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A phosphoinositide kinase specific for the D-3 position of the inositol ring, phosphatidylinositol (PI) 3-kinase,
associates with activated receptors for platelet-derived growth factor, insulin, and colony-stimulating factor 1,
with products of the oncogenes src, fms, yes, crk, and with polyomavirus middle T antigen. Efficient fibroblast
transformation by proteins of the abl and src oncogene families requires activation of their protein-tyrosine
kinase activity and membrane association via an amino-terminal myristoylation. We have demonstrated that
the PI 3-kinase directly associates with autophosphorylated, activated protein-tyrosine kinase variants of the
abl protein. In vivo, this association leads to accumulation of the highly phosphorylated products of PI 3-kinase,
PI-3,4-bisphosphate and PI-3,4,5-trisphosphate, only in myristoylated, transforming abl protein variants.
Myristoylation thus appears to be required to recruit PI 3-kinase activity to the plasma membrane for in vivo
activation and correlates with the mitogenicity of the ab! protein variants.

The protein-tyrosine kinase activities of several growth
factor receptors and oncogene products have been impli-
cated in mitogenesis and transformation. Kinase-inactive
mutants of the platelet-derived growth factor (PDGF) recep-
tor and other protein-tyrosine kinase-containing receptors
fail to stimulate cell division in response to their respective
ligands (5, 6, 10, 14, 15), and kinase-defective v-abl, v-fps,
and v-src oncogene mutants do not transform cells, suggest-
ing that protein-tyrosine phosphorylation regulates critical
events in the control of cell proliferation (2, 32, 35, 42).
Whereas the growth factor receptors are transmembrane
proteins with ligand-binding properties, cellular proteins of
the abl and src oncogene families associate with the inner
surface of the plasma membrane via amino-terminal myris-
toylation. src and abl protein mutants which cannot be
myristoylated no longer associate with the plasma mem-
brane and are defective in cell transformation (7, 13, 25, 33).
These observations suggest either that the critical substrates
of the tyrosine kinases are at the plasma membrane or that
the substrates must be recruited to the plasma membrane
following activation of the protein-tyrosine kinases.

Several enzymes that participate in signal transduction in
association with protein-tyrosine kinases have recently been
described. Phosphatidylinositol (PI)-specific phospholipase
C gamma is phosphorylated on tyrosine and associates with
the PDGF and epidermal growth factor receptors following
ligand binding (20, 24, 27, 41). Activation of phospholipase C
is temporally linked to activation of several growth factor
receptors and with cell transformation induced by onco-
genes. ras-GAP (ras GTPase-activating protein) and the
proto-oncogene c-raf also form a complex with the PDGF
receptor following ligand binding (21, 29, 30, 31). A phos-
phoinositide kinase that phosphorylates the D-3 position of
the inositol ring (PI 3-kinase), associates with the receptors
for PDGF, insulin, epidermal growth factor, and colony-
stimulating factor 1 (CSF-1), with products of the oncogenes
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src, fms, yes, crk, and with polyomavirus middle T antigen
(mT) (11, 12, 19, 34, 38, 40, 44). PI 3-kinase has been purified
to homogeneity from rat liver and contains 110- and 85-kDa
subunits (4). The 85-kDa subunit of PI 3-kinase is found in a
complex with the PDGF-R and mT/pp60°*" and is phos-
phorylated on serine and tyrosine residues (19). Elevated
levels of PI 3-kinase products are found in cells stimulated
with growth factors and in transformed cells (1, 36, 40). The
role that these phospholipids play in mitogenesis in un-
known, but they may act as a novel second messenger
system.

We investigated whether PI 3-kinase is activated by nor-
mal and transforming abl proteins. The v-abl protein trans-
forms NIH 3T3 fibroblasts, whereas the BCR/abl fusion
protein associated with chronic myelogenous leukemia
transforms pre-B lymphocytes but not NIH 3T3 fibroblasts
(8,9, 26, 33). A variant of the BCR/abl protein which carries
the retrovirus gag protein sequence at its N terminus (gag/
BCR/abl protein) efficiently transforms NIH 3T3 fibroblasts
and resembles the v-abl protein in its leukemogenic proper-
ties in vivo (9). The gag/BCR/abl protein associates in part
with the plasma membrane (7a.), presumably through the
myristoylated N terminus. Naturally occurring c-abl protein
types are weak protein-tyrosine kinases and do not trans-
form fibroblasts even when expressed at very high levels,
whether or not they are myristoylated (16, 39). Structural
deletions at the c-abl protein N terminus result in activation
of protein-tyrosine kinase activity, phosphorylation of the
abl proteins on Tyr residues in vivo, and transformation (16).
In the present study, we report that certain cellular products
of PI 3-kinase are elevated only in cells expressing trans-
forming variants of the abl protein.

