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Abstract—We study the problem of actively searching for an
object in a 3D environment under the constraint of a maximum Target Map cells with an
search time, using a visually guided humanoid robot with twenty- object lying in one cell
six degrees of freedom. The inherent intractability of the problem -
is discussed and a greedy strategy for selecting the best next
viewpoint is employed. We describe a target probability updating
scheme approximating the optimal solution to the problem,
providing an efficient solution to the selection of the best next
viewpoint. We employ a hierarchical recognition architecture,
inspired by human vision, that uses contextual cues for attending J
to the view-tuned units at the proper intrinsic scales and for
active control of the robotic platform sensor’s coordinate frame, A ’
also giving us control of the extrinsic image scale and achieving
the proper sequence of pathognomonic views of the scene. The Update the Target
recognition model makes no particular assumptions on shape  Map probabilties s the e et

roperties like texture and is trained by showing the object b é use the Image s seven farge €
Ean% to the robot. Our results demonstrgte the fegsibility oJf usin)g/; Confidence Maps (Secs. II-C. Il-D)
state of the art vision-based systems for efficient and reliable
object localization in an indoor 3D environment.
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Fig. 1. Acquiring an image and using the Target Confidence Mappdate
a4 x 4 x 4 cell Target Map. Grey cells in the Target Map denote the Marke

Index Terms—Computer Vision, Active Vision, Visual Search, Candidate Cells (Sec.lI-C) that are induced by the obstaclese).
Recognition, Honda’s Humanoid Robot

l. INTRODUCTION into the sensor’s field of view regions that are hidden due
) ) _ _ ) to occlusion and self-occlusioifii) Foveate and compensate
V ISION s the process of discovering from images Whah, spatial non-uniformity of the sensdiii) Increase spatial

is present in the world and where it is [1]. Within theggoiution through sensor zoom and observer motion that
Cf’r,‘teXt of this paper, we distinguish four levels of taskhi brings the region of interest in the depth of field of the
vision problem, which we label as follows [2]: camera. (iv) Disambiguate degenerate views due to finite
« Detection is a particular item present in the stimulus? camera resolution, lighting changes and induced motion [6]
« Localization detection plus accurate location of item. (v) Deal with incomplete information and complete a task.
» Recognition localization of the items present in the An active vision system’s benefits must outweigh the asso-
stimulus plus their accurate description through thegigted execution costs [4]. Dealing with the associatedscos

association with linguistic labels. _ . of an active vision system is a fundamental problem in robot
« Understanding recognition plus role of stimulus in theyisjon and the human visual system (HVS) [7]. In the HVS
context of the scene. this emerges as the attention problem [8], a phenomenon

It is generally accepted that passive approaches to thenvissubsuming the active vision problem that has recentlyesfart
problem have a number of shortcomings. As a means tofemerge as an important issue in computer and robot vision.
addressing these problems, Bajcsy introduced in 1985 thiee associated costs in an active vision system inclide:
concept ofactive perceptioror active visionas “a problem Deciding the actions to perform and their execution or¢iey.
of intelligent control strategies applied to the data asifjon  The time to execute the commands and bring the actuators
process” [3]. Active control of a vision-based sensor affetto their desired state(iii) Adapt the system to the new
a number of benefits [4], [5]. It allows us tqi) Bring viewpoint, find the correspondences between the old and new

) ) viewpoint and deal with sensor noise ambiguities [4].
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Fig. 2. A component-wise [11] break-down of the active 3D objecalization architecture, outlining each executecplderation and defining the execution
order of each component in our architecture. In Secs.ll-B,lI-D of the text, we describe the motivation and the impletagan of the ‘Update Maps’
component and its outputs. In Sec.lI-B of the text, we desctite components ‘Hypothesis Generator and Inverse Kineshaftath Planner’, and ‘Find
Optimal Hypothesis’, as well as their outputs. In Sec.ll-Blt# text, we describe the ‘Feed-forward Hierarchical Redan’ component.

benefit to the cost, in a one-step look ahead approach. to decide the next view of an object that the camera should
Some of the earliest work on active object localizatioriake to obtain more robust recognition in the presence of
includes Garvey’s [12] work on searching for intermediatambiguous viewpoints. Foissoted al. [29] propose a next-
objects that participate in spatial relationships with theget view-planner for 3D object modelling and comment on its
object, in order to speed up the localization. Similarlyxgdin potential applications in multi-view recognition. Rat al.
and Ballard [13] present an active object localization algg30], [31] present an active object recognition algorithar f
rithm that uses intermediate objects to maximize the systerabjects that might not fit in the camera’s field of view.
efficiency and accuracy. Such intermediate objects ardlysuagd number of techniques for solving problems within the
easy to recognize at low resolutions and they are, thustddcamobile robotics field, involve choosing a sequence of astion
quickly. Maver and Bajcsy [14] propose a next-view-plamgninthat reduce the amount of uncertainty under noise-free ob-
algorithm to deal with occlusions and search for a target servations and noisy observations of the environmeng,
hidden regions. Rimey and Brown’s [15] TEA-1 vision systerViDPs and POMDPs [32], [33]). The use of POMDPs for the
can search within a static image for a particular object ard cscene exploration and SLAM problems has gained popularity
also actively control a camera if the object is not withirfigdd amongst the robotics community. POMDPs have been applied
of view. Giefinget al. [16] propose an active vision systemsuccessfully on problems that use non-vision based sensors
that incorporates camera gaze shifts for exploring scenasd a significant research effort is currently under-way on
Ekvall et al. [17] integrate a SLAM approach with an objectrelated problems utilizing MDPs/POMDPs with mixtures of
recognition algorithm based on receptive-field co-ocawree vision and non-vision based sensors [32], [34]. In the next
histograms. Other algorithms combine image saliency mectszction we describe our active object localization altyonit
nisms with bag-of-features approaches [18], [19]. Setdal.
[20] present an implementation, on a humanoid robot, of an Il. A HUMANOID ROBOT THAT SEARCHES
active object localization system that uses SIFT featu?d$ [ We address the problem of actively searching for an object
and is based on the next-view-planner described in [9].  in a 3D environment using a research version of Honda's
A number of papers have dealt with the similar problemtsumanoid robot (HR) (see Fig.1 and [35]), a visually guided
of multi-view detection and recognition. Some of the eatliehumanoid robot with twenty-six degrees of freedom (DOF).
work on view planning for object recognition includes th&Ve describe an object probability updating scheme prowgidin
work by Wilkes and Tsotsos [22]. The authors suggest usiagsolution to the best next viewpoint selection problem. We
various behaviours for detecting objects in the presence erfiploy a hierarchical recognition architecture inspired b
ambiguities such as view degeneracies [6], occlusion ahdman vision [36] that uses contextual scene structurefoues
limited depth information. Callariet al. [23], [24] define attending to the architecture’s view-tuned units at theppro
contextual knowledge as the join of a discrete set of prigmtrinsic scales and for active control of the robotic phath’'s
hypotheses about the relative likelihood of various modgbsition, also giving us control of the extrinsic image scal
parameters, given a set of object views with the likelihooaihd achieving the proper sequence of pathognomonic views
of each object hypothesis as the agent explores the scesfehe scene. Cues used include hue, stereo depth informatio
Laporte and Arbel [25] also present a Bayesian approaekpected viewpoint dependent occlusions, object scale and
to the viewpoint selection problem. Dickinsoet al. [26] target uniqueness within the scene context — uniqueness
combine a Bayesian based attention mechanism, with aspsithin each acquired image and across all acquired images.
graph based object recognition and viewpoint control. 8ehi In Fig.2 we show the system’s organizational structure.
and Crowley [27] use a measure callgdnsinformationfor Our system maintains target map(Sec.ll-A), encoding the
building a robust recognition system. Similarly Borotsichet probability that each position in the search space contains
al. [28] use an information theoretic based quantity (entropyle centre of the object we are searching for. Our system
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also maintains awmbstacle magSec.ll-A), which encodes the obstacle map are initialized as containing no obstacle. IA ce
structure of the explored scene. The robot we use [35] feder of the never-viewed map is initialized as ‘not-viewed’ ifdan
to in this paper as Honda’s humanoid robot, or, HR) executesly if the corresponding target map cell has a non-zeror prio
a finite sequence of greedily selected movements, positioniprobability. Since we assume that a single target object®xi
itself to the next-best viewpoint that maximizes the praligb in the scene, the target map cells sum to one.

of localizing the target object position (based on the T80  pefinition 1. (Scene Sample Function scene sample func-
probabilities), taking into consideration potential @mbNS iqn (), denotes the sensor output that was acquired under
from each viewpoint (using the obstacle map information), paranmetervn representing the sensor state at stege N
while also minimizing the cost of moving to the new viewpoingg o ', - could represent the extrinsic camera parameters,
(see Sec.l-B). As we briefly discuss in Sec.I-A, this a@@ivo fi|q of view etc.), where is an index into the scene sample
helps us deal with the mtractgblhty of the object localiaa function ., . We useu,, to denote the sensor output acquired
problem under a cost constraint. The outputs of a feedfatway; stepn, \;vithout specifying,,. For example, in the case of

hierarchical recognition architecture (Sec.Il-E) arasfarmed g ovscale imagesi — (i, j) can denote a pixel index and
into single-view generative probabilities (see Sec.ll-Gd a -

_ o ) ty, () = pun(Z) is the intensity of pixel?, assuming the
Sec.lI-D) that encode desirable criteria of target uni@ssn ., mera's parameters were set &y when the image, was

within each in(_ji_\{idual image, but also_ across mu_ltiple iesg acquired. Thus, evenfy,, } is equivalent to the occurrence
These probabilities are incorporated in a Bayesian framewqys wyo events: the event where the sensor state is set to

that is used to update the target map probabilities. A sfyate, 4 the event where the sensor output is functign Given
for minimizing the effects of dead-reckoning errors on th?omeu we refer toy,, as theimage of /i, .

system’s reliability is also described in Sec.ll-B. ) . . .
Notice that if we condition om,,, then the conditioned event

