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Abstract Mutations in the P53 pathway are a hallmark of human cancer. The identification of

pathways upon which p53-deficient cells depend could reveal therapeutic targets that may spare

normal cells with intact p53. In contrast to P53 point mutations in other cancer, complete loss of

P53 is a frequent event in osteosarcoma (OS), the most common cancer of bone. The consequences

of p53 loss for osteoblastic cells and OS development are poorly understood. Here we use murine

OS models to demonstrate that elevated Pthlh (Pthrp), cAMP levels and signalling via CREB1 are

characteristic of both p53-deficient osteoblasts and OS. Normal osteoblasts survive depletion of

both PTHrP and CREB1. In contrast, p53-deficient osteoblasts and OS depend upon continuous

activation of this pathway and undergo proliferation arrest and apoptosis in the absence of PTHrP

or CREB1. Our results identify the PTHrP-cAMP-CREB1 axis as an attractive pathway for

therapeutic inhibition in OS.

DOI: 10.7554/eLife.13446.001

Introduction
Mutations within the P53 pathway occur in all human cancers (Hanahan and Weinberg, 2011). While

the mutation of TP53 itself is a common event, how this contributes to the initiation of cancer is

incompletely understood. The most prevalent mutations are point mutations that result in proteins

with altered function (Olivier et al., 2010). Extensive analysis of these mutations using mouse mod-

els has revealed the pervasive cellular consequences of mutant P53 (Bieging and Attardi, 2012;

Bieging et al., 2014; Goh et al., 2011). In osteosarcoma (OS), the most common primary tumour of

bone, unique genomic rearrangements and other mutation types most often result in null alleles of

P53 (Ribi et al., 2015; Chen et al., 2014). The reason for this distinct TP53 mutational preference in

osteoblastic cells, the lineage of origin of OS, is not understood, nor are the signaling cascades that

are altered in p53-deficient osteoblastic cells that facilitate the initiation of OS. Understanding how

the loss of P53 modifies osteoblast precursor cells to enable OS initiation will provide new avenues

to improve clinical outcomes.

OS occurs predominantly in children and teenagers and 5 year survival rates have plateaued at

~ 70% for patients with localised primary disease and ~20% for patients with metastatic or recurrent
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disease (Janeway et al., 2012; Mirabello et al., 2009). The advances in the understanding of OS

biology and genetics have brought limited patient benefit to date or changes in clinical manage-

ment. Sequencing of OS using both whole genome and exome approaches identified the universal

mutation of TP53 accompanied by recurrent mutation of RB1, ATRX and DLG2 in 29%-53% of cases

(Ribi et al., 2015; Chen et al., 2014; Perry et al., 2014). The OS predisposition of Li-Fraumeni

patients and mouse models support the key role of p53 mutation in OS: Trp53+/- and Trp53-/- mice

develop OS in addition to other tumors while conditional deletion of Trp53 in the osteoblastic line-

age results in full penetrance OS, largely in the absence of other tumor types (Mutsaers and Walk-

ley, 2014; Donehower et al., 1992; Quist et al., 2015; Wang et al., 2006; Lengner et al., 2006;

Zhao et al., 2015). The consequence of p53 loss in osteoblastic cells is only understood to a limited

extent. A more complete understanding of the pathways impacted by loss of p53 will be important

to understanding the rewiring of osteoblastic cells that underlies OS initiation.

Genetic association studies (GWAS) in OS have identified changes in cyclic AMP (cAMP) related

processes as predisposing to OS. A GWAS defined two OS susceptibility loci in human: the metabo-

tropic glutamate receptor GRM4 and a region on chromosome 2p25.2 lacking annotated transcripts

(Savage et al., 2013). GRM4 has a role in cAMP generation. A GWAS in dogs with OS identified var-

iants of GRIK4 and RANK (TNFRSF11A), both involved in cAMP pathways (Karlsson et al., 2013).

Using a murine OS model induced by an osteocalcin promoter-driven SV40T/t, OS were identified

that deleted a regulatory subunit of the cAMP-dependent protein kinase (PKA) complex, Prkar1a, or

with amplification of Prkaca, the PKA catalytic component (Molyneux et al., 2010). A recent trans-

poson mediated mutagenesis OS model recovered both activating and inactivating mutations within

cAMP related pathways, but no functional analysis was performed (Moriarity et al., 2015). Evidence

from multiple species implicates enhanced cAMP-PKA activity in OS. Osteoblastic cells are highly

sensitive to cAMP levels, and major regulators of the osteoblast lineage such as PTHrP/PTH increase

cAMP and activate cAMP-dependent signaling (Juppner et al., 1991). The requirement for these

pathways in OS initiation and maintenance has not been tested.

Parathyroid hormone (PTH) and PTH-related protein (PTHrP) are key regulators of osteoblast and

skeletal homeostasis (McCauley and Martin, 2012; Martin, 2016). PTHrP and PTH activate their

common receptor, PTHR1 (Suva et al., 1987; Juppner et al., 1988). Binding to PTHR1 on osteo-

blasts or OS cells activates adenylyl cyclase, stimulates cAMP production, followed by PKA activa-

tion, leading to many of the transcriptional changes associated with PTH/PTHrP treatment

(Gardella and Jüppner, 2001; Pioszak and Xu, 2008; Swarthout et al., 2002; Partridge et al.,

1981). In normal osteoblasts PTHrP is produced by osteoblastic lineage cells and acts in a paracrine

eLife digest Bone cancer (osteosarcoma) is caused by mutations in certain genes, which results

in cells growing and dividing uncontrollably. In particular, a gene that produces a protein called P53

in humans is lost in all bone cancers. However, we don’t understand what happens to the bone cells

when they lose P53. Although a number of studies have identified several molecular pathways that

are changed in bone cancers – such as the cyclic AMP (cAMP) pathway – how these interact to cause

a cancer is not well understood.

Walia et al. compared bone-forming cells from normal mice with cells from mutant mice from

which the gene that produces the mouse p53 protein could be removed. This revealed that the loss

of p53 causes these cells to grow faster. The activity of the cAMP pathway also increases in p53-

deficient cells. Further investigation revealed that the cells grow faster only if they are able to

activate the cAMP pathway, and that this pathway needs to stay active for bone cancer cells to grow

and survive. This suggests that inhibiting this pathway could present a new way to treat bone

cancer.

Walia et al. confirmed several of their findings in human cells. Future studies will now investigate

how the loss of the P53 protein in humans activates the cAMP pathway, which will be important for

understanding how this cancer forms. It will also be worthwhile to begin testing ways to block this

pathway to determine whether it is a useful target for therapies.

DOI: 10.7554/eLife.13446.002
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manner upon other osteoblastic cells at different stages of differentiation (Martin, 2005;

Miao, 2005). The long-term administration of PTH(1–34) resulted in a high incidence of OS in rats

(Vahle et al., 2002). Elevated expression of PTHR1 is a feature of human and rodent OS

(Martin et al., 1976; Yang et al., 2007). PTHrP was expressed in murine OS subtypes (Ho et al.,

2015), placing it as a plausible ligand for activating PTHR1 signaling. It is presently unknown how

PTHrP might act in OS. The consequence of PTH/PTHrP signaling via cAMP-PKA is phosphorylation

of the cAMP response element binding (CREB1) protein (Datta and Abou-Samra, 2009). CREB1

regulates gene expression through the activation of cAMP-dependent or -independent signal trans-

duction pathways (Mayr and Montminy, 2001).

We sought to understand how loss of p53 leads to the initiation of OS. We identified that an early

consequence of p53 deletion in osteoblastic cells was increased cAMP levels and the autocrine acti-

vation of cAMP signalling via PTHrP. This same signaling node is active in OS and was important in

both the initiation and maintenance of OS. The activation of the PTHrP-cAMP-CREB1 axis was

required for the hyperproliferative phenotype of Trp53 deficient osteoblasts and the maintenance of

established OS, identifying this as a tractable pathway for therapeutic inhibition in OS.

Results

cAMP and CREB1 dependent signaling are activated in Trp53 -deficient
osteoblasts
As inactivating mutations of TP53 are universal in conventional OS, we used this to model an OS ini-

tiating lesion (Chen et al., 2014). Primary osteoblasts were isolated from R26-CreERT2ki/+Trp53+/+

(WT) and R26-CreERT2ki/+Trp53fl/fl (KO) animals and in vitro tamoxifen treatment was used to induce

deletion of p53. Over 20 days culture, a loss of expression of p53 target genes in the KO cultures +

tamoxifen occurred, compared to both WT and non-tamoxifen treated isogenic R26-CreERT2-

ki/+Trp53fl/fl cultures (Figure 1A). Given the strong association between osteoblastic differentiation,

OS and cAMP signaling, we assessed if pathways were impacted by loss of p53. CREB1 transcrip-

tional target genes were identified from ChIP and ChIP-Chip studies of CREB genomic occupancy

(Kenzelmann Broz et al., 2013; Ravnskjaer et al., 2007). Only those targets that associated with

CREB1 in response to cAMP activation were considered. Analogously, p53 target genes were

defined from a ChIP-seq dataset from human HCT116 cells (Sánchez et al., 2014) and further

refined against a second independent dataset of p53 ChIP-seq from murine embryonic fibroblasts

(Kenzelmann Broz et al., 2013). Strikingly, the expression of CREB1 target genes was increased,

inversely paralleling the reduction in p53 target genes (Figure 1A, Figure 1—figure supplement

1A–B). Similar gene expression results were obtained using shRNA against Trp53 in primary WT

osteoblasts, demonstrating that the observed changes did not result from proliferation differences

(Figure 1—figure supplement 1C–E). The altered transcript levels were reflected at the protein

level, where loss of p53 was associated with an increase in total CREB1 and phosphorylated CREB1

(pCREB1) in the KO cells (Figure 1B). Interestingly, the KO cultures had increased cAMP levels com-

pared to WT or isogenic controls (Figure 1C). Collectively, these results demonstrate that derepres-

sion of cAMP/CREB1 pathways is an early event following Trp53 mutation in osteoblasts.

