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The transcription factor NRF2 (nuclear factor erythroid 2-related factor 2) triggers the first line of homeostatic responses against
a plethora of environmental or endogenous deviations in redox metabolism, proteostasis, inflammation, etc. Therefore,
pharmacological activation of NRF2 is a promising therapeutic approach for several chronic diseases that are underlined by
oxidative stress and inflammation, such as neurodegenerative, cardiovascular, and metabolic diseases. A particular case is
cancer, where NRF2 confers a survival advantage to constituted tumors, and therefore, NRF2 inhibition is desired. This
review describes the electrophilic and nonelectrophilic NRF2 activators with clinical projection in various chronic diseases.
We also analyze the status of NRF2 inhibitors, which at this time provide proof of concept for blocking NRF2 activity in
cancer therapy.

1. Introduction

Nuclear factor erythroid 2-related factor 2 (NRF2) is the
product of the NFE2L2 gene and belongs to the cap′n′col-
lar transcription factor family. By sequence homology with
other orthologs, the domains termed Neh1-7 have been tra-
ditionally allocated in this protein (Figure 1(a)). At the C-ter-
minus, NRF2 contains a basic leucine-zipper (bZip) domain
that participates in the formation of heterodimers with other
bZip proteins, like small muscle aponeurosis fibromatosis
(MAF) K, G, and F [1, 2]. These heterodimers regulate the
expression of about 250 human genes that present a regulatory
enhancer sequence termed Antioxidant Response Element
(ARE; 5′-TGACNNNGC-3′) and participate in multiple
homeostatic functions including regulation of inflammation,
redox metabolism, and proteostasis [3–6].

From a clinical perspective, it is of utmost importance
that NRF2 can be targeted pharmacologically in diseases
underlined by oxidative stress and inflammation, such as
neurodegenerative, vascular, and metabolic diseases as well
as cancer [7, 8]. In models of most chronic diseases, a rein-
forcement of homeostasis through NRF2 activators provides
a beneficial therapeutic effect. In cancer, the pharmacological
regulation of NRF2 appears to be context dependent. It is
generally accepted that NRF2 inhibitors not only reduce the
survival and proliferative advantage of cancer cells but also
sensitize tumors to chemo- and radiotherapy [9]. In this
review, we describe the pharmacological activators of NRF2
that are in several stages of pharmacological development
for the treatment of several chronic diseases. The most devel-
oped compounds activate NRF2 by preventing its degrada-
tion by KEAP1-dependent mechanisms. We also discuss
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the current state of NRF2 inhibitors which may be highly
relevant for cancer therapeutics although at this time they
are still in early phases of development.

2. Physiologic Regulation of NRF2

NRF2 is ubiquitously and constitutively expressed by cells,
thus ensuring their prompt protective response to oxidative,
inflammatory, and metabolic stresses. Under normal physio-
logical conditions, NRF2 has a rapid turnover and presents a
half-life of about 20-30min due to its constant degradation
by the ubiquitin proteasome system [10, 11]. Therefore,
under nonstressed conditions, low NRF2 levels provide basal
expression of its target genes.

The main control of NRF2 stability is exerted by the E3
ligase adapter Kelch-like ECH-associated protein 1 (KEAP1).
KEAP1 is a homodimer protein that comprises three func-
tional domains (Figure 1(b)): a broad complex, tramtrack,
bric-a-brac (BTB) homodimerization domain, an interven-
ing region (IVR), and a C-terminal Kelch domain with a dou-
ble glycine repeat (DGR). The Kelch domain binds to the

Neh2 domain of NRF2 at two amino acid sequences: DLG
and ETGE. Experiments based on isothermal calorimetry
have led to the conclusion that the ETGE motif exhibits
about one hundred times higher affinity for KEAP1 than
the DLG motif [12]. KEAP1 presents NRF2 for ubiquitina-
tion by the E3 ligase complex formed by Cullin3 and RBX1
proteins (CUL3/RBX1) [13], resulting in subsequent NRF2
degradation by the proteasome 26S [2, 14].