{4, }{vn} is equivalent to evenfu, }|{v, }. In this paper, a

sensor state,, specifies the eye coordinate frame and the heel
We define the active object localization problem as the proboordinate frame with respect to the world coordinate frame

lem of finding a finite sequence of viewpoints that maximizghile 11, denotes the sensor statg and the image,, that is

the probability of localizing the target object, subjecteost acquired by HR’s left camera (the eye coordinate frame)eund

A. Basic Definitions

constraint. This section formalizes the problem. state v,,. We define a probability spac® = (Xi,%1,p1)
Assumption 1. We assume that exactly one instance of t{g7] for any sensor states < X, where X; is a set
target object exists in the scene. of sensor parameter states; is a o-algebra of X;, and

Our system depends on three coordinate framesHesed 1 IS @ probability measure ok, whose support includes
Coordinate Frame. the World Coordinate Frame. and the @&ll states that are achievable by our sensor in the current
Eye Coordinate Frame The origin of the heel coordinate SCEN€. Similarly, for each, we define a probability space
frame is defined as the projection on the floor plane of the(v) = (Xu,%,p,) with p,(u) denoting the conditional
point centred between HR's two heels. Hsaxis is parallel Probability of occurrence of an image € X,, if the image
to the floor's normal and points upwards. li§-axis points were acquired under sensor statd he underlying probability

in HR’'s forward direction (see Fig.1). The world coordinat&n€asure, quel; the sepged scene uncertqinty (image noise,
frame is the inertial frame and corresponds to the initiall heV@Ying illumination conditions, dead reckoning errort;.p
coordinate frame. Finally, the eye coordinate frame is éfe | 2nd is largely unknown and difficult to model in practice.
camera’s coordinate frame (see Fig.1). Definition 2. (Sequence Cost{siven a sequencey, ..., v,, of
The search spaceconsists of a 3D regiorffX;, X;] x sensor states, the total co$t(n) associated with executing
[Y,Y3] x [Z1, Z,) whose coordinates are expressed with réhe sequence is given W(n) = T(n — 1) + to(vy_1,vn)
spect to the world coordinate frame. Therget map is a wheret,(v,—_1,v,) denotes the sum of the costs of planning
discretization of the 3D search space into non-overlappdg the next state,, from statev,,_; and of reaching sensor state
cells. Each cell is assigned the probability that it is thikice v,, from sensor state,,_;. T'(1) is the cost of reaching state
the scene containing the target object’s centroid (see)ig.v; from the initial robot state.
The obstacle mapis a discretization of the 3D search SPace | this paper, the costo(va_1,v,) is proportional to the

into binary valued 3D cells. Each cell indicates whether i, of the time the robot takes to plan the next moyeand
contains solid structure (see Fig.2). Finallynaver-viewed  the time the robot state takes to reach statdrom initial
map discretizes the 3D search space into binary valued CeLL‘?atevn_l (e.g.,the time to execute one iteration of the loop in

denoting the cells that have been sensed at least once. 2y we define one variant of thenstrained active object
updating of these maps is discussed in Sec.lI-C. In th'SrpaHScalization(CAOL) problem as follows:
the discretization of the target map, never-viewed map and

obstacle map is the same, and consists of cells with eqlg%ﬂfinition 3.' (Constrained Active Object Localization:
volumes Gem x 5em x 5em), whose centres are uniformly Variant 1) Find a sequencey,, ..., v, of sensor states and
sampled abem intervals along each axis (see Fig.1). We usd® Ce”SZ/E C satisfying p(c;n, vn, "';/‘_17”1) > 0 and

a set of positive integers; = {1,2,...,|C|}, to index each T(n) < T’ for somepuy, ..., i, WhereT" is a search cost
cell in the target map, obstacle map and never-viewed m&9und and/ is a probability threshold.

where |C| denotes the cardinality of set. All cells of the Solutions to the above problem can compensate for our
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limited knowledge onY(v) Vv, and satisfy the need to We need to define a measure of “clearance” between HR
minimize actuator and sensor movements, by searching foarmd scene obstacles, that will allow us to detect potential
finite sequence,,, ..., v; that minimizes the total search timecollisions during the path planning phase. To this extent,
and that best samples the unknown probability spaces. In [1the HR bounding cylinder is defined as the 3D region
it is shown that a number of variants of the problem are NBncompassed by the smallest volume cylinder whose medial
Hard. The rest of Sec.ll presents an efficient algorithm thakis intersects the heel coordinate frame’s origin, is Ifgra

approximates the optimal solution to Def.3. to that frame’sZ-axis and completely encompasses HR (see
. _ Fig.1). We use a path planner based on Dijkstra’s algorithm
B. Hypotheses Generation and Evaluation to determine whether there exists a path from HR’s heel

We now describe our next-view-planning algorithm thatoordinate frame origin corresponding to the current senso
allows us to select the next sensor stafg given that we statev,_; to a candidate sensor stateand to find the shortest
have executed actions, ...,v,_1. In Sec.ll-C and Sec.lI-D path to follow in moving fromw,,_; to v. Let
we discuss how to update the target, obstacle and neveegiew , .
maps for each new sensor stateHR finds itself in (each loop ML" = projix,, xu)x[vi,va) (ML) @)

iteration in Fig.2). We use a hypothesize-and-test appréac denote the projection of the movement list on its first two
the next-view-planning problem that parallels the greedgt adimensions. Then, the nodes of the graph used by the path
near optimal strategy for solving the Knapsack problem [9bjanner correspond tb/ L’. Each pair of nodes;,n, € ML/,

[38]. The approach is a one-step look-ahead algorithm whigh £ p, are connected by an edge (if) the two nodes fall in
also parallels the optimality of the ideal searcher [39]r Fgeighbouring cells on the Voronoi diagram dfL’ and (i4)

each sensor state corresponding to one of the candidatghe total number of cells marked as obstacles plus the total
hypotheses, we assign a score that is based (OnThe npumber of cells marked as never-viewed in the corresponding
likelihood of detecting the object from the sensor stafe maps, that also lie in HR's bounding cylinder as it traverses
given the expected occlusions and expected intrinsic sufalefrom n, to n,, do not exceed a threshofd. The edge weight

the projected object if it were centred in each of the targg{ the distance between the two nodes. In Sec.ll-C we will
cells viewed by setting. (ii) The expected cost of reachingneed to update the target map cells which lie inside the targe
statev from the current state. We proceed by defining thgpject's volume and are thus occluded from all viewpoints.
candidate hypotheses/sensor states over which we optil@zepefs. 4-6, define data-structures that we use to achieve this
next-view-planner, when selecting the next sensor state. goal, which are also used by the next-view-planner.

Intuitively, our set of candidate hypotheses consists ef th, .. .. . . i
cross product ofi) a set of poses for the heel coordinate framtfgeﬂmt'on 4. (Target Bounding Cylinder) The target bound

o . mg cylinder at 3D positionz, consists of the 3D region
with (i7) a set of poses for the eye coordinate frame expresse :
: ) . encompassed by the smallest volume cylinder that would
with respect to the heel coordinate frame. This cross prtoduc . .
. completely engulf the target object, should the target ctidje
corresponds to the set of poses from which HR can explocrgmred atr and be positioned ‘upright’, on its pre-designated
the scene. In more detail, tmeovement list (ML) is a finite P pright, p g

: T base side. The cylinder's medial axis is set parallel to the
set of coord!nates that lie iX;, X5] x [V, Y3] X [0, 27r)_. _The w(g)rld coordinate frame's z-axis.
movement list corresponds to all the possible positions an

orientations that we wish HR to consider for its heel cocatin Definition 5. (Visible Cell) Assume we have executed actions
frame at each iteration of the algorithm’s loop (Fig.2). If1:-- V- We say that cell is visible under state, if cell i

our online implementation of the algorithm, the movemeriS in the sensor's estimated field of view under stateell

list is generated by uniformly sampling each dimension éfiS not occluded from viewpoint by any obstacle in the
[X,, X3] x [¥i,Y3] x [0,27). The gaze list (GL) consists obs?aclle map built using the erth map;@[,...,uvn, and

of a finite set of 3D coordinates expressed with respect € intrinsic scale of the projection on the image plane ajéa

the heel coordinate frame. All the points in the gaze |i§{bj'ect.t |f.|t were centred in celf, lies |nth.e permissible range
must be capable of being projected on the image Centpg,lntnnsm scales of our _fee_dforward hlerarchy (_Sec.)l-E
using an HR whole-body-motion command which does n8etV (v;vn, ..., v1) of cell indices denotes the visible cells.
involve changing the heel coordinate framee-g, it changes = We estimate the best matching intrinsic scale of a target
head pant/tilt, body and leg posture, but not the feet mositi centred in celli, by the size on the image plane of the
The candidate hypotheses list(C'L) consists of the cross projection of the target bounding cylinder centred in cell
products of the movement list with the gaze list e, In contrast to [5], the visibility range for state depends on
CL = ML x GL. For each position of HR’s heel if/ L, the the recognition scale, and not on the camera’s depth of field.
gaze listGL corresponds to a set of regions around the robotLet +; denote a neighbourhood of constant radius centred at
that can be explored (“looked at”) without changing the heekll i. Let ¢, (v;,v) € {0,1} take a value of 1 iff there exists
position. Eachw € CL is mapped to a sensor statap(w) a cellj in neighbourhoody; such thatj € V(v;v,—1,...,v1),

that has the same heel coordinate framevaand has an eye and there exists an unobstructed path from the current posi-
coordinate frame such that the Gaze List pointvgfrojects on tion/sensor state,,_; to a position corresponding to state

the image centre of this eye coordinate frarme,(if multiple as calculated by the path planner. Recall that the path ptann
sensor states satisfy, then map(w) selects one such stateonly outputs paths for which, at any point along the path,
deterministically). HR'’s bounding cylinder does not intersect too many obssacle
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and never-viewed cells. The intractability results in [H]Q] using standard vision-based SLAM approaches is non-trivia

motivate a solution to the next-view-planning problem of.Be We could further refine the detection accuracy, at the expens

based on the greedy approximation to the Knapsack problesh.the localization accuracy however [10], by performing a

Thus, the next sensor statg is given by new search around the cells closest to a hypothesized target
S D(CH i1y U1y ooy 11, 01 )En (7, ©) position, to validate that those cells do contain the target

