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A new method of solving earth pressure problems is pro-
posed in this paper within the framework of the limit
equilibrium approach. The concept of the critical slip ®eld
(CSF) is postulated: the active critical slip ®eld (ACSF) in
the active case, and the passive critical slip ®eld (PCSF) in
the passive case. Based on the principle of extremum thrust
force (which is theoretically consistent with the principle of
optimality) in conjunction with the method of slices, a
numerical procedure is presented for the determination of
such ®elds and consequently the distribution of earth pres-
sures on retaining walls. For simplicity at this stage, the
back®ll material is assumed to be a homogeneous cohesion-
less soil with sloping ground surface carrying uniform and
vertical surcharge, while the retaining wall is allowed to be
battered, and the strength of the soil may be either fully or
partially mobilised. Compared with the rigorous method (i.e.
the method of characteristics), the proposed method is
simple in principle and easily implemented in a computer
program. However, it is more accurate than other approx-
imate techniques and agrees well with available closed-form
solutions. A number of examples of ACSF and PCSF are
given in this paper, and the validity and ef®ciency of the
proposed method are demonstrated. In addition, it is easy to
extend this numerical procedure to obtain more general
ACSF and PCSF accommodating non-homogeneous c, ö soils
subject to complicated loading conditions.

KEYWORDS: earth pressure; failure; numerical modelling and
analysis; retaining walls.

Nous proposons dans cet exposeÂ une nouvelle meÂthode pour
reÂsoudre les probleÁmes de pression de contact en utilisant la
meÂthode d'eÂquilibre limite. Nous prenons le concept d'un
champ de glissement critique (CSF) et nous eÂtudions le
champ de glissement critique actif (ACSF) dans le cas actif
et le champ de glissement critique passif (PCSF) dans le cas
passif. En nous basant sur le principe de force de pousseÂe
extreÃme (qui est theÂoriquement en accord avec le principe
d'optimaliteÂ) en conjonction avec la meÂthode de tranches,
nous preÂsentons un proceÂdeÂ numeÂrique permettant de deÂter-
miner ce type de champ et, de laÁ, la reÂpartition des press-
ions de contact sur les murs de souteÁnement. Pour simpli®er
aÁ ce stade, nous supposons que la matieÁre de remblayage est
un sol homogeÁne non coheÂsif avec une surface inclineÂe
portant une surcharge uniforme et verticale, que le mur de
souteÁnement est marteleÂ et que la reÂsistance du sol est soit
entieÁrement soit partiellement mobiliseÂe. Par rapport aÁ la
meÂthode rigoureuse (c'est-aÁ-dire la meÂthode des caracteÂris-
tiques), la meÂthode proposeÂe est de principe simple et elle
est facile aÁ mettre en uvre dans un programme informa-
tique. Par ailleurs, elle est plus exacte que d'autres techni-
ques approximatives et s'accorde bien avec les solutions de
forme fermeÂe qui sont disponibles. Nous donnons dans cet
exposeÂ plusieurs exemples de ACSF et de PCSF et nous
deÂmontrons la validiteÂ et l'ef®caciteÂ de la meÂthode proposeÂe.
De plus, il est facile d'eÂtendre ce proceÂdeÂ numeÂrique pour
obtenir des ACSF et PCSF plus geÂneÂraux, tenant compte
d'un sol é, c non homogeÁne, soumis aÁ des conditions de
charge compliqueÂes.

INTRODUCTION

The determination of earth pressure plays a primary role in
the design of retaining walls, sheet piles, and other geotechnical
structures. The earth pressure theories of Coulomb and Rankine
(Terzaghi, 1943) still occupy a dominant place in geotechnical
engineering practice, though more sophisticated methods have
been developed in recent decades. The Rankine theory is
rigorous but limited to simple situations, while the Coulomb
theory is more versatile in accommodating complex con®gura-
tions of back®lls and loading conditions, as well as frictional
effects between walls and back®lls. The assumption underlying
the Coulomb theory is that a planar failure surface is developed
in the back®ll, and the lateral earth force against the wall is
determined by satisfying force equilibrium. However, both
theoretical and experimental studies have shown that this
assumption is not perfectly valid when the wall is rough,
especially in the passive case, which often leads to non-con-
servative estimations of earth pressures.

More than 50 years ago, several researchers dealt with the
earth pressure problem using curved failure surfaces on the
basis of the limit equilibrium principle (Krey, 1936; Terzaghi,
1943; Caquot & Kerisel, 1948). The failure surface was usually

assumed to be a circle, an ellipse, a log-spiral, or a combination
of a log-spiral and a straight line. However, the process of such
calculations was cumbersome in practical application, and the
accuracy was not warranted. Some attempts have been made to
use plasticity theory for obtaining earth pressures since the
method of characteristics was introduced in soil stability analy-
sis (Sokolovski, 1965; Graham, 1968; Lee & Herington, 1972;
Hettiarachi & Reece, 1974). Closed-form solutions based on
plasticity theory are few, and numerical procedures must be
involved in obtaining the slip line in the back®ll. Because of its
inef®ciency in dealing with complex boundary conditions, the
slip-line method cannot be easily incorporated into a general
computer program and is therefore limited in practical applica-
tion. In the last two decades, limit analysis has been used to
obtain upper bound solutions for passive earth pressure pro-
blems and lower bound solutions for active ones (Chen, 1975;
Chen & Liu, 1990), but it is not an easy task to choose an
appropriate kinematically admissible mechanism.

The method of slices, as commonly used in slope stability
analysis, was ®rst employed for the determination of lateral
earth forces by Janbu (1957). However, only a few investigators
made further attempts to enhance its application in earth
pressure studies (Shields & Tolunay, 1973; Rahardio & Fre-
dlund, 1983). In spite of its adaptability to complex loading and
geometrical conditions, the method of slices has two inherent
weaknesses. First, assumptions would have to be made regard-
ing the interslice force to render the problem determinate, and
different assumptions might lead to different values of lateral
earth forces. Second, the shape of the potential failure surface
has to be speci®ed before searching for the critical one.
Because of these drawbacks, the solution for lateral earth force
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by the conventional method of slices deviates considerably from
other solutions, and cannot be reliably applied to engineering
practice.

In this paper, the authors propose a new effective method
for determining earth pressures as well as critical slip ®elds in
cohesionless soils within the framework of the limit equilibrium
method of slices.