MATERIALS AND METHODS

Cell lines. All cell lines were derived from NIH 3T3 cells
and maintained in Dulbecco’s modification of Eagle’s me-
dium (DMEM) supplemented with 10% calf serum and
antibiotics. The transformed cell line expressing v-abl was
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generated by cotransfection of a construct encoding the
160-kDa gag/v-abl protein (v-abl protein) with Moloney
helper virus. The generation of transformed cell lines ex-
pressing gag/BCR/abl, the c-abl mutant AXB, and the non-
transformed cell lines expressing high levels of c-abl type IV
and p210 (BCR/abl) proteins has been described previously
9, 16).

The cell line expressing the gag/BCR/abl (gag p210) fusion
protein carries a cloned facsimile of the spontaneously
arising p220 gag/BCR/abl protein which was made by fusing
retrovirus gag sequences derived from v-abl to a BCR
sequence by using the 5’ Hincll site in v-abl and the Hincll
site at position 1194 in the BCR sequence (9, 28). This gene
encodes a gag/BCR/abl! protein of 210 kDa, with the first 240
amino acid residues of the gag protein replacing the first 241
residues of BCR. When expressed in a retrovirus construct,
this protein readily transforms NIH 3T3 fibroblasts. The
AxB-K290M mutant was made by oligonucleotide-directed
mutagenesis of the lysine at position 290 of the tyrosine
kinase domain (16a). This residue, which is involved in ATP
binding (18), was mutated to methionine. Constructs speci-
fying the AxB-K290M mutant were cotransfected at a high
molar ratio (10:1) with a plasmid carrying the neo gene,
which determines resistance to the antibiotic G418. After
selection of G418-resistant clones, the clones were screened
for high levels of protein expression. The expressed protein
is defective in protein-tyrosine kinase function and is unable
to transform fibroblasts (16a).

Cell lines were considered transformed on the basis of the
following criteria: round and refractile morphology, growth
to high density, and ability to form colonies after suspension
in semisolid agar medium. Both transformed and nontrans-
formed NIH 3T3 cells expressed abl protein variants at high
levels relative to endogenous c-abl protein.

Association of PI 3-kinase activity with abl oncoproteins in
vitro. Immunoprecipitable PI 3-kinase was obtained by using
monoclonal antibody directed against either phosphoty-
rosine (anti-P-Tyr antibody was a gift of Brian Drucker) or
C-terminal abl protein determinants (monoclonal antibody
2421 was a gift of Naomi Rosenberg). NIH 3T3 cells express-
ing mutant abl proteins were grown in DMEM-10% calf
serum to confluence for nontransformed cells and to high
density for transformed cells. Cells were deprived of serum
for 2 to 3 doubling times (36 to 48 h). Cells were lysed in
buffer containing 1% Nonidet P-40 as described previously
(44). Lysates were incubated with the appropriate antibody
for 3 h and collected on protein A-Sepharose beads (Sigma).
The beads were washed extensively with lysis buffer, phos-
phate-buffered saline (PBS), 0.5 M LiCl, and TNE buffers as
described previously (44). Immunoprecipitable PI kinase
activity was assayed in 25 mM HEPES (N-2-hydroxyeth-
ylpiperazine-N’-2-ethanesulfonic acid) buffer (pH 7.8)-5 mM
MgCl, in the presence of a 0.2-mg/ml mixture of specific
phospholipids with phosphatidylserine as a carrier (the lipids
were dried under nitrogen and sonicated for 10 min in 25 mM
HEPES [pH 7.8]-1 mM EDTA prior to addition). The
reaction was initiated by the addition of 100 pM ATP and 20
1Ci of [y->?P]JATP and stopped after 5 min with an equiva-
lent volume of 0.1 M HCI. The lipids were extracted into
methanol-chloroform as described previously (44). A frac-
tion of extracted lipids was separated by thin-layer chroma-
tography in chloroform-methanol-H,0-concentrated NH,OH
(60:47:11.3:2) and visualized by autoradiography. The re-
maining phospholipids were subjected to deacylation and
fractionated by high-performance liquid chromatography
(HPLC) (1, 40). In several experiments, cells were exposed
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to 10 nmol of PDGF-BB per ml for 10 min prior to lysis to
measure cell viability and activation of endogenous PI
3-kinase.