Uy, = argmax

v ’ to Up—1,0
et (on-1,0) . C. Updating the Target, Obstacle and Never-Viewed Maps
where CL’ = map(CL), the range ofrap(-) using CL as

its domain. We continue the search until we have reached thé'S Previously mentioned, our localization algorithm relie
maximum search cost’ (see Def.3) on a feedforward hierarchical recognition architectunat tis

An important problem is that of determining good terminadSPired by human vision [36]. We postpone the discussion
tion conditions. One solution is to use Def.3, by constrajni on the training anq cor_lstruct[on of th|.s archlltecture ugak.
the thresholding by to cells that have been viewed at least E and procged in this secthn by discussing the use of the
once. As it is shown in [10], fusing multiple views.d., outputs of this feedforward hierarchy (tharget cpnﬂdence
fusing their obstacle maps, target maps and never-viewgd mglaps) to update the 'Farget, obstacle and neve_r-wewed maps.
with the corresponding maps we have built so far) requirdsieorem 1. (Bayesian Target Map Updating) Assume
accurate dead-reckoning for the resultant target proibabil” "|Ci’U""“"*1’U"*1";’ul’vlt) = Plunlc vn) plef]
maps, obstacle maps and never-viewed maps to be accu#flﬁgl’%?l"”’m’vl) N f(ci‘vn’u"_l’v"_l’""ul’vl)'

K . R . nip(cz““tvvn’"'7”151}1) -

Dead-reckoning errors lead to an increased bias in thettarge , .
localization and destroy any guarantees of a decreasiggttar Pl pin—1, Un—1, .., 1, 01)P (i€, Vn) . @)
map entropy, making the probability thresholding of Def.3 225 PS5l Hn =1, Vn—1, ooy 1, 01)P(pin |5, vn)
sensitive to errors and inappropriate. However, it is an un-
avoidable fact that we need to continuously update the targe Proof: See the Appendix. Since we condition e,
probability map, obstacle map and never-viewed map astten p(u., |ct,v,) = p(un|ct, v,) (see Def.1). The theorem’s
means of guiding the where-to-look-next functionality afro second assumption implies that positioning the sensomowith
localization algorithm. We, thus, take the middle road asé uacquiring an image does not provide any information. m
the updated maps to guide the where-to-look-next behaviourEq.(4) links the discriminative problem of calculating
of the recognition algorithm. We search until the total cwfst p(ct|un, vn, ..., 1, v1), to the generative problem of modelling
our search exceedg’, at which point, the algorithm outputsp(j,|c!,v,). Thm. 1 assumes that, is conditionally inde-
as the target location the cell with the maximum single-view pendent of previous sensor readings/states, given thei cell

@)

generative probability across all acquired images: where the target is centred and given stagfeBy Assumption
PN + 1, exactly one instance of the target exists in the scene,
it = argmax max p(ujle;,vi).  (3) which implies that - Hicient to determi
iec’ j€{1,...,n} such that i€ M (v;) phes that eventg;, v, are sufmicient to aetermine

, ) N which regions ofu,, (if any) may correspond to the projection
\(/)\;ht(;r: gellgii]vxjf(vl-)~U-"'tﬁaﬁg}:tgir?giﬂgéggcllz 2ci%$s:r?ett c?f the target object on the image plane and which regions

< deoth ma(vj;\lvcj)t)ice tha’ (v, v;) uses data onl frogr,n must correspond to the background, making the assumptions
Ho; Pt P Y35 Y . Y OM 40 Thm.1 realistic simplifications to our problem. Due to
a single viewv;. M(v;) helps us deal with dead-reckonin he difficulty in modelling an imageu, with an arbitrary
errors, and is defined rigorously in Def.6 below. As we wil n

T ; ;
see in Sec.lI-C, functiod/ (-) is also used to update the targedZEz?égu;d’er:’\é?at?\;Z &rggle'ﬁ:trl,y gff#;nrlggot?ﬁ%g';’ z;;h
map probabilities of cells which lie inside the object vokim 9 g 9 9

and are thus occluded from all viewpoints. re_:sultant binary segmentation into the for_egrour?d (targe_t
sition) and the background, based on a single view. Siryilarl
Definition 6. (Marked Candidate Cells) Cell i is a marked p(ct|fin, Un, ..., i1, v1) denotes the corresponding probability
candidate cell at iteratiom if its centre lies inside a target of eventc!, based on the bayesian fusion of multiple-views
bounding cylinder (Def.4) that is centred at some celE [v, ,--4iv,. The greater the uncertainty in spat@uv, ), the
V (vn; vn) Which according to the depth map pf,, contains \yeaker this assumption of conditional independence bespme
an obstacle. We us#/(v,) to denote the marked candidateqye to increased sources of errcesy(,dead-reckoning errors)
cells of iterationn. in the mapping of an object centred in céllto s, . The
BecauseM (v,,) uses the depth map of only a single vievabove-described generative probabilities make it possibl
vn, We avoid many of the previously discussed problemgpdate the target map probabilities using Thm.1. Noticé tha
caused by dead-reckoning errors. Fig.1 shows the marka@viously described object localization methodologikat t
candidate cells induced by an obstacle (the vase in the jigurpply a binary object detector on each input image,([5],
assuming that the target bounding cylinder of the objectmge 49]) are not suited for use with Thm.1, due to their inability
searching for spans the grey cells and is centred in the dbll wdistinguish the foreground from the background in an image.
the obstacle. The estimation of the generative probaslitn For each new iteratiom, the obstacle map is updated by
Eq.(3), and their role in updating our maps, is discussed timarking as occupied any cell that is found by our depth
Secs.lI-C to II-E. The advantages of Eq.(3) in object laali extraction algorithm to contain solid structure. The never
tion are significant, since limiting the dead-reckoningoesr viewed map is updated at iteratienby marking as ‘viewed’
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every cell index inV (v,; v,) UM (v,,) and leaving unchanged which allows us to deal with the difficulty of modellirf§(v),
all the other cells. Ideally, under good depth estimatiod amy modellingY (v, t) instead. Ifp(ct) denotes the prior non-
limited occlusions, each cell in the target object’s volumeero probability that the target’s centroid is in cglithen by
including the target centroid, ends up as a marked can8iayes’ theorem,

date cell from at least one viewpoint. For each celle (m(_. v, )]el) =

V (vn; va)\M(v,) that had not been viewed at least once o, 001G

before iterationn and no structure is found in it at iteration pv,t(C—l\&('%/ﬁvaUat)) (c*:|CT\4)(~~ v, 1)) (5)
n, we setp(ct|in, vn,....,p1,v1) = 0 by the assignment p(ch) P o 8

p(pinlct, vn) < 0, implying that we consider it impossible toour goal is to appropriately model the generative proba-
sensey, from viewpointuv, if the target is centred in cell  pilities of the feedforward hierarchies in order to caltela
For each marked cell that had been viewed at least once befgfe probabilities in Eq.(5). We begin by presenting a simple
iterationn, and was assignee(cf|un—1,vn—1, . #1,v1) =0 but plausible model of the behaviour of the ideal target
due to it containing no structure (potentially due to steregynfidence map. We study some of the properties of this ideal
depth extraction errors or dead-reckoning errors), wet tragrget confidence map and use these properties to motivate
that cell as if iterationn was the first time that cell becamethe construction of a generative model for our localization
visible, by appropriately adjusting the probability valirem  aigorithm that shares similar properties.
the target map that is to be updated. We continue by defmmgAssumeX[DJ] € [D,1], Yjo.p) € [0,D) are unknown
p(ttnlct, vn) for i € M(v,) and fori ¢ V(vn;v,) U M(v,)  functions that depend oft u,,, v, s, t, D € (0,1) and represent
(see Eq.(4)), through the use w@irget confidence maps the values of CM(; i, v, 5,t) in image areas containing
Given a scene sample functien, that was acquired underthe target &5 1)) or background Xjo, p)) respectively (see
sensor state, and assuming we are searching for objeca  Fig.3(b)). Thus, for any sample functi@M(-; s, v, s, t) that
target confidence map is the output of our single-view recot§-returned by random variab€M(v, s, ), its pixel g satisfies
nition algorithm on this input image. Such a target configenc cv(g: p1,,, v, 5, t) =
map can be thought of as a multiscale topographic map, tha
assumes values in the ranffe 1], with higher values denot- o
ing an increased likelihood that the target objeqgbrojects intrinsic scales and encompasseg (6)
with a given scale on the corresponding image region. Their| Y[o,p) oOtherwise

construction is over-viewed in Sec. II-E. Fig. 1 overvieW§nerep (0,1) is also an unknown function gf,, v, s, t and
the process of using the confidence maps of an image, §onotes a threshold that separates the confidence map values

produce the corresponding generative probabilities thet §enyeen those corresponding to the localized object and the
used to update the 3D target map under Thm.1. Fig.3(b) aﬂ&ckground for sensor output,. Given onlywv, s and ¢, 1,