FUNDAMENTALS OF METHOD OF SLICES

In accordance with most earth pressure theories, a sliding mass
develops when the soil±wall system is on the verge of limiting
equilibrium, with strengths along the failure surface assumed to
be fully mobilised or partly mobilised to a speci®ed degree. At
this stage, the position of the failure surface is prescribed.

Consider a typical soil±wall system as shown in Fig. 1,
where the wall back is inclined at angle ù to the vertical and
the slope of the back®ll surface is â. ù is positive when the
wall is inclined into the back®ll, and â is also positive when the
back®ll surface moves upwards from the top of the wall. A
uniform vertical surcharge of density q in the horizontal plane
is distributed along the back®ll surface. The wall height is H
and its oblique height L is equal to H=cosù. The internal
friction angle of the soil is ö and the unit weight is ã. The wall
friction angle is ä. Following the sign convention in the litera-
ture, ä is positive when the wall moves upwards relative to the
soil in the active case, or when it moves downwards relative to
the soil in the passive case. In order to simplify derivations,
nominal angles of soil friction and wall friction are introduced
herein, labelled as �ö and �ä respectively, where ö � ö, ä � ä
for the active case, and �ö � ÿö, �ä � ÿä for the passive case.
Thus most of the equations involved that correspond to both the
active and passive cases can be incorporated into generalised
ones. In other words, we can regard the passive case as an
alternative active case with the signs of the soil and wall
friction changed, but the nature of the extremum of the lateral
force still remains: that is, maximum (minimum) for the active
(passive) case.

Specifying a reference coordinate system as indicated in Fig.
1, the sliding mass above the failure surface is divided into n
slices parallel to the y-axis or the back of the wall. The
interslice force (also called the side force) between the kth slice

and its lower one is denoted as Zk . It is apparent that Z0 � 0 at
the upper end and Zn � P at the wall, where P is the lateral
force acting on the wall, labelled as Pa in the active case and
Pp in the passive case. The point of application of P is known
in some cases and is unknown in others. Herein, the ratio of the
height of such a point above the wall toe to the wall height, H,
is assumed to be r, which is either speci®ed beforehand or
determined later in the process of solution. Theoretically, almost
all the methods of slices may be used for calculating lateral
forces, but only the Morgenstern±Price method (Morgenstern &
Price, 1965) has been adopted for the present problem because
it satis®es the conditions for both force and moment equili-
brium, and involves fewer numerical dif®culties than other
methods. In this method, an assumption is made with interslice
forces to render the problem determinate. A function (called the
interslice force function) was used, including a scaling para-
meter to describe the ratio of the normal to tangential interslice
force across the sliding mass. In other words, the directions of
interslice forces are represented by a function. The lateral force
and the scaling parameters are obtained by satisfying the condi-
tions for both force and overall moment equilibrium. For earth
pressure problems, four types of interslice force functions
(FUN1, 2, 3 and 4, each involving a parameter, m, to be
determined) have been suggested, which also take into account
the theoretical conditions for certain boundaries (see details in
Appendix 1).

By investigating the force equilibrium for individual slice
and moment equilibrium for the whole sliding mass, recurrence
equations of interslice forces (Zk) and moments (Mk) can be
derived as follows (the derivation is given in Appendix 2):

Zk �
1

cos(èk ÿ ák � ö)
[Z kÿ1 cos(èkÿ1 ÿ ák � ö)

� (Qk � Wk) sin(ák � ùÿ ö)] (1)

Mk � M kÿ1 �
sin(ák ÿ èk)

cosák

.
bk

2
�
sin(ák�1 ÿ èk)

cosák�1

.
bk�1

2

� �

. Zk

� Wk sinù
hk

2
� Qk sinù . hk (2)

where the notations are as given in Appendix 2.
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Fig. 1. Division of sliding mass
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Taking moments about O of the lateral force P (� Zn) and
considering the overall moment equilibrium for the sliding
mass, we have

Mn ÿ Zn
. r . L . cos ä � 0 (3)

A more general moment equilibrium equation may be in the
form

Mn � C1 Zn � C2 � 0 (4)

where C1 and C2 are constants that relate to the nature of the
problem under consideration.

For a given failure surface, selecting an interslice force
function with an assumed value of parameter m, the lateral
force P can be obtained by using equation (1) in an iterative
manner. It is necessary to check the moment equilibrium
condition (equation (4)) (Mn is obtained by using equation (2)
in the same manner). If such a condition is not satis®ed, then
another value of the parameter m should be used. This process
is repeated until the moment equilibrium condition is satis®ed
within a speci®ed tolerance. Generally, this trial-and-error pro-
cedure is tedious and inef®cient. Therefore, a more effective
technique based on the Newton±Raphson method has been
developed. This is given in detail in Appendix 3.

POSTULATION OF CSF AND PRINCIPLE OF EXTREMUM THRUST

FORCE

Postulation of CSF
The concept of slip ®elds in the soil began many years ago

in the theory of plasticity (Sokolovski, 1965). According to this
theory, two families of conjugate slip lines develop within the
plastic region, which are characteristic of stress or velocity. The
stress at any point in the slip-line ®eld satis®es a force
equilibrium and a failure criterion. Experiments also con®rmed
the existence of such a ®eld in the back®ll behind a retaining
wall (James & Bransby, 1970). With this background, it is
justi®able to postulate that a family of slip surfaces exists in the
back®ll, along which the sliding masses produce pressures
against the wall.

Figure 2(a) presents the schematic pattern of a slip ®eld and
associated distribution of earth pressures p(z) along the wall.
Each slip surface corresponds to a sliding mass that provides a
lateral force P(z), as shown in Fig. 2(b). The resultant of
surcharge Q(z), the weight W (z) and the resistance force R(z)
for the sliding mass produce a total moment M(z) about A. The
relationships between p(z), P(z) and M(z) are as follows:

P(z) �

� z

0

p(ò) dò (5)

M(z) � cos ä .

� z

0

p(ò)(zÿ ò) dò (6)

If the slip ®eld is speci®ed, then the lateral force for each
surface can be calculated by using the method of slices, with
the moment equilibrium condition (equation (6)) satis®ed. Since
the soil is at the active or passive limiting state, the slip surface
should be such that P(z) attains a maximum value in the active
state or a minimum value in the passive state. In this situation,
the slip surface is referred to as the critical slip surface. At any
given depth of the wall, there may be a critical slip surface that
yields a maximum (or minimum) lateral force in the active (or
passive) state. Then, all of these critical slip surfaces will
constitute a ®eld that is de®ned as the critical slip ®eld, or CSF.
A CSF is rede®ned as an ACSF (active critical slip ®eld) in the
active case or a PCSF (passive critical slip ®eld) in the passive
case.

