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Abstract— We present an active vision system for segmenta-
tion of visual scenes based on integration of several cues. The
system serves as a visual front end for generation of object
hypotheses for new, previously unseen objects in natural scenes.
The system combines a set of foveal and peripheral cameras
where, through a stereo based fixation process, object hypothe-
ses are generated. In addition to considering the segmentation
process in 3D, the main contribution of the paper is integration
of different cues in a temporal framework and improvement of
initial hypotheses over time.

I. INTRODUCTION

The next important milestone for embodied machine vi-

sion systems is to make them flexible and robust in a variety

of environments and tasks. Recent examples of machine

vision systems for humanoid robots [1] demonstrate the

necessity for active aspects of the system, both in terms of

actively changing the parameters of the vision system and

interacting with the environment. Visual attention serves as a

core process for generating hypotheses about the structure of

the scene and allows the system to deal with the complexity

of natural scenes. The requirements on machine vision sys-

tems are highly dependent on the task, and have historically

been developed with this in mind. To deal with the complex-

ity of the environment, prior task and context information

have commonly been integrated with low level processing

structures, the former being denoted as top-down and latter

bottom-up principle. This has many times been motivated

by human visual processing. Humans build a representation

of a visual scene using a temporal process of integration of

several scene ’glances’, [2]. A cumulative memory allows

them to detect and recall objects seen during several short,

separate presentations even when these are several minutes

apart. Likewise, in machine vision systems, generating hy-

potheses about objects in the scene is a necessary prerequisite

for interaction. Although generation of hypotheses may be

solved through a classical process of object recognition, our

main interest is to generate hypotheses of previously unseen

objects. This process may also help the recognition and

classification processes by reducing the search space.

The main contribution of the work presented here is 3D

scene segmentation based on the integration of several visual

cues. However, this work should not be viewed as a typical

work on image segmentation, since the hypotheses of objects

are generated in 3D, thus facilitating shape attribution and

pose estimation. We also show how segmentation can evolve
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over time and gradually produces better hypotheses. This is

another important difference from the classical segmentation

approaches that are typically demonstrated on a single image.

We also evaluate the presented method using an active

humanoid head in realistic scenarios. As said, this work

relates to classical approaches to segmentation, however,

most of these have been demonstrated only in the image

space. Segmentation in 3D offers not only the possibility to

attribute 3D regions based on their shape properties, [3], but

also gives direct input to an object grasping and manipulation

system, [4].

The work presented here is related to image segmentation

methods such as GrabCut, [5] in that it models segmen-

tation as a hypotheses generation and verification process.

However, in the GrabCut approach only two hypotheses are

used: one for the foreground and one for the background.

We will show that in a 3D segmentation process, additional

hypotheses increase the quality of the results. In addition, we

employ belief propagation for verification of hypotheses, that

differs from the energy minimization approaches of [5] and

[6]. The most important difference and also a contribution is

that our method uses a temporal framework and verifies the

hypotheses over time, whereas methods of [5] and [6] work

on a single image.

Fig. 1. Left: A peripheral view of a typical experimental scene (upper),
with a corresponding disparity map (lower). Right: A foveal view of the
same scene (upper) with a disparity map (lower).

The goal behind the presented work is to enable a vision

guided robotic system to learn about its environment through

interaction with the objects therein. First, the hypotheses of

possible scene objects need to be generated within reasonable

time. This means that an attention system that directs the

vision system towards the most conspicuous parts of the



scene is needed. Second, extraction of attributes related to

an observed object often requires it first to be segregated

from its background. With the attention system already

presented elsewhere, [4] here we concentrate on the second

problem, figure-ground segmentation of objects in typical

indoor scenes.

A. Experimental platform

Our experimental platform includes the 7-joint Armar III

robotic head, [7]. The stereo head carries four Point Grey

Dragonfly cameras grouped in two pairs, a peripheral and

a foveal one, see Fig. 1. These are parts of an existing

vision system [4] that uses attention in the peripheral view to

direct cameras towards nearby regions of interest. After gaze

direction such regions are placed in fixation in the foveal

view. Binocular disparities are exploited in both views, for

gaze control in the peripheral view and for object analysis

and manipulation in the foveal view.