the supplemen.tary documentation provide fur.ther (_axampﬁesis unknown (the image data af, is a random sample from
the target confidence maps produced for various images. Tfa&)), and we can thus viewD as a random variable with
value of the target confidence M&EVI(:; po, v, 5,¢) Of to,  an unknown distribution. This model represents the simple
for targett at intrinsic scales (1 < s < N), sensor state’  gpservation that on average, the higher the firing rate at a
and at map positioq’ = (i, 7), is called thefiring rate, and is - configence map pixef, the more likely the target projects on
given by CM(; v, v, 5, t). We useCM(q; i, v, t) to denote  that position. This observation is formalized by Thm. 2 ia th
the N—g?mensional vector of the target confidence map Va'“%&)pendix. Intuitively, Thm. 2 formalizes the ideal behaviof
at positiong = (4, j) and across allV scales. the confidence maps, whereupon, the greater the beliefrtbat t
In Section 1I-E we describe how the target confidence mafyget object projects on a particular image position (Base
are built, based on the hierarchical recognition architecbf the firing rate at the corresponding confidence map posjtion)
[36]. The target confidence maps are constructed over sevlee less likely it is that we would witness at least that isten
scales in our implementationV( = 7 scales). The range of a firing rate if we were to pick an arbitrary pixel of the target
CM(G; i1, v, 5, t) lies in [0,1], with a higher value implying confidence map. As we show next, this simple model motivates
a greater confidence that targeprojects on pixelg, with a the algorithm for updating the probabilities in Eq.(5) amd f
scales. Furthermore, the resolution 6M(-; 1, v, 5,t) is the localizing target object positions by attending to a pattc
same for all scales, and does not have to be identical to thécale and position in the target confidence maps.
resolution of, (see Sec.ll-E). This assertion is formalized From Thm.1 and by the approximation(s.,|c},v,)
by Thm. 2 over-viewed below and in the Appendix. Each(CM(:; 1y, ,vn,t)|ct) (recall that by Def.1p(u,|ct, vy,) =
function f(-) = CM(+; piv, v, 5,¢) andg(-) = CM(:; ptw, v, t) Pk, |ci, vn)) We havep(ci|pn, vn, ... 1, v1) =
is a sample from underlying proliablhty measute®, s, t) = G T ---,Ml,v1)p((3—1\4>(~;uyn,vn,t)\65)
(Xu,s,t» Ev,s,hpv,s,t) and T(U, t) - (X’L),t7 Eu,tapv,t) respec'
tively, wherep, . +(f(-)) andp,.(g(-)) denote the probabil- >_; p(0§|/ﬁn—1avn—1’-~-,M1,Ul)p(m(';uvn,vmtﬂ@)
ities of samplingf(-) given v,s,t, and samplingy(-) given |n Sec.Il-D we discuss how we deal with the high dimension-
v,t respectively. We us€M(v, s,t) andCM(wv, t) to denote ality of vectorc—M)(qj fin, Un, ) VG, We use an approximation
the corresponding random variables. We i, |cl, v) =~ top(un|ct,v,) that models target uniqueness within each indi-
p(CM(; o, v, t)|ct) = p(CM(v,t) = CM(-; po,v,t)|ct), vidual scene viewpoint and across multiple scene viewpoint

X(p,) if targett is sensed by., and projects at

Q

()
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D. Interpolating the Probability rates present in the current confidence map, is used in tbe pri

The high dimensionality of a vectdm(q"; Jis, v, ) Makes placed in the numerator of Eq.(9), which leads to:

it preferable to do the generative modelling in Eq.(7), bylgp PCM(; pty, v, 8)[cl) ~

ing a dimensionality reduction technique (@: po, v, 1) . _ . p(Bs)
and keeping only the most relevant map information at each p(ci|CM("“”’U’pm‘71(l’v’t)’t))p(cg)'
step. We achieve this by attending only to the most relevan A .

. . . . B B 3 = ‘3 >
intrinsic scales ofCTI(-;uU7v7t), and by building an inter- Where p(Bi) p(CM(:; pho, v, proju (i, v,t),t)

) R CM(proja(i,v); fy, v, proji (i,v,t),t)) -
. t 9 ) ) ) 9 9 )
polation model for approximating(CM(:; fs,,, v, t)|ct). We srojs (0t (CM(: 110, v, proji (i, v, ),£)).  Based  on

devote this section for this purpose. We begin by detailirfa]m_ 2, the smaller the prigr(3;), the more likely the target
the abstract data types needed to define the “knots” of tge centred in pixelprojs(i,v). Notice that in contrast to
interpolation model fop(CN.(; ry, v, )lc;).  pupro (i, (CM( i, v, proju (i,v,£),1)), p(B;) provides
We useproji (i, v, t) to denote the confidence map intrinsi¢, jocalized measure of uniqueness, aroumdss (i, v) and
scale that best matches the scale of the expected proj@ftioRjthin the context of a single-views,, as a means of
objectt on the image plane under sensor stgtassuming the compensating for our poor knowledge of probability space
target’s. centroid coincides .Wlth cells centroid. In practlce,. Y (v, proj1 (i, v, t),t) and our consequent inability to calculate
we estimateproji(i,v,t) with the same approach used in, progs (i) (CM(; 1y, v, proji (i, v, 1), 1)).
Def.5, namely, by calculating the size of the projection on e prbbéed by using an interpolation scheme to model
the image plane of the target bounding cylinder centred jRe probabilityp(ct|CM(+; 1., v, proji (i, v, 1), t)). We begin
cell i. We constrain our search on the target confidence MaRP stating some definitions and some of the properties that
with an intrinsic scale oproji (i, v, t): the probability must satisfy. While(3;) provides an image
W . o . specific measure of the uniqueness of each marked,cei
P(CM(; o, v, 1)[ ;) & p(CM(; o, 0, proja (i, v,8), 8)]e5). s p(ct|CM(+; fuy, v, progi (i,v,t),t)) in conjunction with
_ ) ) ) (8) p(Bi) to model a global measure of the target likelihood across
Thus, the right-hand-side of Eq.(5) is approximated by  he multiple images acquired during search. Egs.(12)-{15)
' . the Appendix specify the parameter values of the interpmiat
p(ci|CM(';“”’v’pmﬁ(,l’?’t)’t)) x model we will use to achieve this. Before Eqgs.(12)-(15) are
Poproj (ixv.t) t (CM(s o, v, proju (i, v, £), 1)) (9) bresented however, we need to motivate the construction of
p(ch) the interpolation model and define the model parameters.
Recall the definition ofu, as a scene sample function

Given a target_ confidence map for sensor Statproh(z’v.) hat was acquired under sensor stat¢see Def.1). Assume
denotes the pixel on the target confidence map on which the

centre of target map cell projects wopN (Lws 0, t,1) € [0,1] is the ratio, with respect to the total

) . . . fri,'s i , of th »'S i k
In accordance with the monotonic behaviour of the |de§j(ea of u,’s image, of the area op,’s image taken up by

) X .~ ~Ihe projection of the bounding cylinder of targgetassuming
confidence maps (Thm. 2), we use the cumulative distributi . . - .
of CM(+ uu, v, proji (i, v, 1), 1), based on the histogram Of?g'rgett is centred in cell in the scene. ThetopN (pi,, v, t,1)

. Y . . M is defined as the smallest value in interval [0,1] that satis-
the pixel firing rates induced by visible cells that lie in ou [0.1]

I i 3 Mo, Uy j .7 s V) vy Uy 7' S
search space, to ensure the monotonicity property of Thm;'(is pEClVf}(t,/;) vsﬁa“ﬁgrl(l Q;Ot)( 2 :t tspg(ébeﬁﬁetdlgs the
is preserved for the arbitrary probability distributiohst can P~ Hu; 0, & 1) Y LoP\tho, U, b,

. ) . X g smallest value in interval [0,1] that satisfies
occur in practice and to provide an image specific measure 9 _ o N :
uniqueness. Thusfii, iz, 0 < i; < ip < 1 we have: PICM(; iy, v, profa (i, v, 1), 1) > top(po, v,1,4)) = 0. Fi-
' T B =TS T2 = ' nally, bottom(u.,,v,t,4) is defined as the largest value in

interval [0,1] that satisfied(CM(:; ., v, proji (i,v,t),t)>

(11)

pllin, 1] € CM( ’?’?Tojl(z’v’t)’,t)) -~ bottom (i, v,t,1)) = 1. Typically, as is the case in our
PICM(; pro; v, progi (i, v, 1), 1) 2 1) 2 feedforward hierarchyhottom(pi,, v, t,i) = 0.
P(CM(:; pho, v, proju(i,v,t),t) > ig) = For target¢ and intrinsic scales, we define eer(s, )
p([iz, 1] € CM( - ; v, proji (i, v, t),t)) (10) as theequal error rate of the corresponding confidence

map’s firing rates. The equal error rate is the firing rate

where the second and third probabilities are calculatedgusithreshold when it is equally likely for a confidence map
the respective histograms, as we just described above.  position with that value to represent a false-positive oalad-

The firing rate corresponding to an object whose cenegative with regards to targétprojecting at a scale. The
troid coincides with the centre of celi, is given by equal error rates are estimated during the training process
CM(proja(i,v); thy, v, proji(i,v,t),t). By Thm. 2, if we overviewed in Sec.lI-E. Thus, ideally, ¥ = proja(i,v)
have a “good” recognition algorithm, the more likely thegeetr and s = proji(i,v,t), p(CM(q;v,s,t) > eer(s,t)|ct) =
object is centred in cell — based on an increased firing rates(CM(q: v, s,t) < eer(s,t)|~ct), which implies that for all
i1 = CM(proja(i,v); wy, v, proji (i, v,t),t) for example —, scaless’, eer(s’,t) provides a firing rate threshold which is
the smaller the value gf( CM(+; p1,,, v, proji (i, v,t),t) > i1) equally likely to represent the presence and the absendeof t
is, signifying the rarity and importance of the image regionarget. We use the equal error rates to normalize the firitggra
The rarity of this firing rate, within the context of the firingacross scales and make them comparable with each other.
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By Assumption 1 and presuming an ideal confidence mapatVi, p(c!) << 1, meaning that in practice cage) plays a
if the target is present imn,, then part of the target mustrole for very few cellsi and B;opn (1w, v, t, 1) > p(ct).
project somewhere on the image with a firing rate of at Aslong as we mode;b(aﬂCM(-;Mv,v,projl(i,v,t),t)) as
least topN (i, v, t,4), effectively meaning that any imagea non-increasing function @f 3;) that also satisfies constraints
region with a firing rate less thatvpN (i1, v,t,7) does not (ii) — (v) from above, it will also satisfy constrain),
correspond to a target projection. In conjunction with thmakingp(ct|CM(+; uy, v, proji(i,v,t),t)) a valid probability
single image specific measure of uniqueng§s;), we use distribution. We modep(c!|CM(-; iy, v, proji (i, v, t),t)) as
the equal error rates to normalize the firing rates acrodescaa piecewise differentiable and non-increasing functiop(ef)
and make them comparable to each other, thus addingc@nposed of piecewise components of the fcﬁ@b) + 5
global measure of uniqueness across all captured imagels. Ear each intervalj, which reduces(u,|ct,v) to a function
of topN (py,v,t,1), top(uy,v,t, 1) and bottom(u,,v,t,i) iIs  of P(B1); Prop (f1os V5 ,7), Dropn (Hw, Vs ty 1), Doottom (Ho, v, 1),
mapped to probability valugs .,y (1, v, t, 1), Prop(ko, v, 1,7)  p(ct) andBropn (1o, v, t, 1), that is piecewise linear in terms of
and pyotiom (1, v, t,4) respectively, using piecewise linear(s;). An LU-decomposition provides the solution fof3;) €
interpolation functions (defined in the Appendix) whicheak p(ct), 8,0~ (110, v, t,7)] (Specified by assigning values to the
into account the effects of the equal error rates. As we w#, s parametersay,v1) and for p(8;) € [Biopn (fw, v, t,1), 1]
we use these normalized probabilities to specify the “Knotgspecified by assigning values to the parametessys,).
used in the interpolation model. Analytic expressions for these parameters are in the Ap-
We now have the means of presenting the approximgendix. The approximation ofp(py|ct,v) by modelling
tion to p(m(-;#v,v,mcg used in Eq.(7). As hinted by p(CM(:; u,, v, proji(i,v,t),t)|ct), provides a compromise
Eqg.(11), we can estimate this probability by modellinggetween modelling an image specific measure of uniqueness
p(ct|CM(:; i, v, projy (i, v,t),t)) as a non-increasing func-— recall thatp(CM(-; 1., v, proj (i, v, t), t)|ct) is a function
tion of p(;) that also depends Qi,,n, Prottom, Props P(cL), of p(B;) — and a global measure of uniqueness across all