The tamoxifen treated Trp53-KO osteoblasts hyperproliferate after ~15 days (Ng et al., 2015),

coinciding with the loss of p53. Coinciding with the increased proliferation of the p53-deficient cul-

tures was an increase in cAMP per cell and an activation of CREB1 target genes, potentially

explained by the increased Pthlh expression (also known as Pthrp, Figure 1A–C). As elevated PTHrP

would increase cAMP levels, the involvement of both CREB1 and PTHrP in the p53-deficient

response was assessed. Primary osteoblasts from the respective genotypes were infected with two

independent shRNAs against either Creb1 or Pthlh then cultured ± tamoxifen. Efficient and stable

knockdown of Creb1 and Pthlh mRNA respectively was confirmed in both WT and KO cultures

before tamoxifen treatment (Figure 1D, Figure 1—figure supplement 2A–B). The p53-WT cells

were largely unaffected by the shRNA’s independent of tamoxifen treatment, except for an initial

delayed proliferation in shCreb1 cultures (Figure 1E–F). The control (shLuc) infected KO osteoblasts

hyperproliferated following tamoxifen treatment from day 15 onward (Figure 1E–F). In contrast,

knockdown of either Creb1 or Pthlh completely prevented the hyperproliferation of the KO +
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Figure 1. Intact PTHrP and CREB1 are necessary for hyperproliferation of p53-deficient primary osteoblasts. (A) Heat map of qPCR data. Expression of

the PTHrP/CREB1 and p53 target genes between indicated cell types. Data from >3 independent cell lines for each, expressed as fold change relative

to non-tamoxifen treated isogenic culture. (B) Western blot of p53, pCREB1 and CREB1, b-ACTIN used as a loading control. Data representative of 2–3

independent cell lines from each. (C) Quantification of cAMP levels (+IBMX) in the R26-CreERT2p53+/+ (vehicle and tamoxifen treated) and R26-

Figure 1 continued on next page
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tamoxifen cells (Figure 1E–F, Figure 1—figure supplement 2C–F). Therefore, intact PTHrP and

CREB1 signaling are required for the hyperproliferation of p53 deficient osteoblasts.

Finally, to assess the requirements for PTHrP and CREB1 in p53-deficient osteoblasts, we infected

cells with the respective shRNAs after they had been cultured for 21 days with tamoxifen, such that

the cells had already undergone the hyperproliferative transformation prior to knockdown. The p53-

KO osteoblasts underwent apoptosis within 48 hr of knockdown with either shCreb1 or shPthlh

whilst the isogenic control (-tam) cultures were minimally affected (Figure 1G–H). The knockdown of

PTHrP/CREB1 led to an expected downregulation of PTHrP-CREB1 targets (Figure 1I, Figure 1—

figure supplement 2G–H). The hyperproliferative effect of loss of Trp53 in osteoblastic cells

required PTHrP and CREB1.

Autocrine PTHrP is a primary stimulus of cAMP in OS
Having established the necessity of PTHrP and CREB1 for the hyperproliferation and survival of p53-

deficient osteoblasts, we sought to understand the contribution of this pathway in OS. We systemat-

ically profiled the contribution of PTHrP, cAMP and CREB1 in primary cell cultures derived from

murine OS models compared to primary osteoblasts. We made use of the Sp7(Osx)-Cre Trp53fl/

flRb1fl/fl model (Cre:lox deletion of Trp53 and Rb1; referred to as fibroblastic OS) which yields a OS

characterised by predominant areas of fibroblastic or poorly differentiated/undifferentiated

(Berman et al., 2008) histology and a cell surface phenotype consistent with immature osteoblasts

(Walkley et al., 2008; Mutsaers et al., 2013). The second model was the Sp7(Osx)-Cre

TRE_shp53.1224Rb1fl/fl model (shRNA knockdown of Trp53; referred to as osteoblastic OS) which

histologically resemble osteoblastic OS with large mineralized areas, appreciated by von Kossa stain-

ing or microCT, and a cell surface phenotype of mature osteoblasts (Mutsaers et al., 2013). The

early passage cells from both models have comparable genetic and pharmacological sensitivities to

those of primary human patient derived OS cultures where tested (Gupte et al., 2015; Baker et al.,

2015). As a control population (referred to herein as “primary osteoblasts”), we isolated osteoblastic

cells from the collagenase digested long bones of wild-type C57BL/6 mice. These cells are negative

for haematopoietic markers (lineage markers, CD45, CD11b, F4/80), negative for the endothelial cell

surface marker CD31 and co-express CD51 and Sca-1. The majority of the cells have a cell surface

phenotype consistent with pre-osteoblasts (lin-CD45-CD31-CD51+Sca1+) when the cultures are initi-

ated, and when induced to differentiate acquire a mature osteoblast/osteocyte gene expression

profile.

We first assessed PTHrP given that PTHrP stimulates cAMP generation following activation of

PTHR1, ultimately leading to CREB1 phosphorylation and transcriptional activation (Figure 2A).

Osteoblastic OS cells expressed high levels of Pthlh transcript (Figure 2B), consistent with our previ-

ous data identifying substantial levels of intracellular PTHrP in OS cells (Ho et al., 2015). As other

GPCRs are expressed on OS cells, such as b-adrenergic receptors (Figure 2—figure supplement

1A), we sought to determine if PTHrP was an OS autocrine ligand. Cells were treated with the

Figure 1 continued

CreERT2p53fl/fl vehicle and tamoxifen treated (p534/4) primary osteoblasts, and day 5, 10, 15 and 20 days post tamoxifen. Data from 2 R26-

CreERT2p53+/+ and 4 R26-CreERT2p53fl/fl independent cultures; mean ± SEM. (D) Experimental outline for proliferation assay; Western blot of p53,

pCREB1 and CREB1 in indicated cell types, b-ACTIN used as a loading control at Day 0 of culture. Proliferation assays performed in the indicated

genotype post CREB1 (E) and PTHrP (F) knockdown with tamoxifen treatment commencing at day 0; shLuc = control shRNA; Data from 4 independent

R26-CreERT2p53fl/fl and 2 R26-CreERT2p53+/+ cultures; mean ± SEM and statistics = area under the curve across the time course. (G) AnnexinV/7-AAD

profiles of R26-CreERT2p53fl/fl +/- tamoxifen treatment infected with control (shLuc), shCreb1_A or shPthlh_A. (H) Percent apoptotic cells in each culture

+/- tamoxifen. (I) Heat map of qPCR data. Expression of the p53 and PTHrP/CREB1 target genes between cell types; 3 independent cell cultures for

each condition. Data expressed as mean ± SEM (n=3). For all panels: *p<0.05, **p<0.01, ***p<0.001. See Figure 1—figure supplement 1 and

Figure 1—figure supplement 2.

DOI: 10.7554/eLife.13446.003

The following figure supplements are available for figure 1:

Figure supplement 1. Expression of p53 and PTHrP/CREB1 target genes in R26-CreER p53+/+ and R26-CreER p53fl/fl cultures +/- tamoxifen.

DOI: 10.7554/eLife.13446.004

Figure supplement 2. Effects of shRNA against Pthrp and Creb1 in R26-CreER p53+/+ and R26-CreER p53fl/fl cultures +/- tamoxifen.

DOI: 10.7554/eLife.13446.005
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Figure 2. Cell autonomous stimulation of cAMP by PTHrP in OS. (A) Cartoon of PTHrP-PTHR1-cAMP-CREB1 axis.

(B) qPCR expression of Pthlh normalized to b2m; mean ± SEM (n=3). (C) cAMP levels after anti-PTHrP antibody

treatment for fibroblastic OS (light grey) and osteoblastic OS (dark grey). Expressed as normalized mean cAMP ±

SEM ((n=3/subtype). (D) Knockdown of Pthlh transcript using 2 independent shRNA (A and B) in indicated OS

subtypes. Data normalized to b2m, expressed as mean ± SEM (n=3/subtype). (E) Fold reduction of cAMP levels in

sh-Pthlh infected OS subtype cells. IBMX in all treatments, data displayed as normalized mean cAMP ± SEM (n=3/

subtype). The data is the mean of 3 independent cell cultures for each subtype. (F) pCREB1/CREB1 protein levels

following knockdown of PTHrP. Pan-ACTIN/ATF-1 used as a loading control. Data are representative of 2

independent cell cultures from each OS subtype. (G) Expression of indicated CREB1 target gene transcripts

following Pthlh knockdown. Means ± SEM (n=3/subtype). (H) AnnexinV/7-AAD staining of indicated cells following

infection with two independent sh-Pthlh (A and B) or sh-Luc control. (I) Quantitation of dead cells in indicated cell

type. The data represents 3 independent cell cultures for each type, mean ± SEM (n=3). *p<0.05, **p<0.001,

Figure 2 continued on next page
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phosphodiesterase inhibitor, IBMX, without adding exogenous PTHrP, thus assaying the cAMP

induced by autocrine activation of receptor-linked adenylyl cyclase by ligand(s) provided by the OS

cells. Treatment with a neutralising anti-PTHrP antibody significantly and substantially reduced

cAMP levels (Onuma et al., 2004) (Figure 2C, Figure 2—figure supplement 1B). Using the shRNAs

against Pthlh, a >50% reduction in the cAMP accumulation was observed (Figure 2D–E, Figure 2—

figure supplement 1C). The reduction of cAMP levels by Pthlh knockdown or by antibody mediated

PTHrP neutralization are consistent with OS–derived PTHrP as an endogenous ligand promoting

cAMP accumulation.