KEAP1 contains 27 cysteine residues in humans, con-
verting this protein in a redox sensor for endogenous and
environmental oxidative signals as well as for electrophilic
reactions [15]. Under redox-challenging conditions, the cel-
lular redox buffers comprising glutathione (GSH), thiore-
doxin, etc. maintain low intracellular levels of reactive
oxygen species (ROS) and glutathionylated proteins. How-
ever, ROS oxidize thiols and induce glutathionylation and
alkylation of macromolecules, therefore having the capacity
to modify KEAP1 cysteines [16]. From a pharmacological
perspective, electrophile reaction with some cysteines of
KEAP1 leads to the formation of adducts that prevent the
ubiquitination NRF2, resulting in its stabilization, nuclear
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Figure 1: Domain structures of NRF2 and KEAP1. (a) Domain structure of NRF2. NRF2 possesses six highly conserved domains called
NRF2-ECH homology (Neh) domains [167]. The functional role of each Neh domain is specified. Within the Neh2 domain, the low-
affinity (DLG) and high-affinity (ETGE) binding domains to KEAP1 are zoomed in. (b) Domain structure of a KEAP1 monomer showing
the position of cysteine residues. The N-terminal BTB (bric-a-brac, tramtrack, broad complex) domain participates in homodimerization
and binding to CUL3/RBX1. The C-terminal region, DGR (double glycine repeat) domain, contains a double glycine repeat called Kelch
repeat that binds NRF2-Neh2 domain. The intervening region (IVR/LR) connects BTB and DGR domains and is particularly rich in
redox-sensitive cysteine residues. Red and blue cysteine residues in KEAP1 are the most relevant for electrophile reactivity. This figure has
been modified and extended from [168] to highlight the degradation domains in NRF2 and the cysteines of KEAP1.
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translocation, and transcriptional induction of NRF2-target
genes [7, 8].

An alternative mechanism for proteasomal degradation
of NRF2 is mediated by the glycogen synthase kinase 3
(GSK-3) and the E3 ligase adapter β-TrCP. GSK-3α and β
are serine/threonine protein kinases involved in several sig-
naling pathways such as receptor tyrosine kinase, WNT,
and Hedgehog that influence cell division, survival, and
development [17, 18]. GSK-3α and β are maintained in an
inactive state under normal conditions due to their inhibition
by AKT-mediated phosphorylation at their N-terminal pseu-
dosubstrate domain or by sequestration in protein complexes.
However, in the absence of receptor signaling, active GSK-3
phosphorylates NRF2 at the Neh6 domain (DSGIS). This
phosphodomain recruits β-TrCP, which recognizes pSGIpS,
and the CUL1/RBX1 complex for ubiquitin-proteasome
degradation [19]. β-TrCP also recognizes another motif in
the Neh6 domain of NRF2 (DSAPGS) which appears to be
constitutively phosphorylated in a GSK-3-independent
manner [20]. Additional degradative systems are able to reg-
ulate NRF2 at posttranscriptional level, such as the inositol-
requiring enzyme (IRE1)/E3 ubiquitin ligase synoviolin
(HRD1) [21].

NRF2 can be regulated at the transcriptional level. The
NFE2L2 gene promoter presents several regulatory sequences:
(a) one xenobiotic response element (XRE; 5′-TA/TGCG
TGA/C-3′) at -712 and two XRE-like sequences at +755
and +850 that are recognized by the transcription factor Aryl
Hydrocarbon Receptor (AHR) [22]; (b) two ARE-like
sequences at -492 (AREL1; TGACTCCGC) and -754 pb
(AREL2; TGACTGTGGC), which allow NRF2 autoregula-
tion [23]; (c) one 12-O-tetradecanoylphorbol-13-acetate-
response element (TRE) (TGCGTCA) at +267 to +273 pb
that is activated by the oncogenic KRAS [24], BRAF, and
MYC [25] hence being critically involved in carcinogenesis;
(d) one NF-κB binding site that responds to inflammatory
stimuli [26]; and (e) epigenetic changes such as promoter
methylation, microRNAs including miR-144 [27], miR-28
[28], miR-98-5p [29], and long noncoding RNA deregulation
[30] that contribute to changes in expression of the NRF2-
coding gene.

3. Pharmacologic Activators of NRF2

The so-called “NRF2 activators” should be more precisely
termed “KEAP1 inhibitors” as their molecular target is in fact
KEAP1 [31]. These compounds can be classified as electro-
philes, protein-protein interaction (PPI) inhibitors, and mul-
titarget drugs (Figure 2).

