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Abstract— Learning object affordances and manipulation
skills is essential for developing cognitive service robots. We
propose an active affordance learning approach in continuous
state and action spaces without manual discretization of states
or exploratory motor primitives. During exploration in the
action space, the robot learns a forward model to predict
action effects. It simultaneously updates the active exploration
policy through reinforcement learning, whereby the prediction
error serves as the intrinsic reward. By using the learned
forward model, motor skills are obtained in a bottom-up
manner to achieve goal states of an object. We demonstrate
that a humanoid robot NAO is able to learn how to manipulate
garbage cans with different lids by using different motor skills.

I. INTRODUCTION

The concept of affordance [3] has been introduced in
robotics to address robot-object interaction [6]. Affordances
can be modeled as the relations between objects, actions
and effects [4]. Learned affordances have been used for
predicting action effects and for action planning [8]. How-
ever, affordance learning conditions in the literature were
strongly controlled by human programmers and this restricts
the autonomy of the robot. Not only the spaces of object
state and robot action were discretized according to specific
tasks, but also the amount of training data was decided before
affordance learning actually started. These assumptions do
not guarantee that a robot can learn how to manipulate a
complex and novel object. In this paper, we take an active
affordance learning approach where the robot collects the
training data in continuous state and action spaces without
manual discretization. We propose active affordance learning
in the framework of intrinsically motivated reinforcement
learning [1]. Heuristics direct active exploration towards the
regions where the prediction errors are maximal [2].

II. AFFORDANCE LEARNING

An affordance is defined as the triple:
(
Object, Action,

Effect
)
. We use the manipulation of garbage cans with lids

as an example:

(a) Push to open (b) Pull to open

Fig. 1. An illustration of lid manipulation by a robot NAO.
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The robot identifies an object and the object state based
on color segmentation and perceptual proxies such as a
bounding box. Affordance learning is to learn an affordance
model F that predicts action effects on an object:

eo = F(so, a, w) (1)

where so ∈ S is the state of object o, e.g., lid opening size,
a ∈ A is the action in the 3D Cartesian space, eo is the
effect, e.g., by subtraction of the opening size, and w is the
model parameter, e.g., the weight vector of a neural network.

III. ACTIVE AFFORDANCE LEARNING ARCHITECTURE

The overall learning architecture is illustrated in Fig. 2.

Fig. 2. An architecture of active learning of object affordances.

In the affordance learning component, we use an on-
line version of neural networks to predict action effect:
êko = F(sko , a

k, wk), where k denotes the time step. After
the action ak is applied and the actual next state sk+1

o is
observed, the actual effect eko is obtained and the prediction
error is calculated: ηk = eko − êko . Then, the new model pa-
rameter wk+1 is updated: wk+1 = wk+αηk∇F(sko , a

k, wk).
In the active exploration component, we integrate a RL

module, i.e., Continuous Actor-Critic Learning Automation
(CACLA) [9], in the affordance learning loop. The reward
r is generated intrinsically by using the model prediction
error: r = |ηk|. Its maximization is expected to result in
an optimal action selection policy. The actor Actk outputs
an action Actk(sko) based on the current object state sko ,
and an exploratory action ak is selected stochastically from
the Gaussian probability function G(x, µ, σ) centered around
Actk(sko): G(x,Actk(sko), σ) = 1√

2πσ
e−(x−Actk(s

k
o))

2/2σ2

.



The critic Vk learns to predict the value of each state and
computes the Temporal Difference (TD) error [7]: δk =
r+γVk(sk+1

o )−Vk(sko). The critic is always updated with the
TD error: Vk+1(sko) = Vk(sko) + β δk. Only if δk > 0, the
actor Actk is updated: Actk+1(sko) = Actk(sko) + ζ(ak −
Actk(sko)), which means that the performed action ak is
better than expected and should therefore be enforced. The
active exploration terminates when the averaged absolute TD
error becomes stable, i.e., |δ̄k+1− δ̄k| < ε, where ε is a small
positive threshold, and δ̄k = 1

NΣki=k−N+1|δi| is the averaged
absolute TD error of recent N actions.

In the model exploitation component, the robot generates
goals in the effect space and selects actions to achieve
them. For example, the maximized goal effect is: ego =
arg maxa∈A F(so, a, w). A range of skills can be acquired
in various object states for solving these goal-directed tasks.
They are similar to options [5] that are reusable across tasks.

IV. RESULTS

1) Model learning: NAO has learned the near linear
relations between object states, robot actions and effects.
In the case of the push-lid (see Fig. 1(a)), stretching the
arm would result in the opening effect, and stretching further
would result in more opening. Besides, the maximal opening
effect decreases when the current state of opening increases,
and the closing effect was predicted by contracting the arm.

2) Active vs random exploration: The averaged absolute
TD error are shown in Fig. 3-4 (N = 20). They converged
for active exploration while the random exploration failed to
converge within allowed number of action steps.

Fig. 3. Experimental result with the push-lid in 3D action space.

Fig. 4. Experimental result with the pull-lid in 3D action space.

In the active learning mode, NAO intended to explore
the most uncertain spaces in an organized way. It usually
ended up being blocked by the boundaries of garbage cans,
i.e., when a lid was maximally opened or tightly closed.
In this case, the object state became stable and no more
effect was observed, which gave the TD errors a good
chance to converge. In contrast, the random exploration was
less efficient because it wasted time on exploring in well
predicted action space which contributed little to improving
the model prediction accuracy. Besides, it occasionally ran
into situations with high prediction errors so that the TD
errors would take longer time to converge.

3) Skill acquisition: NAO has learned affordance models
to open and close the garbage cans in various object config-
urations. In the case of opening the push-lid, NAO pushed
forward while moving the arm left and up, which resulted
in more opening effect observed from NAO’s perspective.
In the case of opening the pull-lid, NAO pulled the handle
while moving the arm downwards. These results agreed with
the design of hinges on both lids. A video is available at
http://youtu.be/oluLDwMaVoY.

V. CONCLUSIONS

We investigated an approach for active affordance learning
in continuous state and action spaces for robot use of
household products. Affordances were learned on-line to
predict action effects meanwhile the prediction error served
as intrinsic reward to update the action exploration policy
using an actor-critic RL structure. We have demonstrated
that a humanoid robot is able to actively learn affordances
and efficiently acquire manipulation skills to handle garbage
cans. In the future, we will consider the scale of model
complexity and the speedup of model convergence, along
with the transfer of learned exploration policies for learning
novel objects.
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