Knockdown of Pthlh (Figure 2—figure supplement 1D) reduced the proliferation (Figure 2—fig-

ure supplement 1E), transcription of known target genes (Figure 2—figure supplement 1F–G) and

the levels of pCREB1, and surprisingly, total CREB1 in OS cells at early time points post infection

(Figure 2F). Correspondingly there was a significant reduction in the basal expression of CREB1 tar-

get genes (Figure 2G). Next, cell survival 48–72 hr after shRNA infection was assessed. Primary

osteoblasts were largely unaffected by Pthrp knockdown. In contrast there was a rapid induction of

apoptosis following Pthlh knockdown in OS cells (Figure 2H–I). To determine the contribution of ele-

vated PTHrP expression on OS initiation, we retrovirally overexpressed PTHrP in wild-type primary

osteoblasts. Surprisingly, the cells overexpressing high levels of PTHrP failed to thrive and a signifi-

cant proportion underwent cell death indicating that PTHrP overexpression alone is not sufficient to

support OS initiation (Figure 2—figure supplement 2A–C). Two different fibroblastic OS lines

infected with control (sh-Luc) or sh-Pthlh_A were grafted subcutaneously in vivo and both had signifi-

cantly reduced proliferation as measured by tumor weight (Figure 2J), comparable to the effects of

shPthr1 knockdown in the same OS lines (Ho et al., 2015). These results demonstrate that PTHrP is

a critical, OS cell-derived stimulus of the elevated cAMP in OS.

Elevated cAMP levels in OS lead to sustained CREB1 activation
We next assessed basal cAMP levels in normal osteoblasts and the two OS subtypes in unstimulated

proliferating cultures (with and without phosphodiesterase inhibition but no exogenous ligand treat-

ment). OS cells produced significantly greater amounts of intracellular cAMP compared to primary

murine osteoblasts (Figure 3A, Figure 3—figure supplement 1A). Furthermore, treatment with the

direct cAMP agonist forskolin in the presence of IBMX resulted in an increased and sustained accu-

mulation of cAMP in OS compared to primary osteoblasts (Figure 3B). Without IBMX the relative

responses to forskolin remained the same, albeit with lower cAMP levels (Figure 3—figure supple-

ment 1B).

Based on the elevated cAMP in OS, we tested the dynamics of CREB1 phosphorylation in serum

starved cells to acute elevation of cAMP induced by forskolin. Induction of pCREB1 was rapid in nor-

mal osteoblasts, peaking at 30 min, then reducing throughout the 120 min time course as expected

(Figure 3C–D). In contrast, OS cells displayed continuous and persistent activation of pCREB1, con-

sistent with the cAMP levels (Figure 3C–D). The OS-specific altered dynamics of cAMP and pCREB1

resulted in aberrantly extended transcriptional activation of known CREB1 target genes based on

both transcript expression and chromatin occupancy of CREB1/pCREB1 (Figure 3E–F, Figure 3—

figure supplement 1C–D). The requirement for CREB1 in the transcription of these targets in fibro-

blastic OS was confirmed using siRNA (Figure 3—figure supplement 1E). Importantly, there was no

Figure 2 continued

***p<0.0001. (J) In vivo bilateral grafts of independent fibrobastic OS lines OS80 and 494H with control (sh-Luc) on

one flank and sh-Pthlh_A on the other flank. Data expressed as mean weight ± SEM (n=3 tumours per shRNA per

cell line; performed once); P value as indicated. See Figure 2—figure supplement 1 and Figure 2—figure

supplement 2.

DOI: 10.7554/eLife.13446.006

The following figure supplements are available for figure 2:

Figure supplement 1. PTHrP, an endogenous ligand for cAMP signaling in OS.

DOI: 10.7554/eLife.13446.007

Figure supplement 2. PTHrP overexpression alone does not initiate OS.

DOI: 10.7554/eLife.13446.008
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Figure 3. Persistent, elevated cAMP production in OS compared to primary osteoblasts. (A) cAMP levels in indicated cells (1000 cells per well) with and

without IBMX treatment. Data from 3 independent cultures per type, mean ± SEM. (B) Intracellular cAMP levels in indicated cell type following

treatment with forskolin; mean ± SEM (n=3 per cell type; 1000 cells per well); statistical significance for OS vs normal Ob; all points of fibroblastic vs

osteoblastic OS not significantly different. (C) Western blot and (D) quantification of CREB1/pCREB1 during a time course of cAMP activation by

Figure 3 continued on next page
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evidence of compensation for loss of Creb1 by the related Crem1 in either OS subtype (Figure 3—

figure supplement 1F–G) (Mantamadiotis et al., 2002).

OS cells fail to reduce CREB1 activity during maturation
We assessed the levels of pCREB1, the downstream transcriptional effector of cAMP signaling, in

proliferating OS cells compared to primary osteoblasts. CREB1 was more prominently phosphory-

lated in the osteoblastic OS than in either the fibroblastic OS or primary osteoblasts (Figure 3G).

qRT-PCR using independent OS cultures and primary osteoblasts demonstrated that the mean

Creb1 expression was 2–3 fold higher in osteoblastic OS compared to fibroblastic OS and primary

osteoblasts (Figure 3—figure supplement 1H). Analysis of RNA-seq from human OS revealed a sig-

nificant increased in the expression level of Creb1 in OS compared to normal osteoblasts

(Figure 3H) (Moriarity et al., 2015). During culture in differentiation inductive conditions, CREB1

levels reduced over the first 7 days in osteoblasts and stayed low for the remainder of the culture

(Figure 3I, Figure 3—figure supplement 2A). In contrast, OS cells maintained CREB1 expression

under the same conditions (Figure 3I, Figure 3—figure supplement 2B). The decrease in CREB1

expression (both transcript and protein levels) upon differentiation was confirmed in primary human

osteoblasts (Figure 3—figure supplement 2C–D).

In human OS, somatic SNV mutations in negative regulators of cAMP levels were described,

including members of the phosphodiesterases (PDE), A kinase anchoring proteins (AKAP) and pro-

tein phosphatases (PP) (Chen et al., 2014). There was a 2–3 fold decreased expression of several

members of these gene families in the murine OS cells compared to primary osteoblasts (Figure 3J,

Figure 3—figure supplement 2E). The reduced expression of PDE, AKAPs and PPs would be

expected to favour the accumulation and action of cAMP following GPCR activation.

Constitutively active cAMP differentially impacts primary osteoblasts
and p53-deficient OS
As intracellular cAMP increased following p53 deletion in primary osteoblasts, we sought to deter-

mine the effect of elevated cAMP levels on normal osteoblast differentiation. Primary osteoblasts

were treated with the forskolin and their response compared to that of OS cells (Walkley et al.,

2008; Mutsaers et al., 2013). Forskolin stimulates cAMP independently from cell surface GPCRs so

was used instead of PTHrP, allowing a meaningful comparison of the isolated consequences of ele-

vated cAMP as undifferentiated primary osteoblasts express less PTHR1 compared to the OS cells

(Mutsaers et al., 2013).

After 72 hr treatment, primary osteoblasts had altered cell surface phenotypes and reduced

expression of Runx2 and Osx (Figure 4A–C) (Mutsaers et al., 2013). Brief exposure to forskolin

(24 hr) yielded the same result (Figure 4—figure supplement 1A–B). During differentiation, cAMP

activation led to decreased expression of differentiation markers and failure to normally mineralise

(Figure 4D–E, Figure 4—figure supplement 1C–D). Therefore continuously elevated cAMP

increased features associated with immature osteoblasts. In OS cells, the cell surface phenotypes

Figure 3 continued

forskolin. Data representative of 2 independent cultures each. (E) Heat map of qPCR data. CREB1 target gene expression in indicated cells; data

expressed as relative expression. (F) ChIP analysis of CREB1/pCREB1 on the promoters of indicated genes over a 2 hr time course following stimulation

with forskolin. Data is represented as percentage of input. The data from 2 independent cell lines for each subtypes mean occupancy ± SEM (n=2–3

assays per line). (G) Western blot of CREB1/pCREB1 expression in proliferating non stimulated cultures, b-ACTIN used as a loading control. Data

representative of 3–4 independent cell lines from each type. (H) CREB1 transcript expression in human osteoblasts and osteosarcoma (data taken from

PMID: 25961939). (I) Western CREB1/pCREB1 expression in indicated cell types under differentiative conditions, ATF-1 used as a loading control. (J)

Relative expression of negative regulators of cAMP in OS subtypes compared to primary osteoblasts by qPCR and normalized to b2m represented as a

heat map (n=3/cell type). *p<0.05, **p<0.001, ***p<0.0001. See Figure 3—figure supplement 1 and Figure 3—figure supplement 2.

DOI: 10.7554/eLife.13446.009

The following figure supplements are available for figure 3:

Figure supplement 1. cAMP is constitutive in mouse OS leading to continuous phosphorylation of CREB1.

DOI: 10.7554/eLife.13446.010

Figure supplement 2. Altered Creb1 dynamics in osteoblasts and OS.

DOI: 10.7554/eLife.13446.011
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and expression of Runx2 and Sp7 were the inverse of primary osteoblasts after 72 hr forskolin treat-

ment (Figure 4F–H, Figure 4—figure supplement 1E). Under differentiation conditions, forskolin

induced less profound changes in the expression of markers of osteoblast maturation, with the

Figure 4. Constitutively elevated cAMP differentially affects primary osteoblasts and osteosarcoma cells. (A) Primary osteoblasts treated with DMSO or

forskolin for 72 hr and assessed for expression of Sca-1, CD51, PDGFRa , representative results shown, n=3 independent experiments. (B) Quantitation

of cell surface markers from each treatment (n=3 independent cultures) (C) Expression of Sp7 (Osterix) and Runx2 by qPCR after 72 hr of forskolin

treatment. Expression levels normalized to b2m; mean ± SEM (n=3). (D) Expression level of indicated genes over 21 days of treatment with DMSO or

forskolin. Expression normalized to b2m; mean ± SEM (n=3). (E) Mineralisation analysis of primary osteoblasts at day 21 after treatment. Images are

representative of 3 independent experiments. (F) Fibroblastic OS cells were treated with DMSO or forskolin for 72 hr and assessed for expression of

Sca-1, CD51, PDGFRa, representative results shown. (G) Quantitation of cell surface markers from (n=3 independent cultures of fibroblastic OS) from

each treatment. (H) Expression of Sp7 (Osterix) and Runx2 in fibroblastic OS by qPCR following 72 hr treatment. Expression levels normalized to b2m;

mean ± SEM (n=3). (I) Expression of indicated genes in fibroblastic OS over 21 days from each treatment. Expression normalized to b2m; mean ± SEM

(n=3). (J) Representative images of alizarin red stained fibroblastic OS cells treated with DMSO or forskolin for 21 day; n=3 independent OS cultures;

*p<0.05, **p<0.001, ***p<0.0001. See Figure 4—figure supplement 1 and Figure 4—figure supplement 2.