Note that the CSF should not be identi®ed with the slip-line
®eld. The latter is based on rigorous plasticity theory, and
requires satisfaction of force equilibrium and failure criterion at
any point in the ®eld. As for the CSF, it only satis®es the force
and moment equilibrium conditions for sliding masses corre-
sponding to a series of critical slip surfaces, and takes into
account the failure condition along these surfaces. Thus the
CSF is still within the framework of the rigorous limit equili-
brium approach. As will be discovered, especially in some
special cases where closed-form solutions of slip-line ®elds are
available, the CSF coincides approximately with the theoretical
®eld (their solutions of earth pressures are nearly the same)
though their backgrounds are essentially different.

Principle of extremum thrust force
As is already known, the critical slip surface in the CSF, say

line AC in Fig. 3(a), should yield a maximum or minimum
lateral force, say PA, at the wall in the active or passive state.
In other words, for a ®xed exit point at the wall, any surface
deviating from the critical one will give lateral forces of
magnitude smaller or larger than PA in the active or passive
state.

Choose an arbitrary point, B in Fig. 3(a), on line AC and
visualise a plane through B and parallel to the wall back as an
interface of a slice. The resultant force acting on that face from
B to the ground surface is PB, whose inclination is assumed to
be speci®ed. It is obvious that the magnitude of PB is depen-
dent only on the location of line BC, and is independent of line
BA. The potential surfaces through B to the ground surface are
many, for example BC1, BC2, BC3, among which the critical
surface (BC) should still cause the lateral force PA to be a
maximum (or minimum) in the active (or passive) state. It can
be seen from the recurrence relation between interslice forces
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Fig. 2. Postulation of critical slip ®eld (CSF): (a) schematic pattern of CSF; (b) forces on a typical sliding mass
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(equation (1)) that, in order for the lateral force PA to attain its
maximum (or minimum) value in the active (or passive) case,
the thrust force PB should also be a maximum (or minimum),
or in general an extremum. This force is de®ned as the critical
thrust force for point B, and this is referred to as the principle
of extremum thrust force. This principle implies that, for any
critical slip surface passing from the wall to the ground surface,
any arbitrary part of the surface from a point to the ground
surface also constitutes a critical surface. This property is of
crucial importance to the development of a numerical procedure
for simulating the CSF.

It is found in earth pressure problems that the critical slip
surface is unique, which means there are no two surfaces that
yield exactly the same extremum lateral force or thrust force.
This property leads to the fact that the critical slip surfaces
in the CSF will not intersect each other. For example, line
BDC3 as shown in Fig. 3(a) may be directly excluded from
being considered a candidate for the critical surface. If it is
(through D), then there would be two critical slip surfaces
yielding extremum thrust force PD (not shown in Fig. 3(a))
simultaneously. This would not happen in earth pressure
problems involving homogeneous or nearly homogeneous
soils.

In the method of slices, the slip surface as well as the
critical surface is approximated by a series of straight-line
segments across individual slices, say SB in Fig. 3(b). From the

above conclusion, the inclination of the line segment SB, áS, is
also uniquely determined. áS is de®ned as the critical slip
direction for point S. Corresponding to any point in the CSF
there are two quantities: the critical slip direction and the
critical thrust force. It can be seen from equation (1) that the
critical quantities of any point are dependent only on the critical
thrust forces along the upper slice boundaries. As shown in Fig.
3(b), if critical thrusts at all the points along the slice boundary
through B have been determined in the last stage, then áS and
PS for point S can also be calculated by using equation (1),
with áS selected such that PS is a maximum or a minimum in
the active or passive case.

The principle of extremum thrust force is derived directly
from examining the recurrence relation between interslice
forces. This principle is identical with the principle of optim-
ality (Bellman, 1957), on the basis of which an effective
optimisation technique (dynamic programming) was developed
for solving types of sequential multistage optimisation pro-
blems. Dynamic programming was ®rst adopted by Baker
(1980) for locating the critical slip surface in slope stability
analysis. The authors proposed the concept of the CSF in slopes
by using the principle of optimality, and developed a special
numerical technique (this technique will be described later in
this paper) different from the conventional dynamic program-
ming algorithm to simulate the CSF in slopes (Zhu, 1997;
1999).
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Fig. 3. Illustration of the principle of extremum thrust force: (a) character-
istic of a critical slip surface; (b) critical slip direction and critical thrust
force
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NUMERICAL PROCEDURE FOR SIMULATING THE CSF

It is known from the previous section that for any point in
the CSF there exists a critical slip direction associated with a
critical thrust force. Critical slip directions of a large number
of points may suf®ciently dictate the whole pattern of the
CSF, and thus form the starting point for a numerical simula-
tion procedure that attempts to assess the critical slip direc-
tions of a ®nite number of points uniformly distributed in the
calculation region and trace the CSF through these discretised
directions. To obtain a clear presentation in this section, the
inclinations of thrust forces are assumed to be speci®ed by a
proper interslice function. The CSF obtained in this section is
therefore not rigorous since the moment equilibrium condition
(equation (6)) will not be taken into account. Problems of
how to determine the thrust force inclinations and obtain a
rigorous CSF will be discussed in detail later in separate
sections of the paper, with regard to the situations under
consideration.

Discretisation of back®ll
Consider a soil±wall system as shown in Fig. 4, some

geometrical parameters being de®ned in Fig. 1. As illustrated in
Appendix 1, the back®ll material at limiting state may be
divided into two zones: the Rankine zone and the transition
zone. The calculation region is delimited within a parallelogram
of size Sx 3 Sy in the x and y directions respectively. According
to the theory of plasticity, within the transition zone all possible
failure surfaces would not pass beyond the utmost slip line,
which can be described by a log-spiral function as indicated in
Fig. 4. Values of Sx and Sy are estimated as follows:

Sx � 1:2L . exp(ÿø . tanö) . sinø

Sy � 1:2maxfL . exp(ÿî . tanö) . [cos î� sin î . tan(âÿ ù)]g

0 < î < ø (7)

The calculation region is then divided into N ÿ 1 slices with
N boundaries including the wall itself; along each slice bound-

ary M9 grid points are speci®ed (M points on the wall). The
slice width b is equal to Sx=(N ÿ 1), and the spacing of grid
points in the y direction (d ) is equal to L=(M ÿ 1). In actual
computation, only M and the ratio b=d are required to be
prescribed a priori. According to the authors' experience, the
ratio b=d is suggested to be in the range 2±4, while the
selection of M is dependent on the compromise between
accuracy and cost of computation time. Generally, suf®cient
accuracy of numerical computation is ensured if M is more than
40. Results of a large number of computations revealed that the
accuracy would not decrease beyond practical tolerance if M
equals 20 or so. Even though M is set to be 11, as is the case
in Fig. 4, the computation results are still of practical conse-
quence.