Identification of PI 3-kinase products in vitro and in vive. A
fraction of phospholipids generated in the in vitro PI kinase
assay was deacylated in methylamine as described previ-
ously (1), suspended in 400 wl of H,O with appropriate *H
standards, and separated by HPLC on a Partisphere SAX
column with an (NH,),HPO, gradient (0 to 1 M) (40). For in
vivo labeling and phospholipid identification, cells were
grown to confluence (nontransformed) or high density (trans-
formed) and deprived of serum for 48 h as described above.
The cells were labeled with 32P; (0.1 mCi/ml) in phosphate-
free minimal essential medium (MEM) for 3 h prior to lysis.
Cells were washed with iced MEM and scraped into 0.5 ml of
1 M HCI per 107 cells, and the phospholipids were extracted
into chloroform-methanol (2:1). Lipid extracts were deacy-
lated and analyzed by HPLC.

RESULTS

Association of PI 3-kinase with abl oncoproteins. Cell ly-
sates were analyzed for PI kinase activity by an in vitro
immune complex lipid kinase assay. An active PI kinase was
detected in anti-P-tyr and anti-abl protein immunoprecipi-
tates from fibroblasts expressing the v-abl, AXB, BCR/abl,
and gag/BCR/abl proteins (Fig. 1B, lanes 2 to 11) but not in
immunoprecipitates from control NIH 3T3 cells, cells ex-
pressing high levels of normal c-abl type IV protein (Fig. 1A,
lanes 1 and 3, and 1B, lanes 1 and 12), or cells expressing a
kinase-activity-defective mutant protein (A x B-K290M; data
not shown). Similar results were observed when anti-P-Tyr
or anti-abl protein monoclonal antibodies were used (Fig.
1B). In nontransfected control cells and cells overexpressing
the c-abl type IV protein, anti-P-Tyr-immunoprecipitable PI
kinase activity was detected only following stimulation with
PDGF-BB (Fig. 1A, lanes 2 and 4). However, fibroblasts
expressing BCR/abl protein were not transformed but still
had immunoprecipitable PI 3-kinase activity. This activity
was detected by using anti-P-Tyr or anti-abl protein antibod-
ies (Fig. 1B, lanes 6 and 9). The anti-P-Tyr-immunoprecipi-
table PI 3-kinase activity increased further to levels compa-
rable to those detected in control NIH 3T3 cells in response
to PDGF-BB (Fig. 1B, lanes 6 and 7). A phosphoprotein
which comigrated with an 85-kDa phosphoprotein from
PDGF-stimulated NIH 3T3 fibroblasts and cells expressing
the kinase-inactive K290M mutant protein was phosphory-
lated in anti-abl protein immunoprecipitates from cells trans-
formed by the AXB mutant protein (Fig. 2). Similar protein
results were obtained with cells expressing gag/BCR/ab!
proteins (data not shown).

Identification of the product of immunoprecipitable PI
kinase. The products of the lipid kinase activity detected in
the anti-abl protein immunoprecipitates were deacylated and
identified by HPLC. Under the conditions of the assay (i.e.,
absence of detergents [43]), most of the newly formed
phospholipid was PI-3-P (Fig. 3). Similar results were ob-
tained when anti-P-Tyr antibodies were used (data not
shown). These results establish that PI 3-kinase directly
associates with abl protein variants which exhibit activated
protein-tyrosine kinase activity, including the nontransform-
ing BCR/abl protein.