DOI: 10.7554/eLife.13446.012

The following figure supplements are available for figure 4:

Figure supplement 1. cAMP has different effects in OS and primary osteoblasts.

DOI: 10.7554/eLife.13446.013

Figure supplement 2. Level of cAMP in primary osteoblasts and osteosarcoma cells +/- forskolin.

DOI: 10.7554/eLife.13446.014
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exception of Osteocalcin (Figure 4I), and resulted in increased mineralization (Figure 4J, Figure 4—

figure supplement 1D–G). To determine the consequences of CREB1 retention in OS cells, CREB1

was knocked down using both shRNAs (3’UTR, CDS) in fibroblastic OS cells and differentiation evalu-

ated (Figure 4—figure supplement 1J–L). Both early and late markers of maturation were reduced

Figure 5. CREB1 is differentially required for proliferation and survival by OS subtypes. (A) CREB1 in primary osteoblasts 72 hr after infection with

indicated shRNA construct. ATF1 was used as a loading control; representative blot from 3 independent cultures; proliferation plotted as mean ± SEM

(n=3). (B) Western blot of CREB1 and proliferation kinetics of shCreb1 knockdown and sh-Luc fibroblastic OS; representative blot from 3 independent

OS lines; proliferation as mean ± SEM (n=3). (C) Western of CREB1 in osteoblastic OS cells 72 hr after infection; ATF1 = loading control. Viability

(annexinV/7AAD) of indicated OS subtype following infection with each shRNA. Data are representative of 3 independent cell lines/type; quantitation of

dead cells. Data from 3 independent cell lines/subtypes; mean ± SEM. *p<0.05, **p<0.001, ***p<0.0001

DOI: 10.7554/eLife.13446.015
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Figure 6. CREB1 signatures discriminate OS subtypes. (A) Heat map of qPCR data. Expression of the PTHrP/CREB1 gene set between indicated cell

types. Data from 3 independent cultures for each, expressed as fold change relative to primary osteoblasts. (B) Examples of CREB1 target gene

expression between the indicated cell types. Expression levels normalized to b2m and depicted as relative expression ± SEM (n=3). (C) ChIP-qPCR for

the indicated target genes from proliferating cells (no exogenous ligand/stimulus of cAMP applied) with CREB1, pCREB1 and pPolII. Data represented

as fold occupancy relative to Dpp10 promoter, expressed as mean ± SEM. *p<0.05, **p<0.001, ***p<0.0001. See also Figure 6—figure supplement 1.

DOI: 10.7554/eLife.13446.016

The following figure supplement is available for figure 6:

Figure supplement 1. CREB1 defines OS subtypes by driving specific gene signatures.

DOI: 10.7554/eLife.13446.017
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with sh-Creb1 (Figure 4—figure supplement 1J). Mineralization was significantly reduced in sh-

Creb1 expressing cells compared to controls (Figure 4—figure supplement 1K–L). The level of

intracellular cAMP achieved with forskolin treatment is significantly higher that that achieved by cell

derived autocrine/paracrine stimuli, such as secreted PTHrP (Figure 4—figure supplement 2A–C).

These levels likely reflect maximal stimulation through the cAMP pathway in these cells which yields

a distinct biological effect on primary osteoblastic cells compared to OS derived primary cultures.

Therefore continuously elevated cAMP has distinct effects on the behaviour of normal osteoblasts

and OS.

OS subtypes have a differential dependence upon CREB1
Reducing PTHrP levels caused apoptosis of OS cells and also reduced levels of CREB1/pCREB1

(Figure 2F, Figure 2H–J). To determine if loss of CREB1 impacted OS cell survival similarly we

assessed the effects of Creb1 knockdown. In all cohorts there was loss of CREB1 protein (Figure 5A–

C). CREB1 knockdown in primary osteoblasts caused reduced proliferation in the first week then the

cells recovered and proliferated similarly to control infected cells thereafter, with no apparent effect

on survival (Figure 5A). Loss of CREB1 in fibroblastic OS cells resulted in sustained proliferation

impairment, yet cell survival was not appreciably impacted (Figure 5B). Knockdown of CREB1 in oste-

oblastic OS, the most common clinical subtype, caused profound proliferation arrest and apoptosis

(Figure 5C). The effect was so complete that we have not been able to establish stable sh-Creb1

expressing cultures from the osteoblastic OS. The phenotype was observed with both sh-Creb1 con-

structs and in �3 independent cultures. Therefore, CREB1 is dispensable for normal osteoblast func-

tion yet required for proliferation of fibroblastic OS and survival of osteoblastic OS.

OS subtypes can be discriminated by CREB1 target gene signatures
Given the subtype specific effects of CREB1 knockdown, we sought to determine if CREB1 gene sig-

natures could be used to appreciate differences between the subtypes. We modelled our analysis

on the evidence that PTHrP was the endogenous ligand leading to cAMP accumulation and CREB1

activation. We defined a PTHrP-specific gene signature bioinformatically from previous microarrays

comparing PTHrP(1–141) to PTH(1–34) in differentiating osteoblasts (Allan et al., 2008). The top 45

candidates from the signature were validated. Using proliferating primary osteoblasts, fibroblastic

OS and osteoblastic OS cells, 32 of the 45 genes were most highly expressed in the osteoblastic OS

(Figure 6A). Archetypal CREB1 target genes were all more highly expressed in osteoblastic OS

(Figure 6B, Figure 6—figure supplement 1A–C). Chromatin immunoprecipitation-PCR (ChIP-qPCR)

demonstrated enrichment of active pCREB1 and serine 2 phosphorylated RNA polymerase II (pPolII),

a mark of active transcription, on CREB1 target genes in osteoblastic OS (Figure 6C, Figure 6—fig-

ure supplement 1D) (Ho and Shuman, 1999). Promoter binding was generally lower in the fibro-

blastic OS, consistent with the expression patterns of the target genes. The enhanced binding of

CREB1 in osteoblastic OS corresponded to the elevated levels of cAMP and osteoblastic OS is char-

acterised by increased CREB1 activity.

Somatic SNV mutations in human OS overlap with the cAMP-CREB1
interactome
Mutations and oncogenic effects of the cAMP pathway have been described in the context of other

tumor types, including breast (Kok et al., 2011; Miller, 2002; Beristain et al., 2015;

Pattabiraman et al., 2016) and haematological malignancies (Pigazzi et al., 2013; Sandoval et al.,

2012; Shankar et al., 2005; Smith et al., 2005; Mullighan et al., 2011) amongst other tumors. The

mutational landscape of OS has been recently defined, identifying 1704 somatic single nucleotide

variations (SNV mutations) across 20 cases of sporadic conventional OS (Chen et al., 2014). To

determine if these somatic SNV mutations were functionally related, we assessed pathways enriched

within the somatic SNV mutations (Figure 7A). In the top 20 pathways were signatures associated

with ion channel complexes, transmembrane transporter complexes, PI3K signaling, calcium channel

signaling, and protein kinase A (PKA) activity, all of which are related to cAMP (Figure 7A). Based

on this result, we compared the somatic SNV mutations of human OS to the 169 genes comprising

the KEGG cAMP interactome. To determine if this was OS specific or a more generalised feature of

tumors, we further compared the cAMP interactome with whole genome sequencing that identified
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SNV mutations of other human cancers (Ellis et al., 2012; Morin et al., 2013; Berger et al., 2012;

Cazier et al., 2014; Tirode et al., 2014). Genes within the cAMP interactome were most highly

enriched within the somatic SNV mutations of human OS (Figure 7B). These data suggest that,

despite the diverse mutational pattern of somatic SNV mutations in human OS, recurrent and

enriched changes in the cAMP and CREB1 pathways occur in OS.

Discussion
There remains an incomplete understanding of the cellular rewiring that accompanies the loss or null

mutation of TRP53. Although the p53 pathway can be targeted, most interventions aim to activate

or restore function of the mutant P53 protein, an approach not feasible in null settings (Khoo et al.,

2014), the most common case in OS (Chen et al., 2014). The identification of critical cellular

Figure 7. A high proportion of the cAMP interactome are somatic SNV mutations in human osteosarcoma. (A) Analysis of functional pathways within

the somatic SNV mutations of human OS using Cytoscape. Brown color indicates a cAMP related pathway, blue color indicates non cAMP related

pathways. (B) Analysis of the enrichment for somatic SNV mutations within the cAMP interactome in each of the indicated tumor types. Based on

somatic SNV mutations identified by whole genome sequencing. P value defined using hypergeometric distribution test. (C) Graphical summary of the

differences between primary osteoblasts and OS subtypes regarding cAMP and CREB1 function. See also Figure 7—figure supplement 1.

DOI: 10.7554/eLife.13446.018

The following figure supplement is available for figure 7:

Figure supplement 1. Analysis of cAMP and cGMP pathway enrichment of somatic SNV tumor mutations.

DOI: 10.7554/eLife.13446.019
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pathways that are activated/altered in response to TRP53 deficiency may yield novel avenues to test

therapeutically.