Determination of critical slip directions and thrust forces
The critical slip directions as well as the critical thrust forces

for grid points can be determined in a multi-stage manner by
using the principle of extremum thrust force. For point (i, j),
the critical slip direction and critical thrust force are denoted as
ác

i, j and Pc
i, j (of components Pc

i, j in the x and y directions:
X c

i, j, Y
c
i, j) respectively.

For grid points on the ®rst boundary, the slip surfaces
pointing upwards to the ground may be considered straight, so
that the corresponding slip directions and critical thrusts can be
directly determined by means similar to that in the Coulomb
theory. The critical quantities for points on the second and
onward slice boundaries can be calculated as follows, noting
that Pc

1, j � 0, and ác
1, j may be set as á0, as determined by

equation (18) in Appendix 1.
As a typical example, values of Pc

i, j and ác
i, j are to be

calculated assuming that the critical quantities for all points
from (1, 1) to (iÿ 1, j) have been determined at previous stages
as indicated in Fig. 5(a). As shown in Fig. 5(b), given a trial
value of ác

i, j as ái, j, the corresponding slice base from point
(i, j) intersects the ( jÿ 1)th slice boundary at a distance equal
to r-d from point (k, jÿ 1), r being positive when the intersec-
tion point is located below (k, jÿ 1) and vice versa. k and r
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Fig. 4. Discretisation of the back®ll
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can be obtained by the following equations, which may be
readily derived from geometrical relations:

k � Max 2, i� Int
b

d
tan(âÿ ù)ÿ

b

d
tanái, j

� �� �

(8)

r � (iÿ k)d � b tan(âÿ ù)ÿ b tanái, j (9)

The thrust force Pi, j corresponding to ái, j may be calculated
using the recurrence relation between interslice forces (equation
(2)). It is obvious that the determination of the thrust force (its
components: X, Y ) on the ( jÿ 1)th slice boundary is the key
issue to the calculation of Pi, j. X and Y are computed using an
interpolation function as follows:

X � X c
kÿ1, jÿ1

. ÿ
r

2
�

r2

2

� �

� X c
k, jÿ1

. (1ÿ r2)� X c
k�1, jÿ1

.
r

2
�

r2

2

� �

(10a)

Y � Y c
kÿ1, jÿ1

. ÿ
r

2
�

r2

2

� �

� Y c
k, jÿ1

. (1ÿ r2)� Y c
k�1, jÿ1

.
r

2
�

r2

2

� �

(10b)

It is shown here that Pi, j can be regarded as an implicit function

(M, N)

(i, j)

(1, N)

(1, j )

(1, 1)

(M ′, j)

(a)

(b)

(M ′, j – 1)

(k – 1, j – 1)

(k + 1, j – 1)

(k, j – 1)

(i – 1, j )

(i + 1, j )

(i, j )

(1, j – 1)

Pi, j = f(αi, j)

rd

αi, j

X c
k – 1, j – 1

 (Y c
k –1, j – 1

)

X c
k + 1, j – 1

 (Y c
k – 1, j – 1

)

X c
k, j – 1

 (Y c
k, j – 1

)

X (Y )

Fig. 5. Determination of critical slip directions and thrust forces: (a) critical slip directions partly completed; (b)
interpolation of thrust forces
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of ái, j: that is, Pi, j � f (ái, j). The determination of Pc
i, j is

obtained by maximisation (or minimisation) of Pi, j with respect
to ái, j in the active (or passive) case:

Pc
i, j � f (ác

i, j) �
Max f (ái, j) in the active case

Min f (ái, j) in the passive case

�

(11)

Such an optimisation can be realised by trial and error since it
involves only a single variable. A good starting value of ái, j is
suggested as ác

iÿ1, j.
Repeat the above procedure until the critical slip directions

and thrust forces of all grid points are obtained. All critical slip
directions are stored for further use, while only the critical
thrust forces of those points on two adjacent slice boundaries
are required to be recorded and updated successively in the
process. Finally, the thrust forces for points on the wall repre-
sent an approximation to local resultants of earth pressures
summing from those points to the top of the wall.

Tracing of CSF
The critical slip directions of all grid points, as shown in Fig.

6(a), constitute a ®eld of discretised pattern through which
continuous critical slip surfaces (dotted lines in Fig. 6(a)) can
be traced one by one. The tracing procedure is as follows:

Commencing from a grid point, say A (Fig. 6) on the wall
(i.e. the Nth slice boundary), a critical slip surface is traced to
the (N ÿ 1)th slice boundary at B, which is located between
two adjacent grid points B1 and B2. This is further traced to C,
and then D, and so on. The positions of C and D are
determined by linear interpolation as indicated in Fig. 6(b)
using the following relation:

B1B

BB2

�
B3C

CB4

,
C1C

CC2

�
C3D

DC4

(12)

where B3, B4, C3 and C4 are determined immediately from the
critical slip directions of B1, B2, C1 and C2 respectively. The
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Fig. 6. Tracing of CSF: (a) CSF and critical slip directions; (b) details of tracing
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tracing is terminated at the ground surface, thus resulting in a
continuous critical slip surface. By repeating the tracing process
for the rest of the grid points on the wall, the CSF in the sense
of force equilibrium is thus obtained. The CSF in a rigorous
sense will be discussed next, but the procedure presented in this
section constitutes a major part of the numerical simulation of
the CSF.

CSF IN THE CASE OF WEIGHTLESS SOIL

This special case has been dealt with by the classical theory
of plasticity, and closed-form solutions are widely available
(Sokolovski, 1965; Powrie, 1997). The purpose of this section is
to validate the method of CSF by comparing numerical solu-
tions with the theoretical ones.

In this case, the distribution of earth pressures along the wall
is uniform, so that the resultant lateral force acts at the mid-
point of the wall. All critical slip surfaces are expected to be of
a common shape: thus a common interslice force function
involving a common value of m is able to describe the inclina-
tions for all surfaces of the CSF. The calculation of the CSF is
performed step by step as follows:

(a) Discretise the back®ll. This has been illustrated in the
previous section.