Visual attention, gaze control and manipulation are beyond

the scope of this paper, yet they serve as the context in

which the presented segmentation approach is to be used.

The disparity maps shown in Fig. 1 are computed using

Stable Matching [8], a method that is able to cope with wide

disparity ranges. The range we typically use for the foveal

views, 64 pixels, is more than what most disparity methods

are able to handle within reasonable time. Stable Matching

is suitable for our needs, since instead of aiming for the

highest possible density, it tries to minimize the number of

false positive matches.

B. Assumptions

In typical indoor environments most physical objects are

placed on flat surfaces. However, based on our previous work

[9], an object may be impossible to separate from the surface:

they may be similar in appearance1. In this paper we thus

expand a typical framework for figure-ground segmentation

with an additional model, that of a flat surface. A foreground

object is defined as the object fixated on by the stereo

system. Thus it is expected to be placed in the center of

view at about zero disparity. In GrabCut [5], a foreground

object is similarly defined by a given bounding box. We also

assume that models change only slightly while the object is

in fixation and that the system knows when the gaze is shifted

and segmentation has to be reinitialized. Finally, the system

should be able to operate autonomously through sequences

of gaze shifts and tolerate disparity data that arises through

non-perfect calibration and limited disparity search ranges.

II. PREREQUISITES

The segmentation method presented in this paper is based

on measurements of colors and binocular disparities. Given

these measurements the scene is divided into 3 parts; a

foreground object, a flat surface and a background. We later

describe a scheme with which model parameters can be

estimated and images segmented on a per-pixel basis.

1See http://www.csc.kth.se/∼danik/HeadArmDemo-centering.avi for an
example of using the system for object grasping.

A. Measurements and model parameters

An image, here assumed to be part of a stereo pair,

contains image points that are characterized by their positions

(xi, yi) and measured colors ci = (hi, si, vi) given in HSV

space, with hi being the hue, si the saturation and vi the

luminance value. Also associated to each such point is a

measured binocular disparity di, that can either be a value

within a given disparity range or be undefined. There are

primarily two reasons for the disparity to be undefined; either

a point lacks sufficient texture to be matched in stereo or it

is occluded in one of the two images. We denote the total

set of image measurements by m = {mi}, with each point

characterized by mi = (pi, ci), where pi = (xi, yi, di) are

the three spatial measurements and ci is the color.

We assume each image point to originate from one of

three possible scene parts; a foreground object F, a planar

surface S and a background B, each of which a characterized

by a corresponding model. The foreground F is assumed to

be a connected set of 3D points representing some physical

object in the center of the image and close to the fixation

point. It is further assumed that the scene contains a large

planar surface S, upon which objects could be placed. The

background B is defined as all points that neither belong to

the foreground nor the planar surface. The scene part that

a particular point pi belongs to is given by a label li ∈ L,

where L = {lf , ls, lb} is the set of values that corresponds

to each scene part respectively.

The three different parts of the scene are modeled by a

set of parameters θ = θf ∪ θs ∪ θb. These will be defined

later in Section II-B. Given the measurements m our goal

is to find the most likely parameter set θ and distribution of

labels l = {li}. The joint probability of m and l given θ can

be written as

p(m, l|θ) = p(m|l, θ)p(l|θ) (1)

with the measurement distribution given by

p(m|l, θ) =
∏

i

p(mi|θf )If
i p(mi|θb)

Ib
i p(mi|θs)

Is
i (2)

and the prior label probabilities

p(l|θ) =
∏

k

p(lk)
∏

i

∏

j∈Ni

p(li, lj). (3)

In the equations above, Ix
i equals 1 if li = lx and 0 otherwise,

and Ni is the set of neighbors to point i. The priors in (3)

will be defined later in Section III-A.