Accumulation of PI 3-kinase products in intact cells. In
quiescent NIH 3T3 fibroblasts, PI-3-P is approximately 4%
as abundant as PI-4-P, but the content of PI-3,4-bisphos-
phate (PI-3,4-P,) and PI-3,4,5-trisphosphate (PIP,) is gener-
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FIG. 1. Association of PI kinase activity with abl proteins. (A)
PIP formed by immunoprecipitates from control NIH 3T3 cells
(lanes 1 and 2) and cells over expressing c-abl type IV protein (lanes
3 and 4). Cells were grown to confluency in 100-mm plates and
brought to quiescence in DMEM supplemented with 1% bovine
serum albumin for the last 48 h of culture. A duplicate plate of each
cell line was exposed to 10 ng of PDGF-BB per ml for 10 min (lanes
2 and 4). Cells were lysed in a buffer containing 1% Nonidet P-40,
and PI kinase was immunoprecipitated by using monoclonal anti-P-
Tyr antibody and protein A-Sepharose beads. PI (0.1 mg/ml) was
used as the substrate with 0.1 mg of phosphatidylserine per ml as a
carrier with 100 pM ATP and 20 uCi of [y-*>P]JATP. The reaction
was terminated by addition of 1 N HCl, and the phospholipids were
extracted into chloroform-methanol (2:1), dried under N,, separated
by thin-layer chromatography as described in Materials and Meth-
ods, and visualized by autoradiography. The migration position of
the newly formed PIP was detected by using nonradioactive PIP
which was run in parallel with the samples and visualized by
exposure to iodine vapors. (B) PIP formed in immunoprecipitates
from whole-cell lysates obtained from control NIH 3T3 cells (lanes
1 and 12) and cells expressing v-abl (lanes 2 and 11), gag/BCR/abl
(lanes 3 and 10), AXB (lanes 4, 5, and 8), and BCR/ab! (lanes 6, 7,
and 9) proteins. In lanes S and 7 cells were exposed to PDGF-BB for
10 min prior to harvest. PI kinase activity was assayed in the
immunoprecipitates obtained by using monoclonal anti-P-Tyr (lanes
1 to 7) or monoclonal anti-abl! protein (lanes 8 to 12) antibodies. The
lipid kinase reaction was performed as described above. The prod-
ucts were separated by thin-layer chromatography and visualized by
autoradiography.

ally below the detection limit (as judged by incorporation of
[*Hlinositol; <0.5% of PI-4-P [36]). Detectable incorporation
of *Hlinositol or *?P, into PI-3,4-P, and PIP, appeared upon
stimulation with PDGF, CSF-1, and insulin (1, 34, 40).
Levels of the same lipids are elevated in cells transformed by
polyomavirus mT (36). If expression of transforming abl
proteins activates PI 3-kinase, the steady-state levels of PI
3-kinase products should be at least transiently elevated.
Fibroblasts expressing abl protein variants were deprived of
serum and labeled with 32P0O,>~. Total lipids were extracted,
deacylated, and analyzed by HPLC as described above.
Fibroblasts transformed by v-abl, AXB, and gag/BCR/abl
proteins had detectable levels of PI-3,4-P, and PIP;. Figure
4 shows a representative HPLC profile identifying the PI-
3-P, PI-3,4-P,, and PIP, products in cells transformed by
gag/BCR/abl protein in comparison with cells expressing
BCR/abl protein and control NIH 3T3 cells. The pattern of
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FIG. 2. Detection of an 85-kDa phosphoprotein in immunopre-
cipitates from cells expressing transforming AxB protein. Anti-P-
Tyr immunoprecipitates from cells overexpressing the K290M ty-
rosine kinase-inactive mutant protein (lanes 1 and 2), control NIH
3T3 cells (lanes 3 and 4), and anti-abl protein immunoprecipitates
from cells expressing transforming A x B protein (lanes 5 and 6) were
washed as described in Materials and Methods and assayed for
protein kinase activity in the presence of S mM MnCl;, 100 pM
ATP, and [y-*>P]ATP. After 5 min, the reaction was stopped by the
addition of sodium dodecylsulfate (SDS)-containing buffer, and the
mixture was heated at 70°C for 5 min. Proteins were resolved by
SDS-10% polyacrylamide gel electrophoresis and identified by
autoradiography. PDGF-BB (10 pg/ml) was added to the cells for 10
min prior to cell lysis as indicated at the top. The lines represent the
molecular mass markers at 201, 116, 77, and 46 kDa (Bio-Rad). The
85-kDa phosphoprotein is identified by an arrow.