(b) Choose an interslice force function as suggested in
Appendix 1.

(c) Assume a starting value of m for the interslice force
function. Unity of m is suggested if lacking experience.

(d ) Calculate the CSF without consideration of the moment
equilibrium condition using the numerical procedure in the
preceding section.

(e) Take the critical slip surface through the wall toe obtained
in step (d ) as a speci®ed surface and re-divide the sliding
mass above it into a larger number of slices to calculate the
moment with suf®cient accuracy. Calculate next the lateral
force P and parameter m by using the rigorous method of
slices previously presented in the paper. The constants in
the moment equilibrium condition (equation 4) become
C1 � ÿ1

2
L cos ä, C2 � 0.

( f ) With the modi®ed value of m in step (e), repeat steps (d )
and (e) until the difference in the value of P between two
successive iterations is within a speci®ed tolerance. It is
found that both P and m converge to stable values rapidly
after three to ®ve iterations. The CSF at the end of this step
is then accepted.

(g) Using the ®nite difference method, compute the numerical
distribution of earth pressures from the critical thrust forces
of grid points on the wall.

Examples
Example 1. The geometrical and strength parameters are

presented in Fig. 7. The values of lateral forces by using the
theory of plasticity are: Pa � 315 kN=m, Pp � 5804 kN=m.
Taking M � 81 and b=d � 4, the ACSF and PCSF (solid lines)
in Fig. 7(a) and (b) respectively show that they are nearly
coincident with the theoretical slip lines (dotted lines). The

(a)

(b)

Slip lines by plasticity theory

Slip lines by plasticity theory

q = 100 kPa

q = 100 kPa

Pa = 315 kNm

Pp = 5805 kNm

Pp

β = 0˚, ω = 0˚, H = 10 m

φ = 30˚, δ = 30˚, γ = 0

β = 0˚, ω = 0˚, H = 10 m

φ = 30˚, δ = 30˚, γ = 0

Pa

Fig. 7. CSF in Example 1: (a) ACSF; (b) PCSF
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computed lateral forces are Pa � 315 kN=m, Pp � 5805 kN=m,
which are identical with the theoretical solutions. The numerical
distributions of earth pressures are approximately uniform except
when they are near the top of the wall. This is due to the
inadequate number of slices relative to the limited local height of
the wall, but it has no effect on the total lateral forces.

Example 2. This is a typical example often encountered in the
calculation of the bearing capacity of strip footings. The PCSF
shown in Fig. 8 is in good agreement with the theoretical slip
lines, and the calculated value of Pp is equal to 10 628 kN=m as
compared with 10 624 kN=m by the theory of plasticity.

CSF IN THE CASE OF ZERO SURCHARGE

When there is no surcharge acting upon the surface of a
cohesionless back®ll, the distribution of earth pressures along
the wall is hydrostatic and the point of application of the
resultant lateral force lies at the lower-third point of the wall.
The shape of the failure surface should be independent of the
height of the wall. This therefore leads to the use of a common
interslice force function with a common value of parameter m
for the calculation of the CSF. The procedure for simulating the
CSF presented in the section above is also applicable to this
case, noting that the moment equilibrium condition used in step
(e) changes to C1 � ÿ1

3
L cos ä, C2 � 0. By setting the unit

weight ã and the wall height H as arbitrary values, and then
calculating the lateral force Pa (Pp) for the entire wall, the earth
pressure coef®cient Ka (Kp) is obtained and is associated with a
set of strength and geometrical parameters: ö, ä, â and ù.
Herein Ka (Kp) is de®ned as Pa=0:5ãH

2 (Pp=0:5ãH
2), and

those coef®cients given by Caquot & Kerisel (1948) and
obtained by using the Coulomb theory are denoted as Ka

CÿK

(Kp
CÿK) and Ka

C (Kp
C) respectively.

Examples
Two examples (Examples 3, 4) are presented in this case,

with the results shown in Figs 9 and 10, respectively. The
number of grid points on the wall, M, is taken as 21, and the
ratio b=d is set at 2 in calculating the CSF. It is shown that
both active and passive earth pressure coef®cients by the
method of CSF differ slightly from those given by Caqout &
Kerisel, while the Coulomb theory either overestimates (Exam-
ple 3) or fails to calculate the passive earth pressure coef®cient
(Example 4). The numerical distribution of earth pressure is
exactly hydrostatic as predicted by the theory of plasticity.

CSF IN THE CASE OF SURCHARGE

The distribution of earth pressures is no longer linear in the
case of back®ll carrying surcharge on its surface. It is impos-

sible in this case to use a single interslice force function with a
common value of parameter m to describe the variation of
inclination of interslice force throughout the whole sliding mass
since no geometrical similitude exists among the critical slip
surfaces of the CSF. However, the CSF can be obtained by
determining each of the critical slip surfaces successively using
the same simulation procedure illustrated in the previous sec-
tions with the moment equilibrium condition altered in consis-
tence with the distribution of earth pressures.

Referring to Fig. 11, the distribution of earth pressures along
the wall is approximated by a series of linear segments with
pressure p1, p2, . . ., pMD at joints 1, 2, . . ., MD. The spacing
of joints is ÄL � L=(MDÿ 1). To each joint, say j, there
corresponds a critical slip surface that produces a lateral force
Pj acting at a distance rj from the joint. It is obvious that

Pj�1 ÿ Pj �
p j�1 � pj

2
. ÄL

Pj�1
. r j�1 � Pj(rj � ÄL)� 1

2
pj . ÄL2 � 1

6
(p j�1 ÿ pj) . ÄL2

Combining the above two equations results in

Pj�1
. r j�1 �

ÄL

3
Pj�1 � Pj(rj �

2
3
ÄL)� 1

6
pj . ÄL2 (13)

p j�1 �
2

ÄL
(Pj�1 ÿ Pj)ÿ pj (14)

r j�1 �
ÄL

3
�

Pj

Pj�1

(rj �
2
3
ÄL)�

pj

6Pj�1

. ÄL2 (15)

The pressure p1 at the top of the wall is identical to the
density of earth pressure in the case of weightless soil with
surcharge q. The value of p1 can be obtained by means of the
numerical procedure in the preceding, or directly by using the
theory of plasticity.