B. Scene part models

For all three scene parts we model the distributions of

image point positions, disparities and colors. The spatial

distributions of the background and surface parts are assumed

to be uniform across the image space X, i.e. p(xi, yi|θb) =
p(xi, yi|θs) = 1/N , where N = |X| is the number of image

points. Their counterparts in disparity space are modeled as

Gaussians with p(di|θb) = n(di; db,∆b) and p(di|θs) =
n(di;αsxi + βsyi + δs,∆s), where ds = (αs, βs, δs) are

disparity parameters that belong to the surface model. Here



we denote by n(x; x̄,∆) a Gaussian distribution of a d-

dimensional variable x, with mean x̄ and covariance ∆,

n(x; x̄,∆) =
1

√

(2π)d|∆|
exp− 1

2
(x−x̄)⊤∆−1(x−x̄)

While the conditional probability of the background is the

same for all image points, it varies for the flat surface. Note

that d = αsx+βsy + δs represents a plane in (x, y, d) space

that, assuming a projective camera, corresponds to a plane

also in the 3D metric space. The spatial positions of the

foreground object are modeled using a single 3D Gaussian

that includes both image point positions and disparities,

with conditional probabilities given by p(xi, yi, di|θf ) =
n(pi; pf ,∆f ). The disparity dimension is ignored for points

with undefined disparities and for these points ∆f is replaced

by its projection in (x, y)-space.

The distributions of colors within a given scene part are

assumed to be the same for all image points. We represent

such distributions as 2D histograms, based on hue and satura-

tion; p(hi, si|θb) = Hb(hi, si), p(hi, si|θs) = Hs(hi, si) and

p(hi, si|θf ) = Hf (hi, si). With color histograms included in

the set of model parameters, the complete set is given by

θf = {pf ,∆f , cf},

θb = {db,∆b, cb},

θs = {ds,∆s, cs},

where cf , cb and cs denote the color histogram bins stacked

into vectors. The other parameters are the means and vari-

ances of the Gaussians mentioned above. The joint measure-

ment conditionals can finally be summarized as

p(mi|θf ) = n(pi; pf ,∆f ) Hf (hi, si),

p(mi|θb) = N−1n(di; db,∆b) Hb(hi, si),

p(mi|θs) = N−1n(di;αsxi + βsyi + δs,∆s)Hs(hi, si).

III. ESTIMATING THE MODEL PARAMETERS

One way of estimating the model parameters θ would

be to determine a maximum likelihood estimate for p(m|θ)
using the Expectation-Maximization (EM) algorithm, with

all labels l treated as hidden variables. Given p(m, l|θ), that

was defined in (1), the hidden variables can be eliminated

through marginalization,

p(m|θ) =
∑

l

p(m, l|θ).

The EM algorithm is based on maximization of an objective

function Q(θ|θ′) that given a previous estimate θ′ is guaran-

teed to increase p(m|θ). In the first step of the algorithm, the

Expectation step, Q(θ|θ′) is expressed as the expected value

of log p(m, l|θ) with respect to the conditional distribution

w(l) = p(l|m, θ′) under the previous estimate θ′, that is

Q(θ|θ′) =
∑

l

w(l) log p(m, l|θ). (4)

The model parameters θ are updated in the second step, the

Maximization step, through maximization of Q(θ|θ′). This

two-step procedure is then repeated until convergence.

As can be seen in (4), the algorithm essentially performs

a summation over the conditional distribution w(l). Unfortu-

nately, this fact makes the EM algorithm intractable for our

purpose. In our case labels from neighboring image points

are assumed to be dependent. This means that the summation

has to be done across all 3N possible combinations of labels,

where N is the number of image points, rather than 3N
combinations that would otherwise have been the case.