3.1. Electrophilic Compounds. Most pharmacological NRF2
activators are electrophilic molecules that covalently modify
cysteine residues present in the thiol-rich KEAP1 protein
by oxidation or alkylation [32–34]. Many cysteines of KEAP1
are modified by different electrophiles [35–37]. Cysteines
Cys-151, Cys-273, and Cys-288 [38, 39] appear to be the
most susceptible to electrophile reaction [40, 41]. Other sen-
sitive cysteines are Cys-226, Cys-434, and Cys-613. This
“cysteine-code” controls KEAP1 activity when the protective

response mediated by NRF2 is needed. Selected electrophilic
activators of NRF2 that are in various stages of clinical devel-
opment are presented in Table 1.

One mechanism of KEAP1 inhibition is the sequestra-
tion in complexes with NRF2 that cannot be ubiquitinated.
Modifications of several cysteines in KEAP1 generate a non-
functional closed state with both Neh2 motifs (DLG and
ETGE) of NRF2 interacting with the KEAP1 dimer but
not leading to ubiquitination. As a result, free KEAP1 is
not regenerated at a sufficient rate and newly synthesized
NRF2 escapes KEAP1-mediated ubiquitination and subse-
quent degradation [42].

Another mechanism of KEAP1 inhibition is related to
its interaction with the CUL3/RBX1 complex, required for
NRF2 ubiquitination. Cys-151 located at the BTB domain
influences the interaction of KEAP1 with CUL3. The crystal
structure of the BTB domain bound to the pentacyclic tri-
terpenoid 2-cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oate
(bardoxolone, CDDO, RTA401) indicates that adduct for-
mation with Cys-151 most likely disrupts the interaction
between KEAP1 and CUL3 [43–45]. As a result, KEAP1 is
clogged in a NRF2 bound conformation, and newly formed
NRF2 escapes ubiquitination. Synthetic triterpenoids have
been derived from the natural compound oleanolic acid to
provide them with strong Michael acceptor reactivity. This
is achieved mainly through the addition of enone and ciano
groups to the A ring and another enone group to the C ring
[46, 47]. Bardoxolone methyl (CDDO-Me or RTA 402)
reached clinical trials for the treatment of advanced chronic
kidney disease (CKD) and type 2 diabetes mellitus [48].
Although phase II clinical trials demonstrated long-term
increment in glomerular filtration, CDDO-Me was halted
at phase III due to cardiovascular safety issues [49]. A
new phase II clinical trial has recently started recruiting
patients with rare chronic kidney diseases to better define
the safety and efficacy profiles of CDDO-Me. Currently,
CDDO-Me is also under clinical study for the Alport syn-
drome and pulmonary hypertension. In an effort to improve
the safety profile, a second-generation difluoromethyl acet-
amide derivative of bardoxolone methyl, called RTA-408
(Omaveloxone), is now under clinical investigation in phase
II clinical trials for Friedreich’s ataxia, ocular inflammation,
and pain after ocular surgery [50]. Recently, a preclinical
study evaluated RTA-408 for diabetic wound recovery and
pointed NRF2 upregulation as responsible for the observed
improvement in regenerative capacity [51].

The most successful NRF2 activator to date is the fuma-
ric acid ester dimethyl fumarate (DMF) (BG-12 or Tecfidera,
from Biogen) that has been approved in 2013 by FDA for
relapsing-remitting multiple sclerosis (MS) [52–55]. Previ-
ously, DMF was authorized for the treatment of psoriasis
[56]. DMF was shown to reduce the number of peripheral
T cells, CD8+ cells being more sensitive to DMF than
CD4+ cells [57, 58]. DMF also reduces total B lymphocyte
counts, especially memory B cells, along with a decrease in
granulocyte-macrophage colony-stimulating factor, IL-6,
and TNF-α production, leading to an anti-inflammatory
shift in B cell responses [59, 60]. The DMF-induced activa-
tion of NRF2 in the central nervous system was described
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in the MS mice model of experimental allergic encephalomy-
elitis [61]. In this model, DMF-dependent NRF2 activation
correlated with an improvement in the clinical course of
MS, favored axon preservation, and increased astrocyte acti-
vation. These beneficial effects of DMF did not occur in
NRF2-null mice, hence indicating that DMF was acting
mainly by targeting the NRF2 pathway. DMF is mostly con-
verted to monomethyl fumarate (MMF) by intestinal ester-
ases, and only a small fraction is found in blood conjugated
with glutathione [62]. Therefore, an oral formulation of a
monomethyl fumarate (MMF) derivative, diroximel fuma-
rate (2-(2,5-dioxo-1-pyrrolidinyl)ethyl ester; ALKS-8700;
Alkermes) which exhibits improved bioavailability and effi-
cacy, is currently under phase III trial for MS [63, 64]. How-
ever, the biological effects of these fumaric acid esters are not
fully characterized and KEAP1/NRF2-independent effects
are being described. For instance, it has been reported that

DMF and MMF activate the nicotinic receptor hydroxycar-
boxylic acid receptor 2, which is expressed in immune cells
and gut epithelial cells, resulting in NRF2-independent
anti-inflammatory responses [65].