Assuming that the critical slip surfaces through joints 2 to j
have been determined in the previous stages, with values of Pj,
pj and rj obtained, now calculate the critical slip surface
through joint j� 1 and its lateral force Pj�1. Such a surface
can be regarded as the outermost critical slip surface of the
CSF for a wall of oblique height jÄ. The process of calculation
of this intermediate CSF is the same as before, except that the
constants in the moment equilibrium condition (equation (4))
are as follows (referring to equations (3), (4) and (13)):

C1 � ÿ
ÄL

3
. cos ä

C2 � ÿPj(rj �
2
3
ÄL) . cos äÿ 1

6
pj . ÄL2 . cos ä (16)

With the obtained value of Pj�1, the values of p j�1 and r j�1

can be readily calculated from equations (14) and (15), respec-
tively. This process is repeated until the critical slip surfaces for
all joints as well as the corresponding earth pressures are

Slip lines by plasticity theory

q = 100 kPa
Pp = 10628 kNm

Pp

β = 0°, ω = .30°, H = 10 m

φ = 30°, δ = 30°, γ = 0

Fig. 8. PCSF in Example 2
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determined, with all these surfaces constituting the required
CSF.

Examples
Example 5 (Fig. 12) is a combination of Examples 1 and 3,

and Example 6 (Fig. 13) corresponds to Example 2 except that
H � 10 m, ã � 20 kN=m3. The results show that the shapes of
the critical slip surfaces of the CSF, especially the PCSF, are
not of perfectly identical geometry, although identi®cation of
their differences necessitates a close examination. However, the
distributions of earth pressures in both cases presented on the
left-hand side of the ®gure are still approximately linear. There-
fore it is practically feasible to calculate the value of lateral
force and its point of application by assuming a linear distribu-
tion of earth pressures, thus setting MD as 2.

CSF IN THE CASE OF VARYING MOBILISATION OF SOIL

STRENGTH

In the computations of the CSF in the above three sections,
full mobilisation of soil strength is implied anywhere in the
failure region. This corresponds to the translational movement
mode of the wall, as generally assumed in conventional earth
pressure theories. However, experiments have demonstrated that
both the magnitude and the distribution of earth pressures acting
on the wall are highly dependent on the movement mode of the
wall (Fang & Ishibashi, 1986; Fang et al., 1993), where the
mobilisation of soil strength is varied throughout the potential
sliding mass. Current practice typically assumes that the soil
strength along one slip surface (not rigorously critical) is
mobilised to the same degree that is related to the wall move-
ment mode (Chang, 1997). Comprehensive studies in this res-
pect are beyond the scope of the present paper; herein a worked
example is presented merely to show the effectiveness of the

CSF method in considering varying mobilisation of soil strength
throughout the ®eld. Such types of CSF are calculated by using
the same procedure as in the case of surcharge except that each
individual critical slip surface has a different mobilised friction
angle, öm.

Example 7. The mobilised soil strength is assumed to increase
linearly with the depth of the wall. Corresponding to this type of
mobilisation is a possible wall rotation about the top as indicated
in Fig. 14. ACSF and PCSF are presented in Fig. 15(a) and (b)
respectively. The distribution of earth pressures in either the
active or the passive case is no longer linear, and the point of
application of the resultant lateral force is above (or below) the
lower one-third point of the wall in the active (or passive) case.

CONCLUSIONS

In conclusion, the CSF method proves to be an ef®cient tool
for determining earth pressures and the extent of the failure
zone. The concept of the CSF (ACSF in the active case or
PCSF in the passive case) within the framework of the limit
equilibrium approach is derived based on the physical back-
ground. The CSF is such a ®eld in the back®ll that consists of
a family of critical slip surfaces that give maximum (or mini-
mum, as the case may be) values of lateral forces with both
force and moment equilibrium conditions rigorously satis®ed for
the overall sliding masses. The principle of extremum thrust is
proposed according to the recurrence relationship between inter-
slice forces, which is then found to be identical with the
Bellman principle of optimality. A numerical procedure for
simulation of the CSF is developed on the basis of the principle
of extremum thrust combined with the method of slices.

The CSF method is applied to earth pressure problems in
four cases (for simplicity, it is assumed that the back®ll is a
homogeneous cohesionless material carrying a uniform and

(a)

(b)
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β = 0˚, ω = 0˚

φ = 30˚, δ = 30˚

Pa

Ka = 0·307

Ka
C – K = 0·30

Ka
C = 0·297

β = 0˚, ω = 0˚

φ = 30˚, δ = 30˚

K
p
 = 6·580

K
p
C – K = 6·42

K
p
C = 10·095

Fig. 9. CSF in Example 3: (a) ACSF; (b) PCSF
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(a)

(b)
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Fig. 10. CSF in Example 4: (a) ACSF; (b) PCSF
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Fig. 11. Determination of CSF in the case of surcharge
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(a)

(b)
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Fig. 12. CSF in Example 5: (a) ACSF; (b) PCSF
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Fig. 13. PCSF in Example 6

φ
m 

= 20˚

φ
m 

= 40˚

H = 10 m

γ = 20 kN/m3

δ = 20˚

Active case Passive case

Possible mode of wall movement
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vertical surcharge). It is found that the CSF can be in very close
agreement with the closed-form slip lines by the theory of
plasticity, and the numerical values of earth pressures are nearly
identical with the theoretical solutions in spite of their essen-
tially different theoretical backgrounds. It is justi®ed to antici-
pate that the CSF method can still give highly accurate
solutions to earth pressure problems widely encountered in
practice where theoretical solutions are not available.

Furthermore, the CSF method shows promise in accommo-
dating non-homogeneous back®ll materials possessing both fric-
tion angle and cohesion under more complicated loading
conditions.
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APPENDIX 1. CHOICE OF INTERSLICE FORCE FUNCTION

The potential sliding mass is divided into two zones, the Rankine zone
and the transition zone, with a transition ray inclined at an angle ø to the
wall, as shown in Fig. 16. Within the Rankine zone, the failure surface
should be a straight line with a slope of á0 to the x direction, and the
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p
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p
a

2212·8 kPa

22·0 kPa

P
p
 = 8150 kNm
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0·262 H
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Fig. 15. CSF in Example 7: (a) ACSF; (b) PCSF
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inclinations of thrust forces are a constant: that is, è0. Within the
transition zone, the failure surface is of a curved shape and the thrust
force inclinations, è(î), are varied from è0 to ä. The values of ø, è0 and
á0 are determined in the following.
Consider an in®nitesimal region near the top of the wall in which the

in¯uence of soil self-weight can be regarded as negligible. According to
the theory of plasticity (Powrie, 1997), two distinct zones are developed
in this region: zone 1 near the back®ll surface, and zone 2 near the wall,
as shown in Fig. 17(a), assuming that stress discontinuity does not occur.
Now investigate the state of stress within zone 1, which lies between two
conjugate slip lines, A1 and A2, and the ground surface A0, the tractions
of which are indicated in the ®gure. It is well known that the traction on

any plane parallel to the ground surface at an in®nitesimal depth is
inclined at an angle â to its normal in the case of zero surcharge or
vertical uniform surcharge (Terzaghi, 1943).