Biopn and satisfies the following constraints: images — we take into consideration an absolute measure
(i) p(ct|CM(+; o, v, proji (i, v,t),t)) < mm(l p(ci) ). of uniqueness across all images, via constraffits- (v). In
7 y Moy Uy s Y ) ' p(Bi) . . . . .
(@) If p(B;) = Propn(te,v,t,i) > p(ct), then the conjunction with Eqgs.(7) and (11), this completes the discu

| t) is set Sion on updating of the target map probabilities when cell
))l ) eV () 2 V(v vn) UM(vy). If i & V'(v,), We use As-
sumption 1 to set an equal generative probabifityz V' (v,,),

probability p(CM(+; iy, v, proji (i,v t),t
equal to p(c;|CM(; o, v, proji(i, v, t),
ptopN(ﬂva v, ta Z)

; t s _ t
(i) If p(B) = 1 > p(ct), then the probability by letting p(u|ci, vn) < minjev (v, ) {1 = plinlcj,va)}.
. " 1] ot i Notice that by our construction of the generative probabili
p(CM('vﬂ’wUapTOjl(Z7v7t))t)|ci) IS set equal : t . ! P
0 p(ct|CM(= in, v, proji (i, v, £), £)) 222 _ ties,p(unlc;,, vn) ~ 1 wheni; € V'(v,,), wherei, is the cell
’ ; N T (D) where the target object is centred. One might argue that our
Phottom (fiv, V, 1 1). formulation is incorrect since typically” , p(ulcf,v) > 1, for

then the probability p(CM(;

(i) If p(Bi) = plc),
,t)|ct) is set equal top(ct|CM(+;
t
),

oy, U, projy (i, v,
(

S arbitrary:. However, as we see from Eq.(4), for alK i < |C|
Mo, ’U,p’f’Ojl iv v, t)
(c

p(ﬁi) the discriminative probability(ct|iy, vy, ..., p1,v1) is inde-
) iey = Prop(tio, v, 8,7). pendent of scale factors applied on the generative prabiesil

’
t
1

(v) If p(B:)) < p then the probability p(CM(;  p(y,|ct, v,), implying that the ratios of the generative prob-
1o, v, proji (i, v,t),t)|c;) is constant for allp(3;) < apilities is what characterizes Eq.(4), and not the indisid
p(cf) and is set equal t9sop (10, v, 1, 1) magnitudes of the generative probabilities.

Constraints (i) — (v) guarantee  that if

p(CM(+; py, v, proji (i, v, t),t)|ct) > 0.5, the firing rate
of top(u,,v,t,i) exceedseer(proji(i,v,t),t) (providing a
global measure of uniqueness) an;) is sufficiently small ~ To calculate the target confidence maﬁ(g/mut)
(guaranteeing local target uniqueness withif). The higher of targett for a given RGB input image that was acquired
the value of p(CM(:; iy, v, proji(i,v,t),t)|ct), the more under sensor state (e.g, scene sample functiop,), we
likely it is that the target projects on the image plane arapply a multi-scale convolutional template matching. Tikis
comparisons of the generative probabilities across eiffer not done on the original RGB images but on the output of
1, become meaningful. Furthermore, the definitionpgf,y  the hierarchical feed-forward architecture described etaid
guarantees that ip,,,ny = 0.5, the number of cells that in [36] and over-viewed in this section. This architectuse i
can be assigned(CM(; uy, v, proji (i, v,t),t)|ct) > 0.5 is based on weight-sharing and a succession of feature detecti
constrained by the expected projection size of the targetbb and pooling stages (see Fig. 3(a)) and is meant to simulate
on the image plane. Notice that fp(3;) = 0, Eq.(11) has a some of the shape processing mechanisms of the ventral visua
value of zero. However, the valyg3;) = 0 signifies a rare pathway. As it is shown in [40] and Fig.3(b), this recogmitio
event for which we would like to assign a high probabilitynodel can be trained interactively in an online fashion for
to Eq.(11), which is why we treat the cag€s;) < p(c!) up to 50 arbitrary objects by manual demonstration, using
separately (remember tha{ct) # 0 for any updated cell unconstrained in-hand rotation. Unlike other methodse lik
7). Notice that in our online test runs, we assign a unifori8IFT-based recognition, it imposes no constraints on gtron
distribution to each cell in our search space, which impligdanar textures or canonical views of the objects.

E. Building the Target Confidence Maps
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Fig. 3. (a)Feed-forward architecture of [36]. The archiiee consists of a shape path and a color path. The shape pasists of several layers. The
Sl-layer convolves the gray-scale image with gabor filterd different orientations and computes a Winner-Take-Mostinearity. The C1-layer pools the
magnitude of the results to a lower resolution. The S2-lagsponds to local combinations within the Cl-layer and theag@r performs an additional

pooling. The color path splits the input image into its RGBruels and down-samples them to match the dimension of the pila@% (b)Training and use

of SLPs. In the training process object views were preseintelifferent scales to generate scale-sensitive SLPs omft@®2. In the recognition process the
receptive fields of these SLPs were shifted over the C2-laf/éte whole scene to get a position and size-sensitive rsgpaon the form of target confidence
maps over seven intrinsic scales. The size of the target tsbjojection on the image plane, specifies the intrinsidestaat returns the best response.

The first feature-matching layer S1 is composed of foul60 x 160 pixels from input images o800 x 600 pixels.
orientation sensitive Gabor filters. We use a thresholdtfanc During the search for a certain object, the correspondingrse
to apply a Winner-Take-Most mechanism between featurssale-sensitive template SLPs are used to convolve the C2
located at the same position in each map. The subsequactivation of the current input image, as shown in Fig. 3(b).
C1 layer, sub-samples the S1 features by pooling down The output corresponding to each scale’s SLPs defines the
a quarter of the original resolution in both directions,ngsa target confidence ma@M(-; u,, v, s,t). Examples of target
Gaussian receptive field and a sigmoidal nonlinearity. Tie fi confidence maps over multiple scales are available in the
features in the intermediate layer S2 are obtained by spassgplementary material documentation.
coding and are sensitive to local combinations of the festur
from the C1 layer. Layer C2 again performs spatial pooling To train the SLPs, we use 800 views per object. The re-
and reduces the resolution by half in each direction. Thg fiftnaining 200 views are used to evaluate the offline recognitio
shape maps in C2 are extended by three color maps, generggyfiormance. When classifying a testimage by determiniag th
by down-sampling the RGB channels of the input image. maximal activated SLP, we observe that for the smallesegcal
The templates are trained by acquiring one-thousand viewisws of different objects are confused in about 25% of the
of each one of the target objects. Fig.4 shows examples asfses, whereas, for the largest scale, the error rate was 19%
views of the objects used in our results. The objects are héldwever, in this work the task is not object recognitidm.(
in front of a cluttered background and frames are grabbedmpetition of different object hypotheses), but locdlma
using HR’s stereo camera system. The region containing tblea pre-specific target object. Therefore, it is more imgpairt
object is determined based on a depth criterion and is scateddetermine how well the SLPs corresponding to the target,
to a fixed output resolution, as described in [40], [41]. Hesi separate its views from all other input (views from other ob-
the object views, a large set of clutter views are collected ajects but mainly clutter views). This is addressed by medns o
used as negative training examples. an ROC analysis which shows the relation between the false-
The template responds strongly to views of the currepbsitive and false-negative rate of detection as a funabion
object and responds weakly to views of other objects oredutta threshold parameter. The equal error rate (EER) denates th
We train a single layer perceptron (SLP) for each combinatidhreshold value where both false-positive and false-megat
of object and scale. We use an SLP with a sigmoidal norates are equal. Fig. 4(c) shows that some objects have a
linearity to restrict the output range t®,1]. For a given very low probability of being confusede(g, objects 4, 7, 9)
scale, first the images in the database are down-sampled aie for other objects, this separation is worse (esphciat
afterwards, their C2 activations are calculated. Then, la® Sobjects 13, 14, 16). These results are reflected in the di@ua
is trained for each object, using its own views as positivef the object search performance in Secs.lll,IV. Despigs¢h
examples and all other views as negative examples. differences, the chosen representation and processingtis n
The training is done for seven different intrinsic scalesonstrained to certain types of objects since HR can learn a
(1 < s < 7), covering object sizes betwedhl x 64 and representation of the target object directly before thectea
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Fig. 4. (a) Random samples from the training set used to leach ef the twenty objectslarget 1. Hole PuncherTarget 2: Fruit Tea Box.Target 3:
Gatorade BottleTarget 4: Tiger Duck.Target 5: Opel Race CaiTarget 6: Textured CupTarget 7: Red “cafe” mug.Target 8: 7up Can.Target 9: “Notarzt”
Ford. Target 10: Space NokiaTarget 11: Tea Pot.Target 12: Capuccino BoxTarget 13: Horse.Target 14: White Tiger. Target 15: Asimo Sitting. Target
16: Elephant.Target 17: Garlic PressTarget 18 Koffee Dose CanTarget 19 Stapler.Target 20: Compo Fertilizer. (b) The recognition model is trained
by manual presentation of each of the twenty objects, with 8@ations covering the expected robot viewing variation.Equal error rates for each of the
twenty objects. The bar lengths denote the variation of theakerror rates across the seven scales used.