To make summation computationally tractable, we intro-

duce an approximation that treats labels as if they are in fact

independent. We do this by replacing the conditional distri-

bution w(l) with the product of the marginal distributions

for each unobserved label, that is

ŵ(l) =
∏

i

w(li) =
∏

i

p(li|m, θ′).

Since a measurement mi at a given point only depends on

the label li at that point, not on neighboring labels, the

summation in (4) becomes

Q1(θ|θ
′) =

∑

i

∑

li∈L

w(li) log p(mi, li|θ). (5)

With dependencies ignored the joint probability for a single

point (see (1) and (2)) can be written as

p(mi, li|θ) = p(mi|li, θ)p(li),

where

p(mi|li, θ) = p(mi|θf )If
i p(mi|θb)

Ib
i p(mi|θs)

Is
i .

Note that it is only when marginal distributions are summed

up to produce an estimate of θ that dependencies between

labels are ignored. The marginals w(li) themselves determine

the final segmentation and are computed with dependencies

taken into consideration.

A. An iterative two-stage approach

Our optimization approach consists of two stages, that are

iterated until either convergence or the number of iterations

reaches a given maximum. Given an initial estimation of

the conditional marginals for all individual labels, or the

marginals from the previous iteration, the model parameters

are estimated by maximizing Q1(θ|θ
′) in (5), where θ′ are the

parameters from which the marginals were computed. The

corresponding update functions for all foreground parameters

can be found in the appendix.

In the second stage the conditional marginals w(li) =
p(li|m, θ) are recomputed for each label. This is done using

loopy belief propagation [10]. First, however, we have to

rewrite the equations into energy functions suitable for belief

propagation. From Bayes’ rule and using the fact that mi

only depends on li, we have that

p(l|m, θ) =
p(m|l, θ)p(l|θ)

p(m|θ)
=

∏

i p(mi|li, θ)
∏

i p(mi|θ)
p(l|θ)

and from the label priors in (3)

p(l|m, θ) =

∏

k p(mk|lk, θ)p(lk)
∏

k

∑

l∈L p(mk|lk = l, θ)
·
∏

i

∏

j∈Ni

p(li, lj).



The network of image points can be considered a Markov

Random Field (MRF), with the first factor in the equation

above representing cliques of one point each and the second

involving pairs of points. The corresponding energy functions

are given by the negative logarithms of these factors. Note

that the second factor represents a smoothing term that is

intended to capture the spatial continuity in typical scenes,

and penalizes solutions that include discontinuities.

With no penalty if two neighboring points are labeled the

same and a constant penalty when labeled differently, the

joint probabilities of two neighboring points can be modeled

using the Potts model [11], [12]

p(li, lj) = exp−Vi,j [li 6=lj ]

where [C] denotes an indicator function that takes a value

1 if C is true and 0 otherwise. Similar to [13] and [5] we

use a pair-wise penalty based on the difference in luminance

between image points;

Vi,j = 50 exp−β(vi−vj)
2

,

where

β = (2〈(vi − vj)
2〉)−1.

and 〈·〉 denotes the expectation over an image.

An alternative solution to the problem above could have

been based on maximum a posteri (MAP) estimates, instead

of the conditional marginals of each label. A local maximum

of p(m, l|θ) is searched, while alternating between keeping

l or θ fixed. This is what is done in GrabCut [5]. It is

known that if there are only two possible labels per point, an

exact MAP solution can be found using graph-cuts [14], and

even if the problem becomes NP-hard with more than two

labels, there are efficient approximate solutions at hand [6].

While the EM algorithm estimates model parameters by an

enumeration over all possible configuration of labels, a MAP

based approach would use only one such configuration.

Since we have an interest in the model parameters them-

selves, in particular those of the foreground, a MAP approach

can become problematic. What frequently occurs in figure-

ground segmentation are cases where the interpretation of a

particular non-textured background region alternates between

foreground and background. This leads to model parameters

radically change from frame to frame. EM takes such uncer-

tainties into consideration and their respective probabilities

are weighted in when parameters are estimated.

