
Damping Mechanisms

Adnan Akay* and Antonio Carcaterra†

* Bilkent University, Mechanical Engineering Department, Ankara, Turkey
‡ University of Rome, La Sapienza, Department of Mechanics and Aeronautics,

Via Eudossiana, 18, 00184, Rome, Italy.

1 Linear Response and Damping

Introduction

The term damping is used to describe the means by which oscillation
amplitudes are reduced through irreversible removal of vibratory energy in
a mechanical system or a component. Dissipation, on the other hand, refers
to the mechanism by which irreversible energy transfer, from vibratory to
thermal, takes place. In this sense, damping is a macro-scale manifestation
of atomic-scale dissipation.

High damping is desirable to attain low vibration and noise levels whereas
low damping is desirable for increased sensitivity in sensors and certain pre-
cision instrumentation.

Damping is most obvious at resonance where the stiffness and inertia
forces become equal. As a result, damping is a key factor in predicting
vibration response of structures.

As we will see in the following sections, there are numerous paths to
damping and in a complex structure several means of damping may take
place simultaneously at different locations throughout the structure. Ac-
cordingly, in determining the response of a vibrating structure, the total
effect of all types of damping that may be distributed throughout a struc-
ture must be taken into account.

Measurements of damping normally indicate the total damping a sys-
tem experiences. It is difficult to isolate a component or a subsystem or
a material within a system and measure its damping. In describing the
various damping mechanisms, we will examine each through its effect on a
single-degree-of-freedom (sdof) oscillator.

In this section, we will review the response of a simple oscillator and
examine the role of damping on it and review the basic methods of mea-
surement criteria for damping properties of structures. However, we will
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not consider here the role of damping in dynamic behaviors such as chaos,
stability, etc.

Dissipation of vibratory energy takes place in both fluid and solid me-
dia, initiated by a number of possible macro activities. Accordingly, we
will consider damping methods to reflect the media in which dissipation
takes place when addressing damping methods in the next section. Models
of fundamental dissipation mechanisms that describe energy transfer from
ordered energy to disordered or thermalized energy are briefly summarized
in the last section.

1.1 Simple Harmonic Oscillator

We employ the simple harmonic oscillator as the platform to describe
damping models and measures through its linear response.

Initial Value Problem Equation of motion for free vibrations of an un-
damped sdof oscillator with mass M and stiffness K can be expressed as

Mη̈ +Kη = 0

or in a simplified form
η̈ + ω2

0η = 0

where ω0 =
√
K/M is the natural frequency of the oscillator. General

solution for displacement η can be expressed as

η = A cos(ω0t− φ).

Expressing the initial conditions at t = 0 as η(0) = η0 and η̇(0) = η̇0, we
can write

η0 = A cos(φ) η̇0 = ω0A sin(φ)

and the vibration amplitude in terms of the initial conditions becomes

A =
√
η20 + (η̇0/ω0)2.

Free Damped Motion When damping is proportional to oscillator veloc-
ity, represented by a constant of proportionality C, the equation of motion
becomes:

Mη̈ + Cη̇ +Kη = 0

with a corresponding solution for free vibrations:

η(t) = A e−γt cos(ωdt− φ)



Damping Mechanisms 261

where ωd = ω0

√
1− ζ2 =

√
ω2
0 − γ2 is the damped natural frequency and

γ = C/2M is the decay constant and is related to the damping ratio ζ =
γ/ω0 = C/Cc, which is the ratio of damping constant to its critical value
Cc = 2

√
KM .

For underdamped cases, ζ < 1, response to initial conditions can be
written as

η(t) = e−ζω0t

[
η̇0 + ζω0η0

ωd
sinωdt+ η0 cosωdt

]
.

When γ > ω0, or ζ > 1, ωd becomes complex and oscillations are not
possible and the system is referred as overdamped.

Between these two cases, when γ = ω0 or ζ = 1, the oscillator is consid-
ered critically damped.

Forced Motion Response η of a sdof oscillator to a force F (t) can be
described with:

Mη̈ + Cη̇ +Kη = F (t). (1)

Fourier transforming the motion equation (1) according to

η(ω) =

∫ ∞

−∞

η(t)e−jωtdt

we obtain response equation in the frequency domain:

[−Mω2 − jωC +K] η(ω) = F (ω).

� Harmonic Excitation Response of a simple oscillator to harmonic
excitation F0e

jωt can be expressed in terms of receptance (or compliance)
frequency response function (FRF), H(ω), of the oscillator

η(ω) = H(ω)F0e
−jωt

where
H(ω) =

{
K
[
1− (ω/ω0)

2 − j(2ζω/ω0)
]}−1

.

Frequency response function is the Fourier transform of the impulse response
function and is generally a complex quantity:

H(ω) = |H(ω)| ejΦ

where

tanΦ =
ωC

K − ω2M
=

2ζ(ω/ω0)

1− (ω/ω0)2
.
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Instead of displacement FRF, if we use the velocity FRF, we can write

η̇ = −jωH(ω)F0e
−jωt = Y (ω)F0e

−jωt

where the mobility relates to the impedance expression as Y (ω) = 1/Z(ω).
The relationship between mobility and receptance is

Y (ω) = −jωH(ω) = ω|H(ω)|ejθ

where θ = Φ− π/2, since exp(−jπ/2) = −j.
Similarly acceleration and excitation force are related through acceler-

ance (or inertance) A(ω) = (−jω)2η/F and

A(ω) = −jωY (ω) = ω|Y (ω)|e−jα = −ω2H(ω)

and α = θ − π/2 = Φ− π.

�Impulse or Step Excitation Impulse response of an undamped simple
oscillator can be considered as equivalent to response to an initial velocity
and described as:

h(t) =
1

Mω0
sinωot, t > 0

and when damping is present:

h(t) =
1

Mωd
e−ζωdt sinωdt, t > 0.

�Arbitrary Excitation Response η(t) of a system to an arbitrary exci-
tation can be obtained through a convolution integral of the input F (t) and
the impulse response h(t) of the linear system:

η(t) =

∫ ∞

−∞

F (τ)h(t− τ)dτ =

∫ ∞

−∞

F (t− τ)h(τ)dτ. (2)

However, for the system to be causal, its impulse response also must be
causal:

h(t) = 0 for t < 0.

The causality condition states that response must follow the excitation
and not anticipate or precede it. Invoking causality, the limits of the con-
volution expression given in (2) can be modified as:

η(t) =

∫ t

0

F (τ)h(t− τ)dτ =

∫ t

0

F (t− τ)h(τ)dτ.
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1.2 Causality

The most significant consequence of causality emerges from the Fourier
transform of a causal impulse response function. Causal functions exhibit a
strong linkage between the real and imaginary parts of their Fourier trans-
forms, expressed in terms of Hilbert transform pairs or Kramer-Krönig re-
lations.

The spectrum of h(t), namely the frequency response function H(ω)

H(ω) =

∫ ∞

−∞

h(t)e−jωtdt

must reflect in its spectrum the causal properties of h(t). Accordingly, its
inverse transform must have the following properties (Pierce, 2008):

1

2π

∫ ∞

−∞

H(ω) ejωtdt =

{