Oltipraz (4-methyl-5(pyrazinyl-2)-1-2-dithiole-3-thione)
is a NRF2 inducer that enhances GSH biosynthesis and phase
II detoxification enzymes, such as NQO1. Oltipraz is a prom-
ising chemopreventive agent [66] under phase III clinical
trial for the treatment of nonalcoholic fatty liver disease.

Ursodiol (ursodeoxycholic acid) is anFDA-approveddrug
for the treatment of primary biliary cirrhosis. Although its
cytoprotective mechanisms have not been elucidated yet, sev-
eral research groups suggested that the upregulation of NRF2
by ursodiol induces detoxification and antioxidant mecha-
nisms that play a role in its therapeutic efficacy [67, 68].

Several natural compounds have been identified as elec-
trophilic NRF2 inducers, including sulforaphane, curcumin,
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resveratrol, quercetin, genistein, and more recently andro-
grapholide [69]. For instance, sulforaphane (SFN), an iso-
thiocyanate found in cruciferous vegetables, has been
successfully used for the treatment of patients with type II
diabetes mellitus [70, 71]. Due to the capacity of SFN to cross
the blood-brain barrier, it protects against neurodegenerative
disorders as demonstrated in murine models of disease.
Regarding acute brain damage, SFN was shown to exert
protective effects in hypoxic-ischemic injury in rats by reduc-
ing the infarct ratio and by upregulating NRF2 and HO-1
[72, 73]. In neurodegenerative disease models, SFN proved
protective capacity against the neurotoxic Aβ1-42 peptide in
neuronal cells [74]. In vivo, SFN ameliorated cognitive
impairment in an acute mouse model of Alzheimer disease
(AD) [75]. In Parkinson disease (PD), SFN protected
dopaminergic cells against the cytotoxic effects of 6-
hydroxydopamine [76]. In the 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine mouse model of PD, SFN counteracted
astrogliosis and microgliosis and reduced the death of dopa-
minergic neurons [77–79]. To improve the stability of SFN,
Evgen Pharma has developed a cyclodextrin formulation,
SFX-01, which is under phase II clinical trial for the treat-
ment of subarachnoid haemorrhage. A hybrid molecule of
SFN and melatonin (ITH12674) was designed to have a dual
“drug-prodrug” mechanism of action for the treatment of
brain ischemia [80].

Another natural compound that modifies Cys-151 in
KEAP1 and has also ROS-scavenging activity is curcumin, a
linear diarylheptanoid present in turmeric (Curcuma longa)
[81]. It has been used for the treatment of obesity, metabolic
syndrome, and prediabetes [82–84]. Furthermore, curcumin
has been shown to suppress the deleterious action of carcin-
ogens by activating NRF2 [85, 86].

9-Nitro-octadec-9-enoic acid (OA-NO2) is a nitro-fatty
acid with anti-inflammatory properties. OA-NO2 reacts with
several cysteine residues of KEAP1, but mainly with Cys-273
and Cys-288, and its activity seems to be independent
of Cys-151 [36]. CXA-10 (10-nitro-9(E)-octadec-9-enoic
acid) is an isomer of OA-NO2 which has proven efficacy
the uni-nephrectomized deoxycorticosterone acetate-high
salt mouse model of CKD [87] and is under several phase I
clinical trials for the treatment of this disease [88] and under
phase II trials for the treatment of pulmonary arterial hyper-
tension and primary focal segmental glomerulosclerosis.