The state of stress within zone 1 can be represented by a Mohr
diagram, as shown in Fig. 17(b). For simplicity, only the active case is
considered in the Mohr diagram, while the derivations of relevant
equations are applicable to both cases if �ö is replaced by �ö. Thus ö is
used in the following for general cases. The normal and tangential
stresses on planes A0, A1, A2, A3 (parallel to the wall) in Fig. 17(a)
correspond to points A0, A1, A2, A3 in the Mohr diagram in Fig. 17(b),
the pole being at point P. From the geometrical relations in Fig. 17(b), we
have

Fig. 17. Determination of the geometry of division zones: (a) case without stress
discontinuity; (b) Mohr diagram for the state of stress in zone 1 (active case); (c)
case of stress discontinuity: (d) Mohr diagram for locating stress discontinuity line
(active case)
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sinÄ �
BC

CP
�

OCsin â

OC sinö
�

sinâ

sinö
, Ä � arcsin

sin â

sinö

� �

/PCA2 � /OCA2 �/PCO � 908ÿ ö� Äÿ â

/PCA2 � 2 ./CPA2 � /PCA2 � 2(Ö1 ÿ Ä) � 1808

Thus the rake angle of zone 1, Ö1, is expressed as

Ö1 � 458�
ö

2
� 1

2
arcsin

sin â

sinö

� �

�
â

2
(17)

It is obvious that

á0 � 908� âÿÖ1 � ö

Substituting Ö1 from equation (17) leads to

á0 � 458�
ö

2
ÿ 1

2
arcsin

sin â

sinö

� �

�
â

2
(18)

By referring to Fig. 17(b) it can be seen that

/PA3O � /OEPÿ ù � 908ÿ è0 ÿ ù

/PA3O� Ä9�/CPA3 � 1808

/CPA3 � 1808ÿ Äÿ (908ÿ â)ÿ ù � 908ÿ Ä� âÿ ù

These equations result in

Ä9 � è0 � Äÿ â� 2ù (19)

Similar to Ä, Ä9 � arcsin(sinè0=sinö), and substituting into equation
(19) and solving for è0 yields

è0 � arctan

sin arcsin
sin â

sinö

� �

ÿ â� 2ù

� �

1

sinö
ÿ cos arcsin

sin â

sinö

� �

ÿ â� 2ù

� �

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

(20)

Similar to Ö1, Ö2 can be obtained by manipulating the Mohr diagram
for zone 2, as follows:

Ö2 � 458ÿ
ö

2
ÿ 1

2
arcsin

sinä

sinö

 !

�
ä

2
(21)

In the case of Ö1 �Ö2 . 908� âÿ ù, zones 1 and 2 run into each
other, resulting in a stress discontinuity line, that is, S0 in Fig. 17(c). The

Fig. 17. (continued )
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determination of geometrical parameters ç1 and ç2 de®ning the position
of S0 refers to the Mohr diagram in Fig. 17(d) (also corresponding to the
active case for simplicity). The circle with centre C1 represents the stress
state for zone 1, while C2 is for zone 2. According to geometrical
relations:

C1C2 �
R2 ÿ R1

sinö

C1C2 � C1B� C2B � R1 sin(2ç1 ÿ ö)� R2 sin(2ç2 � ö)

S0B � R1 cos(2ç1 ÿ ö) � R2 cos(2ç2 � ö)

ç � ç1 � ç2

ç1 and ç2 are obtained as

ç1 �
ç

2
� öÿ 1

2
arcsin(sinö cosç) (22a)

ç2 �
ç

2
ÿ ö� 1

2
arcsin(sinö cosç) (22b)

where

ç � Ö1 �Ö2 ÿ (908� âÿ ù) (23)

Now returning to Fig. 16, the transition ray is chosen such that it
coincides with plane A2 in Fig. 17(a), or the stress discontinuity line S0
in Fig. 17(c) if stress discontinuity occurs. Therefore

ø �
908� âÿ ùÿÖ1 if ç < 0

Ö2 ÿ ç2 if ç. 0

�

(24)

With ø and è0 known, two forms of interslice force function, FUN1 and
FUN2, are suggested as follows:

è(î) �
è0 � (äÿ è0) 1ÿ

î

ø

� �m

0 < î < ø

è0 î.ø

8

>

<

>

:

FUN1 (25)

è(î) �

è0 � (äÿ è0) 1ÿ
î

ø

� �

� 0:5mö sin 1ÿ
î

ø

� �

ð 0 < î < ø

è0 î.ø

8

>

<

>

:

FUN2

(26)

In more complicated situations, the failure zone may not be divided into
two distinct zones, and two other interslice force functions FUN3 and
FUN4 are suggested to have the forms of FUN1 and FUN2 respectively
within the transition zone:

è(î) � è0 � (äÿ è0) 1ÿ
î

ø9

� �m

ø9 �
ð

2
� âÿ ù FUN3 (27)

è(î) � è0 � (äÿ è0) 1ÿ
î

ø9

� �

� 0:5mö sin 1ÿ
î

ø9

� �

ð

ø9 �
ð

2
� âÿ ù FUN4 (28)

m in these functions is a non-dimensional parameter, which may be
determined by satisfying moment equilibrium condition for the sliding
mass.