B. Initialization

The iterative scheme described above is initialized through

a rough segmentation of the image into the three scene parts,

using the assumptions mentioned in Section I-B. At this

stage only pixels for which disparities exist are considered.

Occluded or non-textured areas are ignored until after initial-

ization. From the assumption that the foreground object is

in fixation, image points located within a 3D ball are sought

and assigned to the foreground model F. The size of the ball

is set so that its projective size is equals to half the image

height.

Among the remaining image points a flat surface is sought

using random sampling with 1000 trials. For each such trial

three points are randomly selected and the parameters of

a plane d = αsx + βsy + δs are determined. Since the

robot head knows its approximate orientation, planes that are

not horizontal enough can immediately be discarded. Among

the non-discarded planes, the plane with the highest number

of matching image points across the whole image is then

selected. A point is considered as matching if its disparity is

within 2 pixel values from that of the plane. Points that match

the selected plane equation are finally assigned to the surface

model S, while the rest are assigned to the background B.

Once image points have been assigned, the iterative scheme

in section III-A can get started.

IV. ADDING DEPENDENCY OVER TIME

In an active vision system image point positions, dispari-

ties and colors can be expected to change only slightly from

one frame to the next, at least as long as there are no rapid

gaze shifts. This consistency over time can be exploited in the

estimation of model parameters. In our system we do this by

regarding the estimated parameters from the previous frame,

θt, as measurements when considering the current. Instead

of searching the maximum likelihood estimate for p(m|θ),
we do it for p(m, θt|θ).

With labels and point measurements independent of θt,

the objective function Q1(θ|θ
′) in (5) is replaced by

Q2(θ|θ
′) =

∑

i

∑

li∈L

w(li) log p(mi, li|θ) + log p(θt|θ) (6)

The transition probabilities p(θt|θ) have three factors, one

for each scene part, that is

p(θt|θ) = p(θt
f |θf )p(θt

b|θb)p(θt
s|θs),

where

p(θt
f |θf ) = n(pt

f ; pf ,Λf ) n(ct
f ; cf , σ2

cI) g(∆t
f ; ∆f , Sf ),

p(θt
b|θb) = n(dt

b; db,Λb)n(ct
b; cb, σ

2
cI) g(∆t

b; ∆b, Sb), (7)

p(θt
s|θs) = n(dt

s; ds,Λs) n(ct
s; cs, σ

2
cI) g(∆t

s; ∆s, Ss).

Here Λf is the expected variance over time for the posi-

tional parameters of the foreground, while Λb and Λs are

corresponding variances for the disparity parameters of the

background and surface models. The expected variance of the

color histogram bins is denoted σ2
c . The remaining functions

g(∆t; ∆, S) capture the assumed consistency of covariance

matrices over time and are defined as follows.

A. Time consistency of covariance matrices

Assume we would like to estimate a covariance matrix ∆
given some measurements {xi}, and a previously estimated

covariance matrix ∆t at time t. If we assume the underlying

distribution changes gradually from one instance in time to

the next, we need some way to express its consistency over



Fig. 2. Segmentation results for every fourth frame of a sequence generated by the attention system. Segmentation is re-initiated after each saccade.

Fig. 3. Segmentation results for various scenes. The 9th frame in a sequence is shown in each case.

Fig. 4. Segmentation results with foreground, surface and background models. The images show the 1st, 3rd, 5th and 7th frames of a sequence.

time. In this study we assume the consistency between ∆
and ∆t to be given by

g(∆t; ∆, S) =

(

1

2π|∆|

)S/2

exp (−
S

2

∑

i

λiµ
⊤
i ∆−1µi),

where µi and λi are the eigenvectors and eigenvalues of

∆t, and S is the strength of the dependency. The equation

can be interpreted as
∏

j p(yj |∆
t), where S samples {yj}

are drawn from a Gaussian distribution with zero mean and

variance ∆t. If we assume there are no measurements {xi}
at time t and ∆ only depends on ∆t, then an estimate ∆∗ can

be determined from arg max∆g(∆t; ∆, S). We first compute

the logarithm of the consistency function

log g(∆t; ∆, S) = −
S

2
(log(2π|∆|) −

∑

i

λiµ
⊤
i ∆−1µi,

and its derivative with respect to ∆−1

δ

δ∆−1
log g(∆t; ∆, S) =

S

2
(∆ −

∑

i

λiµiµ
⊤
i ).