The list of electrophilic compounds able to interact with
KEAP1 is continuously growing. For instance, some com-
pounds like 15-deoxy-Δ12,14-prostaglandin J2 interact with
Cys-273 and Cys-288 of the KEAP1 homodimer [40]. This
prostaglandin has a cyclopentenone core that is able to
modify covalently Cys-273 and induce NRF2 in models of
ureteral obstruction [89], hepatic ischemia-reperfusion
injury [90], and atherosclerosis [91]. However, its clinical
use is still far from being demonstrated. In a recent study,
the metabolite itaconate was described as a NRF2 activator
that alkylates cysteines 151, 257, 288, 273, and 297 of KEAP1.
A cell-permeable itaconate derivate, 4-octyl itaconate, pro-
tects against lipopolysaccharide cytotoxicity, thus providing
an anti-inflammatory response. Furthermore, this com-
pound is a more potent NRF2 activator than DMF [92]. Some

other examples are tert-butylhydroquinone [93], diethyl
maleate [94], TFM-735 [95], and nitric oxide [96]. However,
most of these compounds have not evolved beyond proof-of-
concept experiments, and a long way needs to be covered to
characterize their pharmacodynamic properties, clinical safety
profile, and efficacy in noncommunicable diseases.

3.2. Protein-Protein Interaction Inhibitors of the KEAP1-
NRF2 System. Protein-protein interaction (PPI) inhibitors
interfere with the docking of NRF2 to the Kelch propeller
of KEAP1 and provide more selectivity over electrophilic
compounds which may eventually form adducts with
redox-sensitive cysteines other than those in KEAP1 [97].
Based on the X-ray crystal structure of KEAP1 [98], small
PPI inhibitors have been designed to impede the binding of
the ETGE motif to KEAP1 [99]. The ETGE motif adopts a
β-hairpin structure that docks to the Kelch propeller of
KEAP1 through specific hydrophobic and electrostatic inter-
actions [98, 99]. A similar strategy is devised to prevent the
interaction of the low-affinity DLG motif which is required
for correct lysine ubiquitination in NRF2 [13].

The first PPI inhibitors of KEAP1 were designed from a
series of truncated NRF2 peptides [100, 101]. Some selected
peptides are shown in Table 2. It was found that the minimal
binding sequence of NRF2 required for docking to KEAP1 is
the 9-mer sequence LDEETGEFL [100–102]. A related
peptide was designed to increase cell penetrance by adding
the Tat sequence of the human immunodeficiency virus
and the cleavage sequence of calpain (-Cal-Tat). This peptide
demonstrated neuroprotection and cognition-preserving
effects in a mouse model of cerebral ischemia [103].
Moreover, hybrid peptides based on both the region of
interaction between KEAP1 and NRF2 (ETGE motif)
and with the region of interaction between KEAP1 and
p62/Sequestosome-1 (SQSTM1) exhibited superior binding
activity compared to either native peptide alone [104]. Due
to unfavorable drug-like properties, such as low oral bioavail-
ability and cellular permeability of peptides, research has
been lately focused on the development of small molecules.
However, a cyclic peptide was used recently to improve
KEAP1 binding and NRF2 accumulation in cells [105].

Current PPI inhibitors are tetrahydroisoquinoline
[97, 106], thiopyrimidine [107], naphthalene [108], carba-
zone [109], and urea derivatives [110]. Recently, the
naphthalene-based nonelectrophilic PPI inhibitors were
modified to develop nonnaphthalene heterocyclic scaffold
based on 1,4-isoquinoline that avoids the carcinogenic and
mutagenic properties of naphthalenes [111]. Some patents
addressing these small molecules are presented in Table 3.

Several PPI inhibitors with improved selectivity over
electrophiles have been identified through screening of
small molecule libraries. These compounds include SRS-5,
benzenesulfonyl-pyrimidone 2, N-phenyl-benzenesulfonamide,
and a series of 1,4-diphenyl-1,2,3-triazole [106, 112–115].
Recently, a new protocol for identifying reversible modifiers
of the NRF2/KEAP1 interaction was proposed [116]. The
biochemical assays comprised time-resolved fluorescence
resonance energy transfer as primary screening tool, surface
plasmon resonance to evaluate the affinity of KEAP1

9Oxidative Medicine and Cellular Longevity



binders, and 1H-15N heteronuclear single-quantum coherence
nuclear magnetic resonance assay to further analyze the bind-
ingmode. This protocol will help in identifying and improving
the properties of reversible binders to KEAP1.