Target 19

(b) ©

I1l. EXPERIMENTAL SETUP score to each of the candidate hypothesesCL’ in Eq.(2)
for which there exists a path from the current sensor state to
statev (Scenario 5). The comparison between Scenariasd

We evaluate the active localization algorithm by its relis quantifies the role that the target maps play in choosing the
ability and speed in localizing the target objects. To evabest next view for detecting the target, when we ignore the
uate our method systematically and in a reproducible wagequence cost functioty, (-, -). In Section 11I-B we describe
we record a number of data sets, and use these in offliégch scenario’s dataset in detail. Notice that since Sienar
simulated test runs. We also perform real-time tests viedfy 34,5 differ only in the next-view-planner used, the same
the online performance. We test our algorithm by searchirgfline dataset is used in these three scenarios. For each of
for twenty different targets (Fig.4) under five differenste the five scenarios, we execute 80 test runs. In these 80 test
scenarios. Note that the search space in Scenarios 3,4,5ui$s, we search for each of the 20 objects by starting the
significantly larger than that of Scenarios 1,2 (see Fidb). search from the four positions shown in Fig.5.
each scenario, all target objects are positioned in theescenTg evaluate the search performance in each scenario, we
‘upright’, on their pre-specified bases. The cost function iyse the ground truth position of all the objects in the sdenar
Scenarios 1,2,3,5 is defined as(vn—1,vn) = c1 + c2dn  with respect to the world coordinate frame. For each object
and depends on the optimal path distange chosen by in each scenario, we measure its position (its centroidhn t
Dijkstra’s algorithm, where constant denotes the inverse yorld coordinate frame using a measuring tape, as a means of
of HR's walking speed and, is the expected processing timesyaluating target localization reliability. However, ngithese
for all other components in each iteration of the algorithmmeasurements alone by themselves, to determine whether HR
loop (Fig.2). The target, obstacle and never-viewed ma@s &fzs |ocalized the target, is insufficient. This is because of
discretized usingcm x 5¢m x 5¢em cubes, as in [5]. Scenariospotentially small errors in making these measurementsj-dea
1 and 2 investigate the performance of the algorithm as th&:koning errors in the estimates of the heel-positionshén t
number of possible viewpoints from which the search region §amples of our dataset, small stereo depth estimationseasr
sensed, increases. The comparisons between Scefaaitd \ve|| as irregular object surfaces. We, thus, define two mtri

4 quantify the benefits of using the greedy next-view-plannggsed on which the results in Sec. IV are built:
(Scenario 3), as compared to simply moving at each step to

the scene position where the probability of detecting thgeta D€finition 7. (Image Score) The image score of a
is maximized (Scenario 4), by having(-,-) always return a Particular scene sample functiory,, is defined as
constant movement cost value in Scenario 4. The comparig§¥jeM (v P(1ilc;, vi), the maximum generative probability
between Scenarigsand5 quantifies the benefits of using our® all the marked candidate cells of step

greedy where-to-look-next algorithm (Scenario 3) as opgosDefinition 8. (Maximal Target Image) The maximal target
to randomly searching for the target, by assigning a randdmage im.,,, of a given test run, is the image with the

A. Test Protocol
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highest image score amongst a $tof images. We define
S as the largest subset of the set of images captured duri
the test run, that satisfies the following constraivit; € S,
3jm € M(v;) such that the centroid of cell,, projects on the
target object in imageu;, ji, = argmax;e sy, P(pilch, vi),
and the estimated ground truth of the target’s centroid ia th
world coordinate frame (estimated using a measuring tape, i
previously described) is within distane®f cell j,,’s centroid.

For each image in a test run, there corresponds an image () (®)
score and the 3D world coordinate of the associated cehelf t am m o am .
3D cell of an image score falls withi20cm of the expected | ... 5 .
target position, by projecting the 3D coordinate of the baltk . o
in the image plane we visually determine whether the imag e 12m o
score was due to detection of the object, independently 12m| | TABLE am am
dead-reckoning errors. As we discuss in more detail in Sec.| " > ram| [ TABLE
by finding fore = 20c¢m (Def.8) the maximal target images of ?@2\‘\ %
numerous test runs, and by investigating how their resgecti & ne S O /é;‘?\w@“ Ry
image scores rank compared to other image scores, we obtaim
a good evaluation metric for the algorithm. © (@)

We use the Small Vision System by SRI International fafig. 5. (a)Scenario 1 and 2 setup, with targets 1-10 situatethe table.
the stereo depth extraction [42]. Our system was develop@ibcenario 3,4,5 setup with all 20 targets present in thmescas viewed
using a set of tools created by Honda for building large SC£ HR'’s head camera. (c)Bird’s eye view of the setup of Scesati and 2

L . . ) Within a 3m x 3m maximum walk and search region. (d)Bird’s eye view of
distributed intelligent systems [11]. These include comgIt the setup of Scenario 3,4,5 in then x 4m walk and search region. Points

models BBCM and BBDM (Brain Bytes Component/Dat#.B.C.D represent the four different starting positionsHi.
Model respectively), design and monitoring systems, amed th

middleware RTBOS (Real Time Brain Operating System) for ] . o
executing the component models on a variety of comput@e offline testing, the optimization in Eq.(2) takes plagero

platforms. The diagram in Fig.2 outlines a component-wid8€ corresponding subsaetp(CL”) € CL', while the path
breakdown of our system. All component models are coded#nner still optimizes its paths oved L’ (see Eq.(1)).
C. We employ the walking algorithm and whole-body motion Scenarios 1 and 2 (Fig.5(a),(c)) take place insid@nax
control system that was developed for use with HR [43]. 37 x 1.5m search region and involve placing the targets
We use a hypothesize-and-test next-view-planner and ¢ & table with alm x 1m surface area ab.84m height,
such, it is easily parallelizable. We take full advantagehig @nd having HR search for each of the twenty targets in
to make our system real-time and suitable for live demonstd 1-2m > 1.2m x 1.2m region encompassing the table. In
tions. To speed up the algorithm, the hypothesis evaluatiggenarios 1,2, the target map’s prior is uniformly distrétal
for the next-view-planning is applied on a coarser scalBSide thel.2m x1.2m x 1.2m region and is assigned a zero
of the target, obstacle and never-viewed maps, by reducifger Probability everywhere else in the search region (see
the resolution of each dimension of the maps by half. THd9-5(c)), effectively instructing the algorithm to igreothe
neighbourhoodsy; in Eq.(2), correspond to the dimensions of€0 pr'(.)bablllt'y regions. Notice Fhat smce.these zerorprio
the cells used in these coarser-scale maps. Furthermare, RfpPability regions do not contain any solid structure, our
hypotheses are evaluated in parallel on eight threads mgnnf!gorithm assigns them a zero target map probability (see

concurrently on a server with two Quad-Core CPUs. Sec.lI-C), even when their prior is not set to zero. So byirsptt
certain regions to a zero prior, we are effectively invesiitg