Using the fact that loss/mutation of TRP53 is essentially universal in OS, we modelled an initiating

lesion in primary osteoblastic cells and used this to understand the consequences in these cells. Sev-

eral lines of evidence have implicated the cAMP pathway in OS, yet the functional requirement for

this pathway has not been evaluated. We recently demonstrated a role for PTHR1 in OS proliferation

and maintenance of the undifferentiated state (Ho et al., 2015). We therefore sought to determine

if these pathways intersected in the p53 deletion dependent initiation and maintenance of OS. There

was a co-ordinated increase in Pthlh, cAMP per cell and CREB1 levels and transcriptional activity

when osteoblasts became functionally p53-deficient. This was unexpected, as it suggested that a

very early event in the initiation of OS following the loss of p53 is the activation of the

PTHrPficAMPfiCREB1 signaling axis. Whilst the detailed processes through which p53 loss acti-

vates this pathway is to be resolved, these results demonstrate that this is an essential pathway in

the manifestations of the p53-deficient phenotype in osteoblastic cells. Furthermore, we demon-

strated that this pathway was also required for the survival of osteoblasts rendered p53-deficient

prior to loss of PTHrP or CREB1. Therefore, activation of the PTHrPficAMPfiCREB1 signaling axis

appears to be a core component of the rewiring of osteoblastic lineage cells in response to loss of

Trp53 (Figure 7C).

Our results, together with prior studies implicating cAMP pathways in OS, indicate that elevated

cAMP signaling could be considered oncogenic in OS. Forcibly increasing intracellular cAMP in nor-

mal osteoblasts retained them in an immature state, consistent with the recent report identifying for-

skolin as an inducer of pluripotency (Hou et al., 2013). Analysis of human OS identified somatic SNV

mutations in a number of negative regulators of cAMP levels (Chen et al., 2014). Inactivating muta-

tions in these would be predicted to elevate PKA and CREB1 activity. Khokha and colleagues identi-

fied mutations in Prkar1a using a murine model of OS, with a corresponding PRKAR1A low human

OS subset defined (Molyneux et al., 2010). In the same study, mutually exclusive amplification of

the a-subunit of PKA (Prkarca) was also reported. Our data reconcile these observations and indicate

that the increased PKA-CREB1 activity is ultimately important for this tumor, in that it has evolved

mechanisms ensuring elevated and persistent cAMP levels mediated primarily by autocrine produc-

tion of PTHrP and modulated by reduced expression of negative regulators of cAMP activity. In nor-

mal physiology, PTHrP acts in a paracrine manner whilst in OS, as reported here, there is capacity

for PTHrP to act in an autocrine and paracrine manner, as well as intracrine activities. Reducing

PTHrP levels was tolerated by normal osteoblasts but not OS cultures.

While mutations promoting accumulation of cAMP are important, the stimulus of cAMP had not

been defined. We demonstrate that PTHrP is a key OS cell-intrinsic inducer of cAMP. PTHrP is

required for normal bone homeostasis via its actions upon osteoblastic cells (Miao, 2005). The func-

tions of PTHrP in malignant osteoblast biology, however, have not been resolved. Reducing PTHR1

expression on OS cells enhanced differentiation and mineralization in vivo (Ho et al., 2015). There

was a trend to greater levels of PTHrP, notably intracellular, in osteoblastic OS compared to fibro-

blastic OS (Ho et al., 2015). These data are consistent with the present measurements of pCREB1

levels in the subtypes and the CREB1 dependence of the osteoblastic OS. We did not previously

impact OS in vivo using a neutralizing anti-PTHrP antibody (Ho et al., 2015). We reconcile the failure

to achieve a therapeutic dose of antibody in vivo with high concentrations of PTHrP likely within the

immediate cell environment in OS (Ho et al., 2015). The reduction in CREB1 levels when PTHrP was

reduced was unexpected, raising the possibility to be explored, that PTHrP may contribute to main-

tenance of CREB1 levels in an analogous manner to the role of JAK2 in preventing proteasomal deg-

radation of CREB1 (Lefrancois-Martinez et al., 2011). Coupled with the present data, targeting

PTHrP is a candidate therapeutic strategy in OS, although any intracrine contribution of PTHrP needs

to be evaluated. The therapeutic targeting of components downstream of PTHrP/PTHR1 signalling

may also be feasible, with several recent reports of inhibitors of CREB signalling activity

(Mitton et al., 2016; Xie et al., 2015), although these are yet to progress to preclinical evaluation.

The management of OS has not substantively changed for the last three decades. The identifica-

tion of the pathways that are utilised during the evolution from osteoblastic lineage cells to OS cells

may reveal new means to target this tumour. Recent sequencing and modeling has revealed the

genetic complexity and diverse mutational patterns of OS, yet underlying these data is the recurrent

and universal inactivation of the P53 pathway (Chen et al., 2014; Moriarity et al., 2015). The Notch
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pathway has been implicated in OS and is potentially druggable, however the evidence from human

OS is equivocal as mutations in this pathway are not common in sporadic OS (Tao et al., 2014).

Recent work from two groups using whole genome screening identified the PI3K/mTOR pathway as

a conserved therapeutic vulnerability in OS, demonstrating the power of understanding the biologi-

cal networks underpinning OS (Perry et al., 2014; Gupte et al., 2015). The identification of path-

ways synthetically lethal with p53-deficiency, or that are required for the maintenance of p53

deficient phenotypes, will yield new means to target these cells. Using this approach we have

defined a requirement within the osteoblast lineage for continuous PTHrP and CREB1 activity for the

initiation and maintenance of OS, yet normal osteoblasts could tolerate the depletion of both of

these factors. A striking feature of the requirement for CREB1 was the differences between OS sub-

types. The OS subtypes could be discriminated from normal osteoblasts and each other based on

the progressive enrichment of CREB1 gene signatures that reflected their dependence on this path-

way for proliferation and survival. These observations raise the largely unexplored possibility that OS

subtypes are at some level genetically distinct and have different biological dependences. Collec-

tively, the constitutive activity of the PTHrP-cAMP-CREB1 axis, tightly coupled to loss of p53, repre-

sents an essential node in OS that is amenable to therapeutic inhibition at multiple levels.

Materials and methods

Study approval
All experiments involving animals were approved by the Animal Ethics Committee of St. Vincent’s

Hospital, Melbourne. Primary human osteoblasts were isolated from bone marrow aspirates from

the posterior iliac crest of de-identified healthy human adult donors with informed consent and con-

sent to publish (IMVS/SA Pathology normal bone marrow donor program RAH#940911a, Adelaide,

South Australia).

Animals
Balb/c nu/nu mice (ARC, Perth, WA) were used as recipients for transplant of OS cell lines. For in

vivo tumor growth 25,000 (OS80) or 75,000 (OS494H) cells were implanted subcutaneously on the

back flank of Balb/c nu/nu recipients (Ho et al., 2015). Cells were resuspended in extracellular

matrix (Cultrex PathClear BME Reduced Growth Factor Basement Membrane Extract). All animals

received sh-Luc infected cells on one flank and sh-Pthlh infected cells on the alternate flank.

OS cell cultures and normal osteoblastic cells
Primary mouse OS cell cultures were derived from primary tumors from each of the two mouse mod-

els of OS and were maintained and studied for less than 15 passages (Walkley et al., 2008;

Mutsaers et al., 2013) (all cells used were obtained directly from primary and metastatic tumor

material isolated directly from genetically engineered mouse models of OS, no further authentica-

tion performed by the authors, mycoplasma negative as tested by PCR based assay by the Victorian

Infectious Diseases Reference Laboratory). Normal mouse osteoblastic cells were derived from

crushed and collagenase digested long bones of 8-wk old C57BL/6 mice. Osteoblastic cell popula-

tions were purified either by FACS (FACSAria, BD Biosciences, San Jose, CA) as previously described

(Semerad et al., 2005; Singbrant et al., 2011), or directly cultured following collagenase digestion

(all primary osteoblasts were isolated directly from mouse long bone, no further authentication per-

formed by the authors, not tested for mycoplasma). All cell cultures were maintained in aMEM

(Lonza, Basel, Switzerland) medium supplemented with 10% fetal bovine serum (Sigma, St. Louis,

MO, USA; non heat inactivated), 2 mM Glutamax (Life Technologies, Carlsbad, CA, USA), and

except in siRNA transfection experiments, 100 U/ml penicillin and streptomycin (Life Technologies)

antibiotics. Cells were cultured in a humidified 5% CO2 atmosphere at 37˚ Celsius.
Normal human osteoblasts were derived from bone marrow aspirates from the posterior iliac

crest of healthy human adult donors (17–35 years of age), with informed consent (IMVS/SA Pathol-

ogy normal bone marrow donor program RAH#940911a). The cells were outgrown from the bony

spicules that were collected following filtration of the BM through a 70 mm filter (Atkins et al.,

2002). The human osteoblasts were obtained directly from primary human bone material, no further

authentication performed by the authors, not tested for mycoplasma.
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In vitro differentiation of OS cell lines, and primary osteoblasts
All cells were seeded at 3000 cells/cm2 on 6-well plates in aMEM with 10% FCS three days prior to

differentiation induction. When cells had reached 100% confluence (Day 0), control cells were har-

vested, and all other cells were replenished 3 times per week with osteoblastic differentiation media:

aMEM (Lonza), 10% (v/v) FBS, 25mM HEPES, 1% (v/v) (Gibco), Penicillin-Streptomycin (Gibco), 2 mM

GlutaMAX (Gibco), 50 mg/ml ascorbate (Sigma), 0.01 M b-glycerophosphate (Sigma).

cAMP response assays
Three independent cell lines from each group were used. 500 and 1000 cells from each group were

seeded in triplicates in a 384 well plate. Cells were treated for 1 hr +/-100 mM Isobutylmethylxan-

thine (IBMX) before measuring intracellular cAMP. Intracellular cAMP was measured using the

LANCE ultra cAMP kit (Perkin Elmer, AD0262) as directed by the manufacturer. Kinetics of cAMP

was demonstrated using 10 mM forskolin over a time course of 2 hr. For the agonist treatment

experiment 1000 cells were seeded as described, then treated +/-100 mM IBMX before adding

10 mM forskolin following a time course of 2 hr. Intracellular cAMP was measured as described

above. For shRNA infected cells, 48 hr post infection cells were treated with 100 mM IBMX and

assayed for intracellular cAMP by radioimmunoassay as described (Ho et al., 2015). Where indicated

cells were treated with 10 mg/ml anti-PTHrP neutralizing antibody at 37˚C for 5 hr (Onuma et al.,

2004). To compare cAMP levels between different cells equal number of cells were seeded.

siRNA knockdown
Cells were transfected 24 hr after seeding with Dharmacon On-Target Plus siRNA pools (GE Health-

care Life Sciences, 20 nM final concentration) complexed with DharmaFECT3 (GE Healthcare Life Sci-

ences) in Opti MEM reduced serum media (Life Technologies). Cells transfected with a non-

targeting On-Target Plus control siRNA pool or mock transfected cells served as controls. All assays

were carried out in culture medium without antibiotics. Cells were transfected for 72 hr with siRNA

pool directed against Creb1 along with the non-targeting control siRNA. After 72 hr incubation with

siRNA, the control and the Creb1 knockdown cells were treated with 10 mM of forskolin to assess

Creb1 target gene induction.