3.3. Other Mechanism of NRF2 Activation. The phosphoryla-
tion of NRF2 by GSK-3 leads to its ubiquitination by the E3
ligase β-TrCP and subsequent proteasomal degradation. An
aberrant activity of GSK-3 is linked with several pathologies
such as AD, cardiovascular diseases, or cancer among others
[117–120]. Therefore, several clinical trials are now focused
on GSK-3 inhibitors for the treatment of several pathologies
[121]. For instance, the GSK-3-inhibitor Tideglusib, a thia-
diazolidinone compound, was studied in phase II trials for
AD in the ARGO study [122]. Another inhibitor is Enzas-
taurin which is intended for the treatment of solid and hema-
tological cancers. Although Enzastaurin provided promising
results at the preclinical level, treatment failed in phase II and
III trials [123, 124]. GSK-3-dependent NRF2 phosphoryla-
tion was shown to be inhibited by nordihydroguaiaretic acid
[125]. This compound and its derivative terameprocol are in
phase I and II clinical trials for the treatment of several types
of cancers, such as gliomas and leukemias (Table 4) [126].

Focusing on E3 ubiquitin ligase β-TrCP, it would be pos-
sible to develop small molecules able to disrupt the docking
of NRF2 to β-TrCP, hence opening a new way regarding
KEAP1-independent activators of NRF2 [127]. A novel E3
ubiquitin ligase linked to KEAP1-independent NRF2 degra-
dation is HRD1 [21]. HRD1-dependent NRF2 degradation
has been described in the context of cirrhotic liver. HRD1 is
a transcriptional target of X-box-binding protein 1 (XBP1)
that is upregulated upon activation of the inositol-requiring

enzyme 1 (IRE1) during endoplasmic reticulum (ER) stress
related to cirrhotic conditions. Inhibitors of HRD1 and
IRE1 restore the NRF2 response in liver cirrhosis [21].

Several proteins contain a (E/S)TGE motif that resembles
the high-affinity ETGE motif of NRF2. The motif confers to
these proteins the ability to compete with NRF2 for KEAP1
binding, leading to a noncanonical mechanism of NRF2 sta-
bilization [128]. Proteins containing the (E/S)TGE motif are
dipeptidyl peptidase 3, Partner and Localizer of BRCA2, and
SQSTM1/p62. SQSTM1/p62, a protein that transports spe-
cific cargos to the autophagosome, including KEAP1, sus-
tains NRF2 stabilization and translocation to the nucleus
[129–131]. Compounds which elevate SQSTM1/p62 levels,
like rapamycin [132] and trehalose [133], are being therefore
studied in several phase II and III trials in connection with
diabetes mellitus, systemic lupus erythematosus, and autoso-
mal dominant polycystic kidney disease.

Another way to inhibit the transcriptional activity of
NRF2 is to impede its interaction with critical components
in the nucleus. BTB domain and CNC homolog 1 (BACH1)
is a transcriptional repressor which belongs to the cap′n′
collar, b-Zip family. BACH1 competes in the nucleus with
NRF2 to form heterodimers with small MAF proteins and
blocks therefore the expression of ARE genes [134]. A recent
study characterized the HPP-4382 compound as an inhibitor
of BACH1 repression activity in vitro [135].

All these alternative mechanisms for NRF2 stabilization
and activation suggest that a combinatorial pharmaceutical
approach will be the best way to activate the cytoprotective
responses mediated by NRF2.

4. Pharmacologic Inhibitors of NRF2

The implication of NRF2 in cancer is still controversial.
Several studies described that NRF2 knockout mice are more
susceptible to chemically induced carcinogenesis, pointing
NRF2 as a potential tumor suppressor that limits carcinogen-
esis [136, 137]. On the other hand, NRF2 is overexpressed in
many types of tumors, and it has been related to poor disease
prognosis because it confers a survival and growth advantage
to cancer cells, along with resistance to chemo- and radio-
therapy [138–140]. Altogether, these results suggest a protec-
tive role of NRF2 in the first steps of cancer, but in advanced
stages, NRF2 overexpression helps cancer cells to adapt to the
tumorigenic demands. Cancer cells are “addicted” to NRF2
and resist treatment with chemotherapy or radiotherapy
[141, 142]. Therefore, it is reasonable to assume that NRF2
inhibitors should sensitize tumor cells to anticancer thera-
pies. In all cases, the mechanism of inhibition is either
unknown or not specific, and therefore, NRF2 inhibitors
are still far from being translated from bench to bedside.