Setting the derivative to 0 results in

∆∗ =
∑

i

λiµiµ
⊤
i = ∆t.

Hence, if there are no measurements, then ∆ will be

directly given by ∆t. In this case the consistency strength

factor S has no influence on the result. It will become

important, however, when consistency over time is combined

with the image point measurements.

V. EXPERIMENTAL EVALUATION

We performed a series of realistic experiments with objects

scattered on a table. A short sequence2 of foveal views from

such an experiment can be seen in Fig. 2. This sequence

illustrates how the system is able to rapidly segment an object

in its foveated view. For each view the attention system has

controlled the cameras and placed an object hypothesis in

the center of view.

Using a typical Core 2 processor, the segmentation, includ-

ing disparity extraction, requires about a second per update

2Available as a movie at http://www.csc.kth.se/∼danik/ICRA2010 AVI.avi



with 640×480 pixel images and five iterations per update.

For all these experiments we set the expected variances over

time of the position parameters (defined in (7)) to Λf =

diag{1000, 1000, 4}, Λb = 25 and Λs = diag{0.0001, 0.0004,

1}. We used normalized color histograms with 10×10 bins

each, with an expected variance of σ2
c = 0.00001 for each

bin. The time consistency values for the covariance matrices

were set to Sf = Sb = Ss = N , i.e. the number of image

points. Finally, the prior label probabilities were assumed to

be p(lf ) = 20%, p(lb) = 40% and p(ls) = 40%. All remaining

model parameters were estimated from image and disparity

measurement, using the procedure described in Section III.

Fig. 5. Point labels of the first and last images of Fig. 3. Pixels labeled as
surface points are shown in gray, while white pixels indicate foreground.

Fig. 6. Segmentation results without an obvious surface plane. The lower
images show pixels labeled as surface points in gray.

Fig. 7. Segmentation results without a surface model. The images show
the 1st and 7th frames of a sequence.

A. Segmentation results

Using the above mentioned method, segmentation results

can be seen in Fig. 3 for a selection of scenes, some more

challenging than others. Since the inner part of the cup in the

Fig. 8. Segmentation results without disparity measurements. The images
show the 1st and 7th frames of a sequence.

Fig. 9. Segmentation results without color measurements. The images show
the 1st and 7th frames of a sequence.

third image lacks reliable disparities and its shade resembles

that of a background object, a fragment is still labeled as

background after the 9th update. The last image shows an

case where the assumption that the foreground object can be

described as an ellipsoid fails. The tail of the giraffe will

eventually be included, but never the legs. Fig. 4 shows how

segmentation evolves over time. With the initial assumption

that the foreground can be represented by a ball around zero

disparity, it takes a few updates for the model to extend to

include the whole cat. Labeling results for the first and last

updates can be seen in Fig. 5. As shown by the gray pixels,

the table top is captured by the surface model already from

the first update.

We also consider how the method behaves if no distinct flat

surface exists in the scene. Two such examples are shown in

Fig. 6. From the gray pixels we observe that the background

and surface models have essentially changed order, while the

foreground segmentation is unaffected. The surface model

finds some non-physical plane across the background objects.

The thickness of the plane is gradually extended to include

large parts of the scene. The background model is unable

to compete, since image points are assumed to be uniformly

distributed, even though scene points are typically not.