phospholipids in the transformed cell lines was similar to
that found in PDGF-stimulated smooth muscle cells, CSF-
1-stimulated fibroblasts which express the human CSF-1
receptor, and polyomavirus-transformed fibroblasts (1, 36,
40). Very low incorporation of 2P (<0.5% of the total) was
detected in PI-3,4-P, or PIP, in control NIH 3T3 cells (Fig.
4B and C and Fig. 5) or in nontransformed cells expressing
high levels of the normal c-abl type IV protein or AXB
kinase-deficient mutant protein (AXB-K290M) (data not
shown). Quiescent cells expressing nontransforming BCR/
abl protein had low but detectable incorporation of *2P into
PI-3,4-P,, at about one-half of that found in transformed
cells, and no detectable label in PIP, (Fig. 4B and C and Fig.
5), which increased to levels comparable to those detected in
control NIH 3T3 cells in response to PDGF-BB (data not
shown).

DISCUSSION

Transforming variants of the abl protein exhibit an acti-
vated protein-tyrosine kinase activity and are phosphory-
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FIG. 3. ldentification of polyphosphoinositides produced by im-
munoprecipitable PI kinase. NIH 3T3 cells expressing the BCR/abl
oncoprotein were grown to confluence and lysed. PI kinase activity
was immunoprecipitated by using monoclonal anti-abl protein anti-
body as described in the legend to Fig. 1. The PI kinase assay was
performed with PI as the substrate in the presence of phosphatidyl-
serine as a carrier. The products were extracted into the organic
phase, dried under N,, deacylated, and separated by HPLC as
described in Materials and Methods. Closed triangles represent the
deacylated product of PIP (gPIP) produced by anti-abl protein mono-
clonal antibody-immunoprecipitable PI kinase from quiescent cells
which express the BCR/ab! protein. The solid line represents the
deacylated [*H]PI-4-P standard (NEN) coinjected with the sample.

lated on tyrosine residues in vivo. Normal c-abl protein has
relatively low but detectable protein-tyrosine kinase activity
in vitro. However, c-abl protein is not phosphorylated on
tyrosine residues in vivo and does not transform NIH 3T3

FIG. 4. HPLC identification of polyphosphoinositides in intact
cells. Control NIH 3T3 cells and cells expressing BCR/abl and
transforming gag/BCR/abl proteins were labeled with 0.1 mCi of
32p03~ per ml for 3 h prior to harvest. At the end of the labeling
period, cells were rinsed in serum-free medium, 1 ml of 1 N HCl was
added to each plate, and total phospholipids were extracted into
chloroform-methanol (2:1), dried under N,, deacylated, and sepa-
rated by HPLC as described in Materials and Methods. (A) HPLC
tracing corresponding to gPI-3-P and gPI-4-P; (B) HPLC tracing
corresponding to gPI-3,4-P, and gPI-4,5-P,; (C) HPLC tracing
corresponding to IP;, PIP;, and IP,. Symbols: A, 3P incorporated
into deacylated phospholipids extracted from control NIH 3T3 cells;
0, deacylated phospholipids from cells expressing BCR/abl protein;
A, deacylated phospholipids from cells expressing gag/BCR/abl
protein; , >H standards (NEN) coinjected with the *?P-labeled
cell extracts. The data from each experiment were normalized to 0.2
x 108 total cpm. The actual total counts per minute were as follows:
NIH 3T3 cells, 89,300 dpm; BCR/ab! protein-expressing cells,
131,500 dpm; gag/BCR/abl protein-expressing cells, 121,200 dpm (in
PI-4-P plus P1-4,5-P,). The ratio of 3P incorporated (PI/PI-4-P/PI-
4,5-P,) was not significantly different in each of the experiments. In
some experiments a small amount of I-1,4,5-P; appears in the
deacylated lipids (C) due to hydrolysis of PI-4,5-P,. The peak
following gPI-4,5-P, in panel B (59 min) has not been identified.
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FIG. 5. Total 2P incorporated into D-3-phosphorylated phosphoinositides in control and transfected NIH 3T3 cells. The total 2P
incorporated into D-3-phosphorylated polyphosphoinositides is expressed as the percentage of 3*PO,~ incorporated into PI-4-P plus
PI-4,5-P,. Symbols: [J, results obtained from control NIH 3T3 cells (average of two experiments; the individual results are represented by
black dots); B, results from cells expressing BCR/abl! protein (three experiments; error bars are the standard deviations); M, results from cells

expressing gag/BCR/abl protein (four experiments; error bars are the standard deviations).