4.1. Agonists of Nuclear Receptors. Ligands of the glucocorti-
coid receptor such as dexamethasone [143] and clobetasol
propionate [144] inhibit NRF2 by blocking its transcriptional
activity or preventing its nuclear translocation. All-trans-
retinoic acid and bexarotene, agonists of the retinoic acid
receptor-α and retinoid X receptor-α, inhibit the transcrip-
tional activity of NRF2 [145, 146]. Retinoid X receptor-α

Table 2: Selected peptides acting as NRF2-KEAP1 protein-protein
interaction inhibitors.

Sequence
Mechanism
of action

Reference

LDEETGEFL-NH2

Binding to
KEAP1-Kelch

domain

[100, 101]

DEETGE-CAL-Tat (NH2-
RKKRRQRRR-
PLFAERLDEETGEFLPNH2)

[103]

Ac-DPETGEL-OH [102]

FITCβ-DEETGEF-OH [102]

FITC-β-LDEETGEFL-OH [102]

Ac-DEETGEF-OH [102]

Ac-DPETGEL-OH [102]

FITC-LDEETGEFL-NH2 [100]

FAM-LDEETGEFL-NH2 [108]

LQLDEETGEFLPIQGK(MR121)-OH [107]

Ac-LDEETGEFL-NH2 [100, 101]

Ac-DPETGEL-NH2 [104]

Ac-NPETGEL-OH [104]

St-DPETGEL-OH [104]

YGRKKRRQRRRLQLDEETGEFLPIQ [162]

c[GQLDPETGEFL] [105]
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appears to bind to the Neh7 domain of NRF2 preventing
binding to the ARE enhancer [146]. The pharmacological
value of this mechanism of NRF2 inhibition is limited by
the multiple effects that are expected through the regulation
of these nuclear receptors.

4.2. Natural Compounds. Several compounds of natural
origin have been reported to inhibit NRF2. The quassinoid
brusatol, extracted from Brucea javanica, inhibits the NRF2
transcriptional signature and sensitizes tumors and cancer

cell lines to several chemotherapeutics [147]. However, its
mechanism of action is not specific as it blocks protein
translation, hence affecting other short-lived proteins as
well [148–150].

The flavonoids luteolin [151] and wogonin [152] were
reported to inhibit NRF2 and sensitize cells to anticancer
drugs by increasing the instability to its transcript. However,
later studies also indicated that these compounds may elicit
NRF2 activation [153]. Therefore, their value as NRF2
inhibitor is highly controversial.

Table 3: Selected small molecule activators of NRF2 acting as NRF2-KEAP1 protein-protein interaction inhibitors.

Compound Type Ref. Patent

(SRS)-5
O

O
O

O OH
N

S N R
S

1,2,3,4-Tetrahydroisoquinoline core [112] WO2013/067036

Cpd 15

O

O

S

O
H
N

N

H

F

F

F

N

S

O

Benzenesulfonyl-pyrimidone [107] WO2016/202253

Cpd 16
O

O

S

HN

HN

O

S

O

O

O

1,4-Diaminonaphthalene core [107] WO2016/202253

Compound 2

O

O

O

S

N

OO

O

O

O

N

S

HO OH

1,4-Diaminonaphthalene core [163] CN105566241A

3-(Pyridin-3-ylsulfonyl)-5-(trifluoromethyl)-2H-chromen-2-one (PSTC)

F

F

F

OO

O

S

N

O

Sulfonyl coumarins [164] WO2015/092713

AN-465/144580
O

O

O

O
O

N
N

N
H

N
H

OH

Other structure classes [165] JP2011/0167537

Compound 7

N N

N

NN

N

O

O Arylcyclohexyl pyrazoles [166] WO2017060855
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Table 4: Selected KEAP1-independent activators of NRF2.

Compound Mechanism of action Disease Clinical trial
ClinicalTrials.gov

identifier

Tideglusib

O

O

N

N

S

GSK-3 inhibition

Autism spectrum disorders Phase II NCT02586935

Myotonic dystrophy 1 Phase II NCT02858908

Alzheimer’s disease Phase II NCT01350362

Nordihydroguaiaretic acid (NDGA)

HO
OH

OH

HO

GSK-3 inhibition

Prostate cancer
Phase II NCT00678015

Phase I NCT00313534

Brain and central nervous
system tumors

Phase I/II NCT00404248

Terameprocol (NDGA derivative)

O

O

O

O

GSK-3 inhibition

High-grade glioma Phase I NCT02575794

Leukemias
Acute myeloid leukemia (AML)