the algorithm performance when searching “difficult” reggo

B. Test Data containing solid structure and occlusions, where a rediogni

We now describe the creation of the offline datasets. In algorithm is needed to determine if the target object isges
scenarios, HR starts the search from four different intiel We place 10 objects at a time on the table. When we are
positions A, B, C, D, as shown in Fig.5(c),(d). We have alssearching for one of targets 1-10, targets 1-10 are position
implemented an online version of the system, which worla the table and when we are searching for one of targets
in real-time ¢; =~ 3s, c2 ~ 3s/m in the cost function) and 11-20, targets 11-20 are positioned on the table. A separati
thus, does not rely on the view-sampling data of the offlingall is always placed bisecting the table’s surface to litné
version of the loop. The online system is currently beingdus@umber of viewpoints from which each target is visible.
for real-time demonstrations of this work, in which HR paint In Scenario 1, we create the offline dataset HR uses, by
at the object once it is localized. A demonstration of onlinkaving HR sample the search space by facing the table while
search is available in the supplementary material sectfon ssimultaneously walking sideways witb.5m step intervals
the journal. Online and offline search differ in that the offli around the periphery of & by 2m square path centred at the
dataset is created by acquiring one sample image for edahle’s centre (Fig.5(a)). At each step, HR acquires sigiesa
element in a seCL” C CL (see Sec.ll-B), and thus forand the corresponding heel coordinate and eye coordinate
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frames of HR, that uniformly sample the search region, fén Scenario4 we assign a constant value to the cost of each
a total of 102 pairs of stereo imagas(, |CL| = 102). Each movement, effectively making the cost function indepenaén
one of these image pairs represents a candidate hypothéséscurrent position of HR. As long as the entire walk space
which is evaluated when determining where to move nexs accessible from each position, the constant cost s@enari
This allows us to perform rigorous and exhaustive testing o independent of HR’s starting position. In Scenafiowe
the algorithm’s performance, that is difficult to performings randomly choose the next movement from the 1110 hypotheses
an online version of the loop. Note that the order in whichvailable in our dataset, as per Sec. Ill-A.
we acquire the images is irrelevant, and what is important isHR is a bipedal robot, with good dead-reckoning precision
to have accurate information on the heel coordinate frande atompared to typical wheeled robots. This allows us to focus
the eye frame coordinates under which each image is acquired the object localization problem, without worrying about
In Scenario 2, we enlarge the set of images, by having HRe errors in localizing the position of HR within the map.
walk around a2m by 2m square path and 8m by 3m As long as HR completes its search within a certain number
square path centred at the table’s centre, while mainiginiof steps, we can assume that HR’'s dead-reckoning is fairly
the samel.2m x 1.2m x 1.2m uniformly distributed search accurate. In order to quantify this claim, in most sequences
space region, and usin@5m steps with HR always facing of captured images, HR started and ended from the same heel
the table (Fig.5(a)). This enlarges the set of images/cateli coordinate. In none of these cases where the error was guan-
hypotheses to 252, gives greater variability in the scaliés wtified, was HR’'s ending heel position more than abbitm
which each object is sampled, and increases the numberavfay from its starting heel position. In all cases HR covered
candidate hypotheses, while maintaining the Scenariodr.pria total of 8-20 meters and rotated a total of roughly 360-720
In the last three scenarios (Scenar®ys4, 5) we enlarge degrees, demonstrating good dead-reckoning precisioth Bo
the size of the search space and the number images/candidtatthe online mode and in the offline mode — during the
hypotheses. The search space consistsdfiax 4m x 1.5m  offline dataset creation — HR lost most of its dead-reckoning
region (Fig.5(b),(d)) with the same table centred inside tlprecision during rotations. We, thus, minimized the number
bottom 3m x 3m region and two shelves positioned inof rotations performed during the dataset creation. Foh eac
the top-most and left-most part of the region, as shown @xecuted path, HR either walks (forwards, backwards, side-
Fig.5(d). The target map prior is set to a uniform prioways or diagonally) or makes an on the spot rotation, and
distribution at al.2m x 1.2m x 1.2m region containing the avoids high-curvature turns while walking.
table and at the top-mostm x 4m x 1.2m and left-most
4m x 1m x 1.2m region containing the shelves, as shown
in Fig.5(d). Everywhere else in the search region, the targe
map prior probability is set to zero as per Scenarios 1, 2.The goal of this project is to have HR search in a room
This zero prior can speed up the search by pre-specifyifgy a certain object and once the object is found, to have HR
large empty-space regions which cannot contain the targetint at it. Therefore, one metric based on which we judge
object. Such zero-prior regions could be specified manually the quality of our localization algorithm is the number of
determined automatically before the search starts, usgigny pointing actions HR would have to execute until it points at
sensors or range finders (lasers/sonars) in conjunction wihe correct object. Thiarget rankis the metric that we use for
standard SLAM algorithms, since empty regions obvioushis purpose: Assume we are given a list of the image scores
cannot contain the target object(s) we are searching for.(Bef.7) for all the distinct images captured in a given test.r
we are dealing with an environment whose obstacle layofitso assume that the image scores are sorted in descending
does not change significantly over time, the use of such zeyaler and based on this sorted order, HR sequentially points
prior regions is preferable, as it would result in fasterrsiea at the corresponding image score cells. The target rankisf th
times during future online search runs, by inhibiting thettyo test run is defined as the position in this sorted list (itsika
rediscovery of large obstacles that affect the path plarfiez in the list), of the image score corresponding to the maximal
objects are placed on each shelf and the other ten objei@get image (Def.8). Ideally the target rank has a value,of 1
are placed on the table. HR creates the offline dataset ibglicating that the first object HR points at is the objectsit i
moving around the periphery ofan by 2m square path and searching for. If no maximal target image is found in a given
a 2.5m by 2.5m square path centred at the table's centre intast run, we assign an “unknown” rank, denoted by symbol
clockwise and counter-clockwise direction. Each steprimie U. The global rankis similar to the target rank, only that the
is 0.5m long. For each step, fifteen images are acquirethnk is evaluated with respect to the images acquired from
uniformly sampling the region in front of HR (pan range [-80all four starting positionsA, B, C, D of any given scenario
80] degrees, tilt range [-15, 30] degrees), resulting iredift and any given object. Thus, for every global rank value,gher
images/candidate hypotheses for each step. Since HR mosesespond four target ranks.
in both a clockwise and counter-clockwise direction, fockea Fig.6 and Fig.7 compare the average distance covered and
heel position thirty images are acquired, densely samplieg average target map entropy respectively for Scenaids 5,
entire search region. This results in 1110 images/carglidaind for each executed hypothesis. Table | quantifies how long
hypotheses that HR can choose from for its next viee.,( it typically takes to localize a target in each of the diffare
|CL| = 1110). In Scenarid3 we use the above set of candidatscenarios, as explained in the table caption. As explained i
hypotheses to test the full algorithm described in this pap¢he caption of Fig.8, the figure’s first five sub-figures show

IV. RESULTS
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5The mean distance covered at each step of Scenarios 3,4,5 The mean target map entropy at each step of Scenarios 3,4,5

2

greedy e greedy
-~ gonstant cost S8 e constant cost 4
- — — —random N — — —random

Mean Distance Covered (meters)
Mean Target Map Entropy

05K

\ . . . . . . \ .
1 4 7 10 13 16 19 22 25 28 30 1 4 7 10 13 16 1a 22 25 28 30
Hypothesis Nurrber Hypothesis Number

Fig. 6. The mean distance covered for each executed hypsthieStenarios Fig. 7. The mean entropy of the target maps for all twenty objtentthe first
3,4,5 (we graph the first 30 executed hypotheses), using thifierent next- 30 executed hypotheses of Scenarios 3,4,5. Notice thatréeslg algorithm
view-planners: The greedy algorithm, using a constant costtfon and consistently outperforms the entropies of the constant west-view-planner
a random next-view-planner. A single tailed t-test showat tthere is a and the random next-view-planner. A single tailed t-testshthat there is a

statistically significant differencep(= 0.02) between the constant cost andstatistically significant differencep(< 0.001) between all three pairs of next
random planner. Between the other two pairs of next-vieanpérs thep-  View planners.
value is smallerg < 0.001).

larger candidate hypotheses list than the other two sa@s)ari
the. distribution of target ranks for each individual scémar sffects the performance of the localization algorithm. rro
while Fig.8(f) is the distribution of global ranks from allé Fig 8 and the relevant tables in the supplementary material
scenarios, where for notational convenience any globat ragection of the journal, we notice only a small change in the
that is unknown(U/) or is greater than 30 is placed under thghegdian target rank and the average number of test runs that
bin labelledU. Detailed analytical results of all the test rung.gntain a maximal target imagee(, the test runs marked with
from which the relevant graphs and histograms are derivegh ynknown target rank’). As expected, there is a slight
are available in the supplementary material section of ”&%gradation of the results’ quality in Scenafiodue to the
journal. Furthermore, examples of the walk paths chosen Pyreased search space size, but this performance dedsease
HR, as well as examples of how the obstacle maps and targgt sufficient to indicate that the algorithm does not scale
maps evolve over an executed test run are also available frg/8| From Table | we notice an interesting phenomenon.
the supplementary material section of the journal. We al§@nijle for Scenario3 there is a noticeable increase in the
performed a number of test runs with the online version @f mber of executed hypotheses —compared to Scenarios 1,
the active search algorithm, by searching for some of the  yntjl the target is first localized, the increase in thaltot
targets that the offline test runs indicate are reliablylinable jistance covered until the target is first localized is ndteyas
(targets 1,3,4,6,7,9,11), in order to confirm that the deargrge. This implies that the average distance covered foh ea
reliability implied by the offline tests, also generalizes teyecuted hypothesis until the target is first localized islten
the online case. All objects were successfully localized. An Scenario3. This likely occurs because the volume covered
previously indicated, a demonstration of one such test $unkjy the two shelves is quite close to the table’s volume, and
available in the supplementary material section of the papgnhe greedy algorithm tends to make smaller steps by swigchin
between searching the shelf space and the table space in orde
V. DiscussIoN to decrease the total distance covered. We would expect the
From Figs.8(a),(b) we observe few differences betweaptimal solution to have a constant ratio for the number of
Scenarios 1 and 2 (recall that both scenarios use the greedgcuted hypotheses to the distance covered across Sxenari
next-view-planner). For example, the percentage of tess rul,2,3, if the shelves were far away from the table. This shows
with a target rank of 1-2 and a target rankidfare almost the that while the greedy next-view-planner is not guaranteed t
same. We should point out that from tBe: x 3m periphery be optimal, its performance is far better than that of a tgpic
of Scenario 2, most objects’ projections on the image plabaseline next-view-planner. We discuss this in more deii#fil
are too small to be recognized by the intrinsic scales of o8cenariost, 5 below. This shows that the greedy next-view-
feed-forward hierarchy, indicating that the greedy aldoni planner does manage to constrain the total distance covered
is capable of compensating by moving sufficiently close twhile maintaining an acceptable recognition performance.
the targets. Recognition rates and the distances covetdd un From Table | and Figs.6,7,8, we can compare the perfor-
the target is localized, also remain similar, indicatingttthe mance of Scenari@ vs. baseline Scenarigs (constant cost
greedy next-view-planner is not sensitive to an increasédfs function) ands (randomized cost). From Fig.6 we observe that
viewpoints on the same search space, and that the viewpotihis greedy algorithm covers on average significantly smalle
of Scenario 1 suffice for good localization. distances for each executed hypothesis than the other two
By comparing Scenarios 1, 2 with Scenario 3 (all thregcenarios, while localizing the targets as reliably as &gen
of which use the greedy next-view-planner), we reach someand significantly more reliably than Scenafignotice the
conclusions as to how a more complex scene (Scenaricexlosion ofU labelled test runs in Fig.8(e)). Furthermore,
has a significantly greater search space and a significantlg notice in Fig.6 that the greedy next-view-planner and
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Target rank distributions across all Scenario 3 test runs
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Fig. 8. (a)-(e)The distribution of the target ranks for tkettruns of each one of Scenarios 1-5 respectively. (f) Theilolition of the global ranks for all
five different scenarios. Any global rank that is unknown lwaittis greater than thirty, corresponds to one tick in theldelledU. Detailed tables of the
results on individual test runs from which these tables @m®ved, are available in the supplementary material secticheopaper.