ON-TARGETplus smart pool siRNA-Creb1
Target sequence 1:J-040959-12; Target sequence: UUUGUUAACUUCCGAGAAA

Target sequence 2:J-040959-11; Target sequence: GCUAUUGGCCUCCGGAAA

Target sequence 3:J-040959-10; Target sequence: GCUGAGUAUUAUAGCGUAU

Target sequence 4:J-040959-09; Target sequence: GAUAAGAGUAAGUCGAGA

Plasmids and constructs
Two independent lentiviral shRNA plasmids targetting Creb1 (A= 3’UTR; TRCN0000096629; B=

CDS; TRCN0000096658) and Pthlh (A= 3’UTR; TRCN0000179093; B= CDS; TRCN0000180583) were

purchased from Sigma-Aldrich in the pLKO.1-puro vector. The pLKO.1-puro sh-Luciferase plasmid

(Cat No. SHC007) was used as the control for the Sigma shRNA constructs. Lentiviral packaging vec-

tor psPax2 (plasmid #12260) was obtained from Addgene (Cambridge, MA, USA), the pCMV-Eco

Envelope (Cat No. RV112) vector was purchased from Cell Biolabs (San Diego, CA, USA). Three

independent cell lines from each group were infected with shRNA against Creb1, Pthlh or luciferase

control. After 48 hrs cells were selected with 2mg/ml puromycin.

shRNA sequences
Pthlh 3’ UTR (TRCN0000179093):

CCGGCCAATTATTCCTGTCACTGTTCTCGAGAACAGTGACAGGAATAATTGGTTTTTTG

Pthlh CDS (TRCN0000180583):

CCGGGATACCTAACTCAGGAAACCACTCGAGTGGTTTCCTGAGTTAGGTATCTTTTTTG

Creb1 3’ UTR (TRCN0000096629):

CCGGGCCTGAAAGCAACTACAGAATCTCGAGATTCTGTAGTTGCTTTCAGGCTTTTTG

Creb1 CDS (TRCN0000096631):

CCGGCAGCAGCTCATGCAACATCATCTCGAGATGATGTTGCATGAGCTGCTGTTTTTG
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Luciferase CDS (TRCN0000072259):

CCGGCGCTGAGTACTTCGAAATGTCCTCGAGGACATTTCGAAGTACTCAGCGTTTTT

Alizarin staining for mineralization
Cells were washed 3 times with PBS and fixed with 70% EtOH. Cells were washed 3 times with water

then stained with 0.5% alizarin (w/v) in water for 30 min at room temperature. This was followed by

3 washes with water and a 15 min wash in 1 ml of PBS while shaking. PBS was removed and plates

were allowed to dry. Well images were then taken using an EPSON perfection V700 photo scanner.

Alizarin dye was eluted overnight in 1 ml of 10% CTP (1-Hexadecylpyridinium chloride, w/v) in PBS

with shaking. To construct a standard curve, a 1 mM solution of alizarin was dissolved in PBS aided

by sonication, and 2-fold serial dilutions were made beginning from 400 mM. 200 ml of each serial

dilution and 200 ml of eluted dye from each well were added separately to duplicate wells in a 96

well plate. The absorbance was read at OD562nm using a Polarstar optima+ microplate reader.

Flow cytometry
OS cell lines (less than passage 5 from establishment) were prepared by trypsinization. Antibodies

against murine CD45, Mac1, Gr1, F4/80, B220, IgM, CD2, CD3, CD4, CD8, Ter119, Sca1, CD51,

PDGFRa (CD140a), CD31, either biotinylated or conjugated with eF450, PE, PerCP-Cy5.5, or APC

were obtained from eBioscience (San Diego, CA) or Pharmingen. Biotinylated antibodies were

detected with Streptavidin-Qdot605 (Invitrogen). Flow cytometry was performed on an LSRII For-

tessa (BD Bioscience) interfaced with CellQuest software, data was analyzed on FlowJo (TreeStar).

Annexin V staining
OS cells (3 independently derived fibroblastic and osteoblastic OS cultures) and primary osteoblasts

were infected with 2 independent shRNA against Creb1 and Pthlh. shRNA directed against luciferase

(sh-Luc) was used as the control. Cells were infected for 48–72 hr prior to harvesting by trypsiniza-

tion. Cells were washed then stained in 1x Annexin Binding buffer (eBioscience) diluted 1:20 with

Annexin V-APC (1 mg/ml) (eBioscience) and 7-Aminoactinomycin D (7AAD) (100 mg/ml) (Life Tech-

nologies) for 15 min. Following the addition of 4 volumes of 1x Annexin Binding buffer, apoptotic

cells were detected and quantified using FACS (LSRFortessa). Live cells (Annexin V negative, 7AAD

low) and cells in early and late stages of apoptosis (Annexin V positive, 7AAD low/high) were

quantified.

PTHrP overexpression
Murine HA tagged Pthlh cDNA was generated by gene synthesis (Integrated DNA Technologies)

and cloned into the retroviral MSCV-IRES-Zeocin. Constructs were sequence verified. Retrovirus was

generated by transient transfection of 293T cells (purchased from ATCC, no authentication per-

formed, mycoplasma negative as tested by PCR based assay by the Victorian Infectious Diseases

Reference Laboratory) using the EcoPac envelope plasmid as previously described (Singbrant et al.,

2014). Primary osteoblasts were infected by spin-infection with 8 mg/mL polybrene (Sigma). Levels

of PTHrP were assayed by radioimmunoassay using UMR106.01 cells as previously described

(Partridge et al., 1983) (derived by TJ Martin, no authentication performed, not mycoplasma

tested).

RNA extraction, cDNA synthesis and Quantitative realtime PCR (QPCR)
RNA was extracted using RNA extraction kits with on-column DNase digestion (Qiagen, Limburg,

Netherlands; Bioline, London, UK) or TriSure reagent (Bioline). cDNA was synthesised from total

RNA using a Tetro cDNA synthesis kit (Bioline) or AffinityScript cDNA synthesis kit (Agilent Technolo-

gies, Santa Clara, CA, USA). Gene expression was quantified on a Stratagene Mx3000P QPCR sys-

tem (Agilent) using Brilliant II SYBR green QPCR master mix (Agilent) with primers specific to genes

of interest (Primer sequences in Table 2). Gene expression between samples was normalized to b2m

expression. Relative expression was quantified using the comparative CT method (2-(Gene Ct – Normal-

izer Ct)). Samples were amplified in duplicate.
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Western blotting
Protein lysates were prepared in RIPA buffer (50 mM Tris-HCl pH 7.4, 1% NP-40, 0.5% sodium deox-

ycholate, 0.1% SDS, 150 mM NaCl, 2 mM EDTA, 50 mM NaF). Protein (10–25 mg) was electrophor-

esed on 10% Bis Tris or 4–12% Bis-Tris gradient NuPAGE Novex protein gels (Life Technologies) and

Table 1. Genes within the cAMP interactome that overlap with SNV mutations within human OS.

cAMP int. cAMP int. cAMP int. cAMP int. Overlap(SNVs)

ABCC4 CREB5 MAP2K1 ROCK1 ADCY1

ACOX1 CREBBP MAP2K2 ROCK2 ADRA1A

ACOX3 DRD1 MAPK1 RRAS ADRA2B

ADCY10 DRD5 MC2R RRAS2 AKAP1

ADCY2 EDNRA MEK1 SLC9A1 AKAP3

ADCY3 EP300 MEK2 SOX9 AKAP5

ADCY4 EPAC2 MYL9 SSTR1 AKAP6

ADCY5 FFAR2 NFAT2 SSTR2 ANXA1

ADCY6 FOS NFATC SUCNR1 ATP1A1

ADCY7 FSH NFATC1 TIAM1 ATP2B1

ADCY8 FSHR NFKB1 TNNI3 CACNA1D

ADCY9 FXYD1 NFKBIA TSHR CACNA1F

ADCYAP1R1 FXYD2 NPY VAV CACNA1S

ADORA1 GABBR NPY1R CFTR

ADORA2A GHRL NR1C1 DRD2

AF6 GHSR ORAI1 F2R

AKAP2 GLI1 OXTR GIPR

AKT GLI3 PACAPRI GNAI3

AMH GLP1R PAK1 GRIA2

ANPRA GNAS PKA GRIN2A

ARAP3 GPR109 PLCE GRIN2B

BAD GPR119 PLD1 GRIN3A

BDNF GPR81 PLN HCN4

BRAF GRIA1 PPP1C PDE10A

CACNA1C GRIA3 PPP1R12A PDE2A

CALM GRIA4 PPP1R1B PDE4B

CAMK2 GRIN1 PTCH1 PDE4D

CAMK4 GRIN2C PTGER2 PDE6B

CHRM1 GRIN2D RAC1 PIK3C2B

CHRM2 GRIN3B RAC2 PIK3CG

c-Jun HCN2 RAC3 PIK3R4

CNGA1 HHIP RAF1 PIK3R6

CNGA2 HTR1 RAP1A PPP2R2B

CNGA3 HTR4 RAP1B PPP2R3A

CNGA4 HTR6 RAPGEF3 PRKCA

CNGB1 JNK RAPGEF4 PRKCB

CNGB3 JUN RELA PTGER3

CREB1 KAT3 RHOA RYR2

CREB3 LIPE VIPR2 SSTR5

DOI: 10.7554/eLife.13446.020
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Table 2. Oligonucleotide sequences used in RT-PCR.