Acute lymphocytic leukemia (ALL)
Phase I NCT00664677

Refractory solid tumors
Lymphoma

Phase I NCT00664586

Enzastaurin

N

N

N

N

NH

O

O

GSK-3 inhibition

Diffuse large B cell lymphoma Phase III NCT03263026

Solid tumor
Lymphoma, malignant

Phase I NCT01432951

LS-102

O

N

N N

N N

N

N
H

H

HRD1 inhibition — —
No clinical trials

available

Rapamycin
O

O

O O

O

O

O HO

O O

N

HO

O

OH

p62/SQSTM1 activation

Diabetes mellitus, type 1 Phase III NCT01060605

Systemic lupus erythematosus (SLE) Phase II NCT00779194

Autosomal dominant polycystic
kidney disease

Phase II/III NCT00920309
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Other natural compounds such the mycotoxin ochra-
toxin A [154] and the coffee alkaloid trigonelline [155]
prevent the nuclear translocation of NRF2. In leukemic cells,
malabaricone-A, a plant-derived prooxidant, effectively
inhibits NRF2 transcriptional activity as reflected by a reduc-
tion in HO-1 protein levels and leads to ROS accumulation
and subsequent cell apoptosis [156]. Ascorbic acid, a well-
known ROS scavenger, was found to sensitize imatinib-
resistant cancer cells by decreasing the levels of the
NRF2/ARE complex, hence reducing the expression of
Glutamate-Cysteine Ligase Catalytic Subunit and dropping
GSH levels [157]. In general, the main concern with these
compounds is that their selectivity for NRF2 inhibition has
not been conclusively demonstrated.

4.3. Other Approaches. The lack of knowledge about the fine
structure of NRF2 hampers a straightforward strategy for the
in silico analysis of small molecules that might dock to
relevant domains of interaction with MAF proteins, ARE
enhancer, etc. Therefore, a high-throughput screening was
used which is helping in the identification of NRF2 inhibitors
but still not providing selectivity [158]. A first-in-class com-
pound, termed ML385, was found after the screening of a
chemical library of 400,000 molecules. ML385 blocks NRF2
transcriptional activity and sensitizes KEAP1-deficient cells
to carboplatin and other chemotherapeutics. ML385 inter-
acts with the DNA-binding domain of NRF2 and most likely
prevents the binding of NRF2 to AREs. However, given the
similarity between AREs and other enhancers such as AP1,
additional studies are needed to clearly establish if ML385
is selective for NRF2 or if it also inhibits other bZip transcrip-
tion factors involved in chemoresistance.

Halofuginone, a synthetic derivate of febrifugine that is
used in veterinary medicine, blocked the chemoresistance
and radioresistance of cancer cells in parallel to the decrease
of NRF2 protein levels [159]. It was found that halofuginone
induces amino acid starvation resulting in global inhibition
of protein synthesis.

Another compound, AEM1, decreased the expression of
NRF2-controlled genes and sensitized KEAP1-deficient
A549 lung tumor cells to various chemotherapeutic agents
[160]. Although it seems that the anticancer effect of AEM1
is restricted to cell lines harboring mutations which render
NRF2 constitutively active, the selectivity for NRF2 inhibi-
tion is not demonstrated yet.

In HeLa cells transfected with an ARE-driven luciferase
reporter, a pyrazolyl hydroxamic acid, termed 4f, inhibited

NRF2, reduced cell proliferation of myeloid cell lines, and
increased apoptosis of acute myeloid leukemia cells [161].
Most likely, 4f altered the BCL2/BAX ratio and induced
mitochondria-dependent apoptosis.

5. Conclusions

The NRF2/KEAP1 system represents a very promising phar-
macological target to control common pathologic mecha-
nisms of many chronic diseases characterized by low-grade
oxidative stress and inflammation. A plethora of NRF2 acti-
vators, mostly of electrophilic nature, have been identified
and a few are under clinical development. The pleiotropic
effects of NRF2 on cell physiology together with potential
off-target effects exerted by some NRF2 activators explain
why drug development is moving slowly. The field of NRF2
inhibitors that may have a huge impact on cancer ther-
apy is less advanced. Future work should be directed
towards finding compounds with a good pharmacokinetic/
pharmacodynamic profile for specific diseases.
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Table 4: Continued.

Compound Mechanism of action Disease Clinical trial
ClinicalTrials.gov

identifier

HPP-4382
S

N

N

N

O

H

O

N

OH

O

N

NH

Cl

BACH1 inhibition — —
No clinical trials

available
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