cells even when expressed at high levels (16; Fig. 6). We
have shown that tyrosine-kinase-active forms of the abl

protein associate with PI 3-kinase. An 85-kDa protein with a

migration position similar to that of the 85-kDa subunit of PI
3-kinase was phosphorylated in vitro in anti-abl protein

type 1V c-abl

AXB
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immunoprecipitates from AXB and gag/BCR/abl protein-
transformed cells.

The inability of the normal c-abl type 1V protein and the
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AxB kinase-deficient mutant protein (A X B-K290M) to asso-
ciate with PI 3-kinase suggests that protein-tyrosine kinase
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activity is necessary for association of abl proteins with PI
3-kinase and implicates PI 3-kinase as an important target in
transformation.

In addition to an activated protein-tyrosine kinase, the abl
protein appears to need amino (N)-terminal myristoylation
for efficient transformation of fibroblasts. The v-abl onco-
gene product and AXB mutant protein have the myristoyla-
tion sequence and efficiently transform cells. The BCR/abl
protein lacks the myristoylation sequence and fails to trans-
form NIH 3T3 cells, although it does confer growth factor
independency for some lymphocyte cell lines (8, 26) and
weakly transforms Rat-1 cells (23). Attachment of the retro-
virus gag protein sequence to the N terminus of the BCR/ab!
protein provides a myristoylation sequence and makes this
gene product strongly transforming for NIH 3T3 fibroblasts
(9). The importance of amino-terminal myristoylation is also
supported by results obtained with v-abl and AXB gene
products which lack the myristoylation sequence and fail to
transform fibroblasts (16a).

The characteristics of the abl protein variants which were
studied are summarized in Fig. 6. Mutants in which the abl
protein failed to activate PI 3-kinase had decreased levels of
PI-3,4-P, and extremely low levels of PIP; and were trans-
formation defective. The BCR/ab! protein has high protein-
tyrosine kinase activity and associates with PI 3-kinase but is
not transforming. Significantly, cells transfected with the
BCR/abl gene did not have detectable PIP,. These results
suggest that mere association of the PI 3-kinase with an
activated protein-tyrosine kinase is insufficient to increase
the level of products of the enzyme in intact cells. The
implication is that amino-terminal myristoylation is also
needed to place the abl protein/PI 3-kinase complex at a
membrane location where lipid phosphorylation can occur
efficiently. Thus, transformation by the abl oncogene prod-
uct correlates better with the cellular levels of PIP; than with
abl-associated PI 3-kinase activity. An analogous pp60*~"°
mutant protein, which lacks the amino-terminal myristoyla-
tion sequence, was also found to associate with PI 3-kinase
(11) but not to transform fibroblasts (17). However, the
levels of PI-3,4-P, and PIP, in vivo were not investigated.
The present results predict that PIP; would not be present
under quiescent conditions in those cells.

The role of D-3-phosphorylated polyphosphoinositides in
signal transduction is unclear. The pathways for synthesiz-
ing and degrading these lipids are complicated and appear to
be regulated at multiple steps by different growth factors and
hormones (3). As a consequence, the cellular ratios of PI-3-P
to PI1-3,4-P, to PIP, vary dramatically in response to growth
factors, hormones, and transformation by oncogenes. Al-
though PI-3,4-P, and PIP, can be produced by phosphory-
lation of PI-4-P and PI-4,5-P,, respectively, by a purified PI
3-kinase (4), an alternative pathway for PI-3,4-P, synthesis
exists, involving phosphorylation of PI-3-P at the D-4 posi-
tion (45). None of the D-3-phosphorylated lipids is a sub-
strate for the PI-specific phospholipases C that have been
investigated (22, 37), indicating that the appearance of these
lipids is controlled independently of the canonical PI turn-
over pathway. Thus far, the evidence that these lipids
regulate growth is based on mutational studies of growth
factor receptors and oncogenes. Further biochemical studies
to determine their cellular targets are under way.
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