Gene Forward primer Reverse primer

Kcne4 GTTATGTCCTTCTATGGCGTTTTC ATCATAGGTAGCGGCTTCATAGC

Il6 AACAAGAAAGACAAAGCCAGAGTC CTCCAGCTTATCTGTTAGGAGAGC

Cxcl1 TCATAGCCACACTCAAGAATGGT TTTGGACAATTTTCTGAACCAAG

Dusp1 TCACGCTTCTCGGAAGGATA TGATGTCTGCCTTGTGGTTG

Nfil3 GAGAAGAAAGACGCCATGTATTG AGCTCAGCTTTTAAAGTGGCATT

Usp2 CTGAAGCGCTATACAGAATCGTC AAACCAAGTTTTTCCTTCTCCAG

Gem TGGGAGAAGATACATATGAGCGTA GAGTAGACGATCAGATAGGCATCC

Foxc2 GCCAGAGAAGAAGATCACTCTGA CACTTTCACGAAGCACTCATTG

Efnb2 GGGGTCTAGAATTTCAGAAGAACA ATCTTGTCCAACTTTCATGAGGAT

Btg2 GCTGTATCCGTATCAACCACAAG GATGCGGTAAGACACTTCATAGG

Ddit4 TTTCAGTTGACCCTGGTGCT GATGACTCTGAAGCCGGTACTTAG

Lif ACCTTGAGAAAATCTACCGAGAAGT AAAAATTTCTCCATTTTTGGCATA

Plaur ACAGAGCACTGTATTGAAGTGGTG GAAAGGTCTGGTTGCTATGGAA

Nrp1 TACCCTCATTCTTACCATCCAAGT CCACGTAGTCATACTTGCAGTCTC

Nfkbiz TAAACATCAAGAATGAGTGCAACC GTTGGTATTTCTGAGGTGGAGAGA

Ifngr1 GTGGGGAGATCCTACATACGAA CTTGCCAGAAAGATGAGATTCC

Rnf122 GTCTTCATGCTTAGCCTCATCTTC CAGGTCCCATAGAGCTGTAACTTC

Ugdh CCTTCCTATTTATGAGCCTGGATT CCATATGTTTTTGTTGGTGTGTTC

Osbpl9 GTGTTAGCTACCTTGGGACATCAT AGAACTCTGGGACTGTATTTGGAG

Ier3 AATTTTCACCTTCGACCCTCTC TTGGCAATGTTGGGTTCC

Cebpd TCCTGCCATGTACGACGAC TGTGGTTGCTGTTGAAGAGGT

Vegfa GAAACCATGAACTTTCTGCTCTCT ACTTGATCACTTCATGGGACTTCT

Sox9 AGAAGGAGAGCGAGGAAGATAAGT CTTGACGTGTGGCTTGTTCTT

Fos GCTATCTCCTGAAGAGGAAGAGAAA AACGCAGACTTCTCATCTTCAAGT

Nr4a3 GGTGCAGAAAAATGCAAAATATG CTGTCTGTACGCACAACTTCCTTA

Dusp1 TCACGCTTCTCGGAAGGATA TGATGTCTGCCTTGTGGTTG

Sik2 ACCTTGAGAAAATCTACCGAGAAGT AAAAATTTCTCCATTTTTGGCATA

Junb CATCAACATGGAAGACCAGGA GTTCTCAGCCTTGAGTGTCTTCA

Gtpbp10 CCAAGTGCTAGGAGAACTCAATAAA GCTATGACTTTTAGGTCAAGGTGAA

Adamts1 GACCAGGAAGCATAAGGAAGAAG CGAGAACAGGGTTAGAAGGTAATG

Bmp8a CTGAGTTCCGGATCTACAAAGAAC AGCGTCTGAAGATCCAAAAAGA

Lst1 ACAACCAATGATTTCCTGCTAAAT AGATGAACAGGATGATGACAAGC

Dlec1 TCTAGACAGCAAGTTAATGCGAAA ACAGCTAAACGTCAGCTTTGAAC

Tnfrsf12a GCTGGTTTCTAGTTTCCTGGTCT GTCTCCTCTATGGGGGTAGTAAACTT

Golga3 AAAAAGAACTCCAAATCAAGCAAG CCTCAGACACAACTGAAGTGCTAC

Tcf7 TTTCTCCACTCTACGAACATTTCA CCTGAGGTCAGAGAATAAAATCCA

Aqp3 ATCAACTTGGCTTTTGGCTTC GCATAGATGGGCAGCTTGAT

Hmg20b CTTTGTAGTGGCTGTCAAGCAG CATTTGGGAGAATCTTCTTTCTTTT

Tex264 GTCTACTATGACAACCCCCATACG GAAGGAGAATATCTTGAAGCCAAA

Creb1 CAAGTCCAAACAGTTCAGATTTCA TGGTGCATCAGAAGATAAGTCATT

Id1 GGTGAACGTCCTGCTCTACG AGACTCCGAGTTCAGCTCCA

Dsip1 GGTGAACGTCCTGCTCTACG AGACTCCGAGTTCAGCTCCA

Rgs2 GTCCTCAAAAGCAAGGAAAATCTA CATCAAACTGTACACCCTCTTCTG

Nr4a1 CTCCTCCACGTCTTCTTCCTC CAGGGACTGCCATAGTACTCAGA

Table 2 continued on next page
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transferred to PVDF membrane (Merck Millipore, Billerica, MA, USA). Membranes were blocked in

5% skim milk in TBST (20 mM Tris, 150 mM NaCl, 0.1% Tween-20) for 1 hr before incubation with

primary antibodies diluted in 5% skim milk in TBST overnight a 4˚C, or for 1 hr at room temperature

in the case of pan-ACTIN. All antibodies (p53 (1C12) Cell Signaling 2524) (Phospho-CREB (Ser133)

Cell Signaling Technologies, #9198), Anti-CREB1 ChIP grade (ab31387) were used at 1:2000, except

pan actin (Ab-5, Thermo Scientific, Waltham, MA, USA) that was used at 1:3000. Anti-PTHrP anti-

body (R88) was generated in house against PTHrP(1–15). IgG was extracted from whole serum using

Protein G Sepharose 4B fast Flow (GE Healthcare Life Sciences, Cat number 17-0618-01). Protocol

for PTHrP western is the same as described for CREB1 except 3% BSA was used for blocking instead

of skim milk. Following four washes of 10 min in TBST, membranes were incubated with secondary

goat-anti-mouse or goat-anti-rabbit HRP conjugated antibodies (Thermo Scientific, Waltham, MA,

USA) diluted 1:10,000 in 5% milk in TBST for 1 hr at room temperature. Following four 10 min

Table 2 continued

Gene Forward primer Reverse primer

Areg CACAGGGGACTACGACTACTCAG TCTTCCTTTTGGGTTTTTCTGTAG

Nr4a2 ACTGAAATTACTGCCACCACTTCT TGTGCATCTGAATGTCTTCTACCT

Pepck AGTGAGGAAGTTCGTGGAAGG GCCAACAGTTGTCATATTTCTTCA

Bnip3l GTCTCTAAGCATGAGGAAGAGTGG AGAAGGTGTGCTCAGTCGTTTT

DOI: 10.7554/eLife.13446.021

Table 3. Primers for promoter regions for ChIP and antibody conditions.

Gene promoter Forward primer Reverse primer

Nr4a2 CTGCCAACATGCACCTAAAGT CTTAAAATCAGCCCCAGTCGT

Nr4a1 TTCTGTTTCTAGGGACAGTGCAT ACCCTACTCCAAGAGCTATCCTTT

Cga CTCTTCATAAGCTGTCCTTGAGGT GGTAAATTCTACCCAGTGATTGGA

Areg TGATAACTAAGGAAACTGAGGTCCA TTTGGAGAGGGAAAAATAAAATCA

Dpp10 AAGATCAGGGACTGTGGTACTGA GGAATAGTGCATGTTTCCTTCTG

Cebpd CACGGTTCACTAGTTCTGGTCTC CTGGAGCGAAATGAAAATCTG

Ifgnr1 CTATGGTTTCCAGGAGCTTCAGT AACTTCAGTTTGAACATGCACCT

Rnf22 CTATGGTTTCCAGGAGCTTCAGT AACTTCAGTTTGAACATGCACCT

Gem AAGCCCTTTTTGTACAAGTGTGA GAGTGGGACAGTTTCTGTTTGAG

Foxc2 TTATCCATCACTGCATTCAACAG AGTAGGAAAGAGCCTGGAGATTTT

Fos GGTGCATACAGGAAGACATAAGC GCAAAAGTCCTGAAACAAAACAA

Jun AGCAAAGATTAGCAAAGGGAAAG CCAACTTTGAATCTGACAACTCC

Sox9 AGCAAAGATTAGCAAAGGGAAAG CCAACTTTGAATCTGACAACTCC

Vegfa 1 GGGTGATGATAACAACAATTTGG GAATATGGGCACAACAATTCAGT

Vegfa 2 ATTTGAGGGAGTGAAGAACCAAC AGTCTGTGCTCTGGGATTTGATA

Aqp3 AGTCAAGGGTCATAGCTCCAGAT TGGACCCAGAAGTGAGTTTCTAA

Plaur CCTCAAAGGCTTTCTGTAGGAAT AGGGGAAAAACAAGTTGAAAGAG

Tnfrs12a GTTGTGTCTGCCCCTCAAGT TTGCCCTATCTCTGGGTCTG

Il6 TCCTTTCCTGTCTGGAAGATACA GGCAAAGAGATAAGGAAAAAGGA

Ab directed against Cell number per ChIP Amount Origin of Ab

Creb1 6x106 2 mg Abcam (ab31387)

Phospho-Creb1 6x106 2 mg Cell Signaling (#9198)

Pol II (phospho-S2) 2x106 2 mg Abcam (ab103968)

DOI: 10.7554/eLife.13446.022
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washes with TBST, membranes were exposed to ECL Prime (GE Healthcare Life Sciences, Piscat-

away, NJ, USA) and exposed to x-ray film to detect the expression levels of proteins.