TABLE |
THE MEAN=£STANDARD DEVIATION AND THE MEDIAN NUMBER OF EXECUTED HYPOTHESES(hyp) AND DISTANCE COVERED IN METERS(dist) UNTIL
THE MAXIMAL TARGET IMAGE IS ACQUIRED, USING THE TEST RUNS WHERE THE TARGET IS ASSIGNED A RANK OF ON@ = 1), USING THE TEST RUNS
WHERE THE TARGET IS ASSIGNED A RANK OF AT MOST THREKd < 3), USING THE TEST RUNS WHERE THE TARGET IS NOT ASSIGNED A RANK OF
(d < U) AND USING THE TEST RUNS WHERE THE TARGET IS ASSIGNED A RANK OFTAMOST U (d < U). NOTICE THAT FOR CASEd < U, IF IN A
CERTAIN TEST TRIAL THERE IS NO MAXIMAL TARGET IMAGE (THUS BEING ASSIGNED A RANK OFU IN TABLES I,11), WE USE THE TOTAL NUMBER OF
EXECUTED HYPOTHESES AND THE TOTAL DISTANCE COVERED IN PERFRMING THE CALCULATION. to = c1 - hyp + c2 - dist, WHERE ¢ ~ 3s,
c2 ~ 3s/m, PROVIDES AN ESTIMATE OF THE EXPECTED RUNNING TIME OF THE ONNE SYSTEM, UNTIL A TARGET IS LOCALIZED.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
mean median mean median mean median mean median mean median

d=1

hyp : 6.3+ 3.1 6 6+ 3.6 5 12.9 + 6.8 11 14.9+ 9.9 17 13.8 + 8.9 16
dist : 10.4 + 5.6 10.8 10.4 + 6.6 8.7 12.8+ 7.5 12 27.8 +17.2 31.0 26.5 + 17.4 26.9
d<3

hyp : 6.5 £ 3.1 6.5 5.9 + 3.5 4 129+ 6.7 12 14.5 + 8.8 17 13.8 £ 9.2 12.5
dist : 10.8 + 5.7 10.9 10 £+ 6.6 8.7 12.6 + 7.3 11.9 27.4 + 15.1 31.0 25.4 + 17.2 22.6
d<U

hyp : 6.1+ 3.2 6 5.9+ 3.5 4.5 12.8 4+ 7.1 12 12.9 + 8.7 9 14.8 £ 9.2 14.5
dist : 10446 10.8 10.3 + 6.8 8.7 12.2 + 7.8 11.9 24.2 £ 15.1 20.7 27.3 +£17.1 25
a<u

hyp : 8.1+ 4.1 8 7.7+ 4.2 9 17.5+ 9.9 15 17.4 £ 11.0 20 24.3 + 10.6 31
dist : 12.4 + 6.2 13.6 12.9 £ 7.3 15.1 15.6 £ 9.1 14.6 31.3 + 18.7 32.5 43.1 + 18.6 52.2

the constant cost planner distances start to decreaselyoug covering longer distances than Scenaidut with a faster
after hypothesis 13. This is likely due to the greater cetyai decreasing entropy. However, as we see in Fig.7 this is ®ot th
as to the location of the target —where the target is amdse. This seems to occur because the constant cost function
is not located—, causing HR to cover smaller distances emecutes on average hypotheses that cover greater distance
average. Notice that the random next-view-planner’s dista (Fig.6). This results in a greater number of small patches
are constant and do not tend to decrease as the numbepfohever-viewed search regions, which retain their uniform
executed hypotheses increases. In Fig.7 we notice that grmr and which accumulate over time and lead to a greater
greedy next-view-planner results in a significantly smathe- overall entropy. Notice that the entropies in Fig.7 tend to
get map entropy after executing each hypothesis. A somewhativerge to a non-zero horizontal asymptote. This is due to
surprising result is that the greedy next-view-planner aldig regions in our search space that are never viewed by HR,
leads to a lower target map entropy than the constant cepecifically regions under the table. This, however, do¢smo
next-view-planner. Since the constant cost next-viewnpdst any way affect the next-view-planner’s decisions, as avee t
ignores the movement costs and simply looks at the next obstacle map is built around these regions and HR does not
most probable location of the object, one would think thaum over those regions’ probabilities when choosing where t
Scenariod (which uses a constant cost function) would resulbok next (see Eq.(2)). Overall, the results of Scenagios,



IEEE TRANSACTIONS ON ROBOTICS 15

5 have justified the use of the greedy next-view-planner as Emmdmark localization techniques, will have to be appliad i
efficient approximation to the optimal next-view-planndust future work to make HR capable of searching vastly larger
as the greedy approximation to the Knapsack problem offesgaces. The presented optimization algorithm evaluates al
an efficient and often optimal solution to the problem [38], scandidate hypotheses when deciding where to move/look next
does the greedy next-view-planner offer an efficient sofuti Thus, as with all exhaustive search algorithms, it does not
to the problem that performs better than the baseline caseasily fall in local minima. However, it does not scale aslwel
From Table | we see that the distance covered until the target gradient-descent-like optimization or linear-prograng-
is first localized (i.e., all cases excluding < U) does not based approaches do with an increasing search space size.
depend on the target's recognition certainty (i.e., it dnes In contrast to POMDPs which use an infinite time horizon,
depend on which of the three casés- 1, d < 3, d < U we our optimization algorithm uses a one-step look-aheadchvhi
are dealing with). If we include test runs when HR does nastffices for certain vision tasks. We did not incorporate an
localize the targetd < U) we end up with greater values. error model in the disparity measurements, since our use
We notice in Fig.8 that the distributions are bimodal, clumf Marked Candidate Cells (Def.6) around each detected
tered around a rank of 1 and a rankof We view this as an scene obstacle was proven sufficient in practice to hanele th
indication that the likelihood of localization due to chanis effects of small depth estimation errors on the target map’s
trivial in our results, because if that were the case, we doulipdating. Furthermore, the lack of an error model speeds
expect to see a more uniform spread in the distributions. W our algorithm significantly, making real-time perforrasan
notice in Figg(f) that the proportion of/-ranked test runs is easier to achieve. As we discovered in practice, achieviag n
significantly lower than it is in any of the other five sub-figar real-time performance is a non-trivial task, and depends on
This implies that by increasing the number of viewpointsrfro many problem parameters, such as the search space size. The
which a scene is examined, and without applying any soréxt-view-planner described does not forbid more complex
of improvements to the single-view recognition algoriththe  motions, such as squatting, from taking place. Executiru su
presented algorithm can significantly increase the tru@ipes motions is a matter of having appropriate inverse kinersatic
and true negative rates and decrease the false negativalaed fibraries that can position the sensor in the desired state.
positive rates. Notice that this improvement occurs regasd
of the next-view-planner used, as it is easily verified from
Fig.8 or by comparing the target ranks and global ranks in
the supplementary material section of the paper. This show3\Ne have shown that fast and reliable 3D object localization
that without striving for major improvements in singlewie is feasible if we place some reasonable constraints on the
recognition, improvements to the next-view-planner cadle problem. Such constraints include placing bounds on the siz
to significantly better results. In other words, the impoc& of the search space, having controlled illumination caadg,
of intelligent search algorithms should not be trivializesd having small dead-reckoning errors, and limiting the dearc
the importance of avoiding degenerate viewpoints [26] &khouto objects that are well recognized by the feedforward hier-
not be underestimated either. While we have shown that anchy. We have discussed the intractability of the locttira
greedy next-view algorithm is superior in many ways to othgroblem. We have shown that a greedy approximation to the
baseline algorithms, the next-view-planning problemnspur constrained active localization problem, that is basedhan t
opinion, far from optimally solved, as it is also argued iB]1 greedy approximation to the Knapsack problem, can perform
The work described in this paper constitutes the first actibetter in terms of localization speed than random search and
visual search algorithm ever implemented on a humandaséarch that ignores the search movement costs. Furthgrmore
robot developed by Honda [35]. Compared to much of ththe greedy next-view-planner does not lead to a decrease in
related work described in the introduction, our work is fyrethe reliability of the localization. We briefly discussedeth
vision based and does not use other types of sensors suclrade-offs of localizing vs. detecting a target object. Véed
range finders. This follows the premise around which Hondalsese results as motivation to show that even without perfec
humanoid robot project [35] is structured, of building rtibo dead-reckoning, it is possible to localize the position of a
systems that emulate human locomotion and the human visabject accurately enough to perform a number of tasks. Eutur
system, both in terms of the hardware usedg( using a work may include using HR to grasp the object once it has
visually guided humanoid robot) and the software architect been localized, using voice commands to provide feedback
used €.g.,using a hierarchical feedforward recognition systeno HR and make the search more interactive, and to deal
inspired by human vision, and a next-view-planner thatehamwith dynamic environments changing over time. Future work
a number of behavioural properties with an ideal searchecgn also include an extensive analysis of the effects on the
thus constituting one of the most advanced neuromorphic syssults of other parameters (camera resolution, depffelof-
tems currently described in the literature for performingual and search space dimensions for example) both qualitativel
search. In related work, such as [17], [18], non-vision Hasand quantitatively. Performing a cascade of experimentls wi
SLAM techniques are often used for the map building and sefeenarios where the difficulty in localizing the object is
localization problem. Such techniques are typically sigper progressively increased (through an increase in the degree
than vision based algorithms. In the presented work, tloé object occlusion, or an increase in the objects’ simiari
problem of self-localization is circumvented due to HR'©do for example), could provide more insights on the system’s
dead-reckoning. However, vision-based SLAM techniques, limitations and on ways to improve its performance.

VI. CONCLUSIONS



IEEE TRANSACTIONS ON ROBOTICS

APPENDIX
A. Addendum to Sec.lI-C
Proof of Theorem 1

Proof: Notice that ij(cé,unwn,un,l,vn,l,...,Ml,

t t
Zjp(un‘cjaUn)p(cj“j/nflvvnfla"'3M17v1)' Thus
_ _p(ciln—1,0n =1,y p01,01)P(pn | €} 0n)

S, P(CT Hin—1s0n—1,e 1,01 P(fim [ 0]

; t Pt fn—1,0n_1,..,141,01)P(ttn |}, 0n)
iff p(ct Ups oo V) = =2t : .
p( 1|Mn’ ny e H1 1) >, P(ehbnvn, in—1,00—1,...,01,01)

’Ul)

p(cﬂlunavna ceey U1 ’Ul)

But this last equation holds iff p(ct|in,vn, [
---7M1,U1)p(ﬂn‘vn,Hn—l,vn—l,---,H17U1) = p(C§|un_1,
Un—1y oeey 11, 01)P(pin | ¢k, v,)  which in turn holds iff 2]
p(ﬂn‘cgvvnaﬂnfhvnfl»~'~7/141>'U1) = P(Mn|C§,‘Un), which
holds by assumption. [ ]

- . . [3]
Theorem 2. (Ideal Monotonicity) As it becomes more likely
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