B. Benefits of multiple cues and models

The method presented here differs from the traditional

figure-ground segmentation: it exploits multiple cues for

segmentation (colors, positions and disparities) and together

with the foreground and background hypotheses it also

includes a third, that of a flat surface. Fig. 7-9 show how

important these additions are by showing what happens when

they are removed. If no flat surface hypothesis were added,

one would get results similar to those of Fig. 7. Since the

initial ball around the cat includes parts of the table and these

parts are located on about the same depth, the foreground

segment cannot differentiate between cat and table. The



foreground segment will grow from frame to frame and

eventually the whole table will be included.

The behavior could become even worse when disparity

measurements are not taken into consideration. Fig. 8 shows

an example of that. Without disparities the surface model

loses its function and becomes just another background

model. Cues that would otherwise have prevented the table

top from being included in the foreground become even

weaker. Similar behaviors can sometimes be observed in

GrabCut, [5], when the initial selected region contains too

much of a similarly colored background. Samples from such

a false background may result in a distinct peak in the fore-

ground color histogram, which strengthens the hypothesis

that these samples do in fact belong to the foreground in

next update. With high-quality disparities and a flat surface

hypothesis, segmentation often becomes trivial, even without

color measurements. However, for regions with unreliable

or undefined disparities, color measurements can still be

beneficial, as can be seen in Fig. 9.

VI. DISCUSSION AND CONCLUSIONS

Generating hypotheses about objects in natural scene is

a prerequisite for enabling robots to interact with the envi-

ronment. In this paper, we have presented an active vision

system consisting of a two sets of stereo cameras: one for

foveal and one for peripheral vision. The system is used for

3D segmentation of visual scenes based on integration of

several cues. The main application of the system is to serve as

a visual front end and generate object hypotheses for objects

not known a-priori. The active part of the system is the use of

a stereo based fixation process, where objects hypotheses are

generated and improved over time. The main contributions of

the work is i) that the process of segmentation is considered

in 3D thus also providing the input for direct interaction with

the environment; ii) the process of temporal segmentation

is modeled, showing how the quality of object hypotheses

improves over time.

Experimental evaluation demonstrates segmentation of ob-

jects in natural scenes with some of the underlying assump-

tions being violated. Still, the presented method performs

well and provides several good object hypotheses. We believe

that this is an important result towards equipping robots with

the capability of detecting novel objects in the environments

and use metric information for direct grasping and manipu-

lation of objects. Our current work explores the use of the

system for generation of 3D shape attributes of objects. In

addition, we will extend the method for automatic 3D object

model generation using several different views of the same

object and thus improve the quality of generated grasps.

APPENDIX

For conciseness we denote the foreground marginal probability
of point i by wi

f = w(li=lf ). With the color histogram bin
corresponding to the same point denoted by bi, the value of this bin
is cf,bi

= Hf (hi, si), where cf is the foreground color histogram
vector. Given the objective function

Qf (θ) =
X

i

wi
f log p(mi, lf |θf ) + log p(θt

f |θf )

the following update functions of the foreground model can be
derived:

δQf (θ)

δpf

=
X

i

wi
f∆−1

f (pf − pi) + Λ−1

f (pf − pt
f ) = 0⇒

pf ← (
X

i

wi
f + ∆fΛ−1

f )−1(
X

i

wi
fpi + ∆fΛ−1

f pt
f )

δQf (θ)

δ∆−1

f

=
1

2
(
X

i

wi
f∆f + Sf (∆f −∆t

f )−

X

i

wi
f (pf − pi)(pf − pi)

⊤) = 0⇒

∆f ←

P

i
wi

f (pf − pi)(pf − pi)
⊤ + Sf∆t

f
P

i
wi

f + Sf

δQf (θ)

δcf,j

=
1

cf,j

X

bi=j

wi
f +

1

σ2
c

(ct
f,j − cf,j) = 0⇒

cf,j ← ĉf,j/
X

i

ĉf,i, where

ĉf,j =
1

2
ct

f,j +
1

2

s

ct
f,j

2 + 4 σ2
c

X

bi=j

wi
f

Update functions for the background and surface models can be
derived similarly.
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