Chromatin immunoprecipitation
5x106 cells for each subtype were seeded and allowed to proliferate for 24 hr. An additional count-

ing plate for each subtype was used as cell count control. Primary osteoblasts and OS cells were

treated with 10 mM forskolin or 0.1% v/v DMSO for a time course of 2 hr or used in an unstimulated

state (PTHrP- or forskolin- free). Adherent cells were fixed with 1% formaldehyde-PBS for 30 min at

room temperature. Cross-linking was quenched by incubating cells with 0.125 M glycine diluted in

PBS for 10 min at room temperature. Following two washes with PBS, cells were scraped and snap

frozen as pellets at -80˚C until use. Cell pellets were diluted in sonication buffer (1% SDS, 10 mM

EDTA, 50 mM Tris-HCl pH 8.1) with protease inhibitors (Roche, Burlington, NC, USA) and the DNA

sheared to lengths between 200–800 bp using a UCD-200 Bioruptor (Diagnenode, Denville, NJ,

USA) on high at 4˚C for a total shearing time of 15 min (90 min of 10 s on and 50 s off). Cell debris

was cleared by centrifugation at 13,000 rpm for 10 min at 4˚C and supernatants were diluted 10-fold

in ChIP dilution buffer (0.01% SDS, 1.1% Triton X-100, 1.2 mM ETA, 16.7 mM Tris-HCl pH 8.1,

167 mM NaCl) with protease inhibitors. After removing 1% input for the total number of cells of

each sample as an input control, samples were incubated with either 2 mg CREB1 antibody (Abcam:

(ab31387), 2 mg of phospho-CREB1 antibody (Cell Signaling: 9198), 2 mg of phospho-Pol II antibody

Abcam: (ab103968) and 2 mg of control rabbit IgG (Merck Millipore), or no antibody overnight at

4˚C with rotation. Complexes were collected for 1 hr at 4˚C with rotation with 60 ml of protein A

sepharose beads (Invitrogen) that had been pre-blocked for 1 hr in 1 mg/ml BSA and 20 mg/ml of

yeast tRNA (Sigma Aldrich, R5636). Beads were washed one time each with Low Salt buffer (0.1%

SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH 8.1, 150 mM NaCl), High Salt buffer (0.1%

SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH 8.1, 500 mM NaCl) and LiCl buffer (0.25 M

LiCl, 1% NP40, 1% deoxycholate, 1 mM EDTA, 10 mM Tris-HCl pH 8.1), followed by two washes

with TE buffer. Protein-DNA complexes were eluted from the beads (0.1 M NaHCO3, 1% SDS) at RT

for 30 min with two rounds of elution. Protein was digested by incubation with 50 mg/mL of protein-

ase K at 45˚C for 1 hr. RNA was digested by incubation with 10 mg/mL RNaseA at 37˚C for 30 min.

DNA was purified by two extractions with phenol:chloroform:isoamyl alcohol and ethanol precipita-

tion. CREB1, pCREB1 and Pol II bound and input samples were analysed by QPCR using primers

that amplified CREB1 target gene promoters or negative control regions (Sequences in Table 3 and

for respective ChIP conditions refer to Table 3)

Bioinformatics and data mining
Somatic SNV mutations within human OS and enriched cAMP related
functional pathways
Somatic SNV mutations derived from WGS of human osteosarcoma was downloaded (Chen et al.,

2014). 1704 somatic SNV mutations comprising of insertions and deletions were subjected to path-

way analysis. Analysis for functional pathways was performed using Cytoscape v3.1.1 (www.cyto-

scape.org) (Shannon et al., 2003; Saito et al., 2012). Highly enriched pathways within the cAMP

signaling were selected based on FDR. cAMP interactome data containing 169 genes within the

Kegg pathway were downloaded (entry number: map04024). The data set was overlapped using Bio-

venn and Venny (BioinfoGP, CNB-CSIC Key: citeulike: 6994833) with SNV mutations derived from

WGS of human osteosarcoma. The overlap between the two databases was considered. Please refer

to the Table 1 for the gene sets and the overlaps.

Enrichment of somatic SNV mutations within the cAMP interactome
cAMP interactome data containing 169 genes within the Kegg pathway were downloaded (entry

number: map04024). Data from the indicated human tumor sets was obtained from the analysed

data files and compared as total somatic SNV mutations (all) or predicted non silent SNV mutations

as indicated. The tumor somatic SNV mutation data sets were overlapped using Biovenn and Venny

(BioinfoGP, CNB-CSIC Key: citeulike: 6994833) with the cAMP interactome. Log p values are calcu-

lated using the hypergeometric distribution (phyper function in R). The human set size of 39,227 is

derived using all symbols from HGNC.
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RNA-seq and data analysis
RNA-Sequencing (RNA-Seq) was conducted at the Ramaciotti Centre for Genomics (University of

New South Wales, Australia) on the Illumina HiSeq 2000 with 100 bp paired-end reads. Reads were

aligned to the mouse genome build mm9/NCBI37 using Casava 1.7 and Bowtie v0.12.2 mapping

software, normalized using Voom linear modeling (Law et al., 2014) and transcript abundance mea-

sured as reads per kilobase of exon per million mapped reads (RPKM) (Chepelev et al., 2009). The

datasets are deposited in GEO (accession number GSE58916).

Statistical analysis
Data were presented as mean ± SEM. Statistical comparisons were performed in Prism 6.0 unless

otherwise indicated. Parametric Student’s t-test, area under the curve or 2-way ANOVA with multi-

ple comparison test were used for comparisons with p<0.05 considered as significant; Analysis of

the enrichment for somatic SNV mutations within the cAMP interactome in each of the indicated

tumor type was defined using hypergeometric distribution test (phyper function in R). P values as

indicated in the Figure legend.
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rard P, Gut I,
Downing J, Dyer M,
Zhang J, Delattre O;
St. Jude Children’s
Research Hospital–
Washington Univer-
sity Pediatric Cancer
Genome Project
and the Interna-
tional Cancer Gen-
ome Consortium.

2014 Genomic landscape of Ewing
sarcoma defines an aggressive
subtype with co-association of
STAG2 and TP53 mutations

https://ega-archive.org/
search-results.php?quer-
y=EGAS00001000839

Publicly available at
the European
Genome-Phenome
Archive (accession no.
EGA
S00001000839)

Walia et al. eLife 2016;5:e13446. DOI: 10.7554/eLife.13446 26 of 31

Research Article Cell biology Developmental biology and stem cells

https://ega-archive.org/search-results.php?query=EGAS00001000855
https://ega-archive.org/search-results.php?query=EGAS00001000855
https://ega-archive.org/search-results.php?query=EGAS00001000855
https://ega-archive.org/search-results.php?query=EGAS00001000839
https://ega-archive.org/search-results.php?query=EGAS00001000839
https://ega-archive.org/search-results.php?query=EGAS00001000839
http://dx.doi.org/10.7554/eLife.13446


Ellis MJ, Ding L,
Shen D, Luo J, Su-
man VJ, Wallis JW,
Van Tine BA, Hoog
J, Goiffon RJ, Gold-
stein TC, Ng S, Lin
L, Crowder R, Snider
J, Ballman K, Weber
J, Chen K, Koboldt
DC, Kandoth C,
Schierding WS,
McMichael JF, Mill-
er CA, Lu C, Harris
CC, McLellan MD,
Wendl MC, DeS-
chryver K, Allred
DC, Esserman L,
Unzeitig G, Mar-
genthaler J, Babiera
GV, Marcom PK,
Guenther JM, Leitch
M, Hunt K, Olson J,
Tao Y, Maher CA,
Fulton LL, Fulton RS,
Harrison M, Oberk-
fell B, Du F, De-
meter R, Vickery TL,
Elhammali A, Piwni-
ca-Worms H,
McDonald S, Wat-
son M, Dooling DJ,
Ota D, Chang LW,
Bose R, Ley TJ,
Piwnica-Worms D,
Stuart JM, Wilson
RK, Mardis ER

2012 Whole-genome analysis informs
breast cancer response to
aromatase inhibition

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE29442

Publicly available at
Gene Expression
Omnibus (accession
no. GSE29442)

Ellis MJ, Ding L,
Shen D, Luo J, Su-
man VJ, Wallis JW,
Van Tine BA, Hoog
J, Goiffon RJ, Gold-
stein TC, Ng S, Lin
L, Crowder R, Snider
J, Ballman K, Weber
J, Chen K, Koboldt
DC, Kandoth C,
Schierding WS,
McMichael JF, Mill-
er CA, Lu C, Harris
CC, McLellan MD,
Wendl MC, DeS-
chryver K, Allred
DC, Esserman L,
Unzeitig G, Mar-
genthaler J, Babiera
GV, Marcom PK,
Guenther JM, Leitch
M, Hunt K, Olson J,
Tao Y, Maher CA,
Fulton LL, Fulton RS,
Harrison M, Oberk-
fell B, Du F, De-
meter R, Vickery TL,
Elhammali A, Piwni-
ca-Worms H,
McDonald S, Wat-
son M, Dooling DJ,
Ota D, Chang LW,
Bose R, Ley TJ,
Piwnica-Worms D,
Stuart JM, Wilson
RK, Mardis ER

2012 Whole-genome analysis informs
breast cancer response to
aromatase inhibition

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE35191

Publicly available at
the Gene Expression
Omnibus (accession
no. GSE35191)

Walia et al. eLife 2016;5:e13446. DOI: 10.7554/eLife.13446 27 of 31

Research Article Cell biology Developmental biology and stem cells

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29442
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29442
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29442
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE35191
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE35191
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE35191
http://dx.doi.org/10.7554/eLife.13446


References
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