incubated 
at 37°C. for 1 hour. The following were used as substrates: i per cent bovine homoglobin 
(Armour), 1 per cent yeast RNA, prepared by the technique of Kay and Dounce (13) and 
0.5 per cent calf thymus DNA, prepared by the technique of Kay eta/. (14). The reaction was 
stopped by adding 0.7 ml uranyl acetatewperchloric acid (15). The samples were centrifuged 
for 15 minutes at  2000 g and the supernatant diluted 1 in 2 with distilled water before reading 
optical densities at  280 In# and 260 m/~ in a Unicam S.P. 500 spectrophotometer. Results are 
expressed in optical density units so recorded. 

The concentrations of protein in enzyme preparations were also determined by the biuret 
technique (16) and results expressed in terms of protein concentration showed essentially 
the same changes as those described below. 

RESULTS 

Similar results were obtained in several experiments, some of which are sum- 
marized in Tables I and II and Figs. 1 and 2. In keeping with the reports of 
de Duve (6) and others, most activity of lysosomal enzymes in normal liver 

TABLE I 

Enzyme Activities in the Lysosomal (L) and Supernatant (S) Fractions of Mouse Livers before 
and after Inoculation with MHV 3 

Activities are expressed in optical density units as described in the text. 

~-glucuronidase Acid-phos- Acid protease Acid RNAase Acid DNAase phatase 
Days after infection 

Uninfected 
1 
2 
3 
4 

L S 

0.12 0.08 
0.09 0.16 
0.17 0.14 
0.08 0.20 
0.07 0.38 

L S 

0.46 0.28 
0.34 0.38 
0.42 0.44 
0.36 0.59 
0.39 0.61 

L S 

0.08 0.04 
0.07 0.08 
0.05 0.O9 
0.01 0 . i1  
0.01 0.17 

L S 

O.69 0.45 
0.64 0.28 
0.68 0.92 
0.88 1.04 
0.76 1.11 

L S 

0.08 0.03 
0.09 0.02 
0.08 0.08 
0.09 0.13 
0.08 0.17 

TABLE I I  

Enzyme Activities in the Lysosomal (L) and Supernatant (S) Fractions of Monkey Kidney 
Cdl~ before and after Infection with Vacdnia Virus 

Activities are presented in optical density units as described in the text. 

/~-glucuronidase Acid phos- Acid-protease Acid RNAase Acid DNAase phatase 
Hours after infection 

L S L S L S L S L S 

Uninfected 
6 

12 
16 

0.19 0.11 
0.15 0.30 
0.27 0.32 
0.04 0.25 

0.19 0.08 
0.15 0.19 
0.10 0.25 
0.27 0.40 

0.10 0.04 
0.05 0.06 
0.05 0.07 
0.09 0.12 

0.64 0.56 
0.61 0.59 
0.68 1.16 
0.60 1.32 

0.03 0.03 
0.05 0.06 
0.07 0.13 
0.04 0.15 
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cells was present in the particulate fraction, with less in the supernatant.  The 
same was true of monkey kidney cells in culture. 

Mte r  infection with mouse hepatitis virus and vaccinia virus there was a 
progressive increase in total activity of lysosomal enzymes, which was practi- 
cally confined to the supernatant fraction. In  the case of some enzymes, e.g. 

0.5 I Glucur°nidose 

RNAose 

Fzo. 1. Enzyme activities in lysosomal and supematant 
iver at various times after infection with MHV3. 
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FIe. 2. Enzyme activities in lysosomal and supernatant (dotted areas) fractions of monkey 

kidney cells at various times after infection with vaccinfa virus. 
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protease, activity in the particulate fraction decreased. In the liver cells in- 
creased activity of lysosomal enzymes was demonstrable on the 2nd day after 
infection--before parenchymal cell damage was visible histologically. In the 
vaccinia virus-infected monkey kidney cells, changes in enzyme activity were 
demonstrable 6 hours after infection--again before cytopathic effects were 
observed on microscopical examination. 

DISCUSSION 

Previous workers have reported an increase in liver arginase and plasma 
fumarase in mice infected with MHV3 (17), and decreased isocitric, succinic, 
and lactic dehydrogenase, and increased glucose-6-phosphate dehydrogenase 
activities, demonstrated histochemically, in livers of mice infected with MHVS 
(18). The experiments described in this paper show that the growth of two 
viruses in host cell systems, one in vivo and one in vitro, is accompanied by 
activation of lysosomal enzymes. The activation is manifested in most cases by 
an increase in total enzyme activity and in all by an increase in enzyme activity 
in the supernatant fraction. The latter reflects escape of enzymes from cell 
organelles (lysosomes) into the cytoplasm (6, 7). The question then arises 
whether the activation of lysosomal enzymes in virus-infected cells precedes 
cell damage and contributes to this process, or whether the enzymes are acti- 
vated in cells the metabolism of which is already severely disturbed and which 
are in any case moribund. This question is di/ficult to answer directly, but 
several points favour the former interpretation. 

The first point is that the results here described are not an artefact of ho- 
mogenization. Allison and Burstone (10) have found that in sections of livers 
of mice infected with MHV3 and examined histochemically there is a marked 
focal activation of acid phosphatase, which is diffuse and not particulate, as 
in normal cells. In recent unpublished experiments using histochemical tech- 
niques designed for analysis of lysosomes (19), marked activation of lysosomal 
enzymes was visible in livers of mice 48 hours after infection with MHV3. 

This is the second point: that activation of lysosomal enzymes, as demon- 
strated both biochemically and histochemically, precedes visible cell damage; 
however, it must be recognized that histological change is a rather insensitive 
indicator of incipient cell degeneration. The third point is that virus multi- 
plication can occur in the absence of marked cytopathic effects. This suggests 
that the metabolic changes associated with virus multiplication (in particular, 
synthesis of viral nucleic acid and protein) are not necessarily damaging to 
cells. Hence the analogy which is sometimes quoted with unbalanced or lethal 
synthesis in thymineless strains of bacteria or bacteria grown in the presence of 
5'-fluorodeoxynridine (Cf. reference 20) does not seem to be close. In any case, 
there is evidence that in thymineless strains of bacteria abnormal I)NA with 
single chain scission is present, possibly owing to nuclease activity (21). Marked 
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activation of DNAase and RNAase in bacteria shortly after phage infection 
has been recognizedfor a number of years (20). Inthis connection Baltimore and 
Franklin (22) have recently reported inhibition of nuclear RNA synthesis in L 
cells infected with mengovirus. They suggest that this will interfere with pro- 
tein synthesis and lead to eventual cell death. They recognize, however, that 
this cannot be the complete explanation of viral cytopathogenesis since actin- 
omycin D-treated cells, in which nuclear RNA synthesis is inhibited to the 
same degree, show much less drastic morphological changes. 

Lysosomes might conceivably participate in three stages in the life cycle of 
animal viruses: during penetration of the virus into the host cell, during virus 
growth and during virus release. Evidence is accumulating that animal viruses 
are taken into cells by a process akin to pinocytosis and appear to disintegrate 
within pinocytotic vacuoles (Cf. reference 23). In other situations in which 
pinocytosis or phagocytosis occurs, including uptake of bacteria by mammalian 
leucocytes, there is activation of lysosomes around the pinocytotic vacuoles 
(8, 24) and the same may occur during penetration of animal viruses. Possibly 
lysosomal enzymes participate in the "uncoating" mechanism by which virus 
nucleic acid is released, in which case the nucleic acid would have to emerge in 
a form resistant to the action of lysosomal nucleases. 

Lysosomal enzymes might also be involved in the breakdown of host cell 
polynucleotides which results in a markedly increased pool of acid-soluble 
nucleotides in infected cells (25). In the same cell-virus system, HeLa cells 
infected with herpes simplex, Dr. A. Newton (private communication) has 
found an increase in acid DNAase reaching a maximum 6 hours after infection. 
Hanafusa (26) has reported increased DNAase activity in vaccinia-infected L 
cells, but has not characterized the enzyme as lysosomal. Kovacs et al. (27) have 
reported an early increase in acid RNAase after infection with poliovirus in 
most preparations of HeLa cells studied. They also reported an abrupt rise in 
diffusible acid phosphatase in supernatant of infected cell cultures; in the same 
supernatants glucose-6-phosphatase was only slightly increased, and it was 
concluded that only the lysosomal enzyme is liberated 3 to 6 hours after infec- 
tion. Activity of phosphatase, and another lysosomal enzyme, phosphoprotein 
phosphatase (28) might contribute to the increased intraceUular pool of phos- 
phate and phosphate acceptor, and concomitant enhancement of glycolysis, 
which is a common feature of virus-infected cells (Cf. reference 20) 

Thirdly, lysosomal enzymes might play a part in cell degeneration, which 
facilitates the liberation of viruses the synthesis of which is not completed at 
or near the cell surface, e.g. adenoviruses, which are packed in nuclei. It  also 
seems likely that some of the changes in virus-infected cells shown in published 
electron micrographs are due to enlargement and alteration in the structure of 
lysosomes, and damaging effects of lysosomal enzymes on mitochondria. 
Examples are the myelin figures and large bodies observed by Svoboda et al. 
(29) in livers of mice infected with MHV3. 
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Why lysosomal enzymes should sometimes be activated in virus-infected 
cells is unknown, but certain metabolic changes may favour this process. Thus, 
quite brief periods of anoxia are sufficient to cause activation of liver cell 
lysosomal enzymes (6); the lysosomes are also highly sensitive to acidic condi- 
tions (6), and possibly a fall in intracellular pH follows viral infection. Agents 
such as benadryl which limit cell damage after mouse hepatitis virus infection 
(5) also reduce damage due to administration of carbon tetrachloride and other 
noxious agents, in which release of lysosomal enzymes is believed to play a 
part (6). Conceivably agents such as benadryl act by stabilizing lysosomal and 
other intracellular membranes. According to the view here advanced, degenera- 
tion of cells after virus infection is a process similar to that induced by other 
agents. The fact that a wide range of viruses can produce such effects suggests 
that a common mechanism may be responsible and that it is unnecessary to 
postulate the existence of virus-specific enzymes to explain the observed 
metabolic and morphological changes in infected cells. 

SUMMARY 

Activities of the enzymes fl-glucuronidase, acid phosphatase, acid DNAasc, 
acid RNAasc, and acid protease have been measured in the lysosomal and 
supernatant fractions of mouse liver cells and monkey kidney ceils before and 
after infection with mouse hepatitis virus and vaccinia virus, respectively. 

In the infected cells there was easily measurable release of lysosomal enzymes 
into the supernatant fraction. Evidence was presented that this is not an arte- 
fact of homogenization and precedes cell degeneration demonstrable histologi- 
cally. 

It is suggested that relcase of lysosomal cnzymes may explain some of the 
biochemical changes found in infected cells and may contribute to the cyto- 
pathic effects of some viruses. 

This work was undertaken while K. Sandclin was in receipt of a British Council Schol- 
arship. 
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