APPENDIX 2: DERIVATION OF LIMIT EQUILIBRIUM EQUATIONS

Choose a typical slice to investigate the equilibrium conditions as
shown in Fig. 18. There are ®ve forces acting on the slice:

(a) Wk , the slice weight, its direction passing through the centroid of
the slice. Wk � ãkbk hk , where bk and hk are the width and mean
height of slice k respectively

(b) Qk , the resultant of the surcharge on the ground surface, its point of
action being at the midpoint of the top of the slice. Qk �
qbk cosâ=cos(âÿ ù)

(c) Z kÿ1, the interslice force on the upper slice boundary, its
inclination with respect to the x-axis being èkÿ1 and two
components Z x

kÿ1 and Z y
kÿ1

(d ) Zk , the interslice force on the lower slice boundary, its inclination
being èk ; as will be shown, points of application of Z kÿ1 and Zk

need not be involved
(e) Rk , the resultant of the force on the slice base, its inclination with

respect to the normal to the slice base being ö and its components
Rx

k and R y
k . Rx

k � Rk sin(öÿ ák), R
y
k � Rk cos(öÿ ák), where

ák is the inclination of the slice base with respect to the x-axis.
When the slice width, bk , is suf®ciently small the point of

application of Rk can be assumed at the midpoint of the slice base:
that is, (xk , yk) as indicated in Fig. 18.

Considering force equilibrium in the x and y directions results in the
following two equations:

Rx
k � Z kÿ1 cosèkÿ1 ÿ Zk cos èk � (Wk � Qk) sinù (29a)

R
y
k � Z kÿ1 sinèkÿ1 ÿ Zk sinèk � (Wk � Qk) cosù (29b)

Recalling the relationship between Rk and Rx
k, R

y
k , solving the above

equations simultaneously leads to equations as follows:

Zk �
1

cos(èk ÿ ák � ö)
[Z kÿ1 cos(èkÿ1 ÿ ák � ö)

� (Qk � Wk) sin(ák � ùÿ ö)] (30a)

Zk �
1

cos(èk ÿ ák � ö)
[Z x

kÿ1 cos(ák ÿ ö)ÿ Z
y
kÿ1 sin(ák ÿ ö)

� (Qk � Wk) sin(ák � ùÿ ö)] (30b)

Rk �
1

cos(èk ÿ ák � ö)
[Z kÿ1 sin(èkÿ1 ÿ èk)

� (Qk � Wk) cos(èk � ù)] (31)

Equations (30) represent a recurrence relation between interslice
forces, with which the lateral force, P, can be obtained by computing
interslice forces from the uppermost slice to the last one. Equation (31) is
used to check statical admissibility for the slice considered: that is,
values of ák , èkÿ1 and èk should be such that Rk is a positive value of a
reasonable magnitude in order to avoid numerical dif®culties.

Then consider the moment equilibrium condition for the overall sliding
mass. Because interslice forces, Zk , k � 1, 2, . . ., nÿ 1, cancel out, they
may be excluded from consideration for the overall moment equilibrium.
For slice k, taking moments about O of forces Rx

k , R
y
k , Wk and Qk, the

moment being taken as positive when it produces an anti-clockwise
rotation, the total contribution of these forces is

M (k)(O) � ÿ Rx
k yk � R

y
k xk ÿ (Wk � Qk) cosùxk

� Wk sinù(yk � hk=2)� Qk sinù(yk � hk)

Substituting Rx
k and R y

k from equation (29) and rearranging:

M (k)(O) � Zk(yk cosèk ÿ xk sinèk)

� Z kÿ1(ÿyk cos èkÿ1 � xk sinèkÿ1)

� Wk sinù
hk

2
� Qk sinù . hk (32)
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Fig. 18. Forces acting on a typical slice
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Summing M (k)(O) for all slices and rearranging:

X

n

k�1

M (k)(O) � (yn cos èn ÿ xn sinèn) . Zn

�
X

nÿ1

k�1

[(yk ÿ yk�1) cos èk ÿ (xk ÿ xk�1) sinèk] . Zk

�
X

n

k�1

Wk sinù
hk

2
� Qk sinù . hk

� �

(33)

Noting the following geometrical relations:

xk ÿ xk�1 �
bk � bk�1

2

yk ÿ yk�1 �
bk

2
tanák �

bk�1

2
tanák�1

and Z0 � 0, equation (33) becomes

X

n

k�1

M (k)(O) � Zn

bn

2

sin(án ÿ èn)

cosán

�
X

nÿ1

k�1

sin(ák ÿ èk)

cosák

.
bk

2
�
sin(ák�1 ÿ èk)

cosák�1

.
bk�1

2

� �

. Zk

�
X

n

k�1

Wk sinù
hk

2
� Qk sinù . hk

� �

(34)

Equation (34) may be rewritten in a form of recurrence relation like
equation (30a):

Mk � M kÿ1 �
sin(ák ÿ èk)

cosák

.
bk

2
�
sin(ák�1 ÿ èk)

cosák�1

.
bk�1

2

� �

. Zk

� Wk sinù
hk

2
� Qk sinù . hk (35)

where k � 1, 2, . . ., n; bn�1 � 0; M0 � 0; Mn �
Pn

k�1M
(k)(O). Mk is

de®ned as the interslice moment.

APPENDIX 3. SOLVING FOR PARAMETER m BY USE OF THE

NEWTON±RAPHSON METHOD

Mk , Zk , k � 1, 2, . . ., n, in equations (1) and equation (2) may be
thought of as functions of the parameter m in the interslice force
function. The problem of determination of the value of m is essentially
the solution of the one-variable non-linear equation (equation (4)). The
solution can be approximated successively starting from an appropriate
initial value of m, denoted as m0. In general, assuming the value of m at
the sth stage is obtained as ms, the next value, ms�1, is determined using
the following equation:

ms�1 � ms ÿ
Mn(ms)� C1 Zn(ms)� C2

dM n

dm
(ms)� C1

dZ n

dm
(ms)

(36)

The derivatives dM n=dm, dZ n=dm can be obtained using the following
recurrence equations, which are readily derived by differentiating
equations (1) and (2) respectively with respect to m:

dZk

dm
�

1

cos(èk ÿ ák � ö)
cos(èkÿ1 ÿ ák � ö)

dZ kÿ1

dm

�

ÿ sin(èkÿ1 ÿ ák � ö)Z kÿ1

dèkÿ1

dm

� sin(èk ÿ ák � ö)Zk

dèk

dm

�

(37)

dMk

dm
�

dM kÿ1

dm

�
sin(ák ÿ èk)

cosák

.
bk

2
�
sin(ák�1 ÿ èk)

cosák�1

.
bk�1

2

� �

.
dZk

dm

ÿ
cos(ák ÿ èk)

cosák

.
bk

2
�
cos(ák�1 ÿ èk)

cosák�1

.
bk�1

2

� �

Zk

dèk

dm
(38)

where dèkÿ1=dm, dèk=dm can be calculated if the interslice force
function is speci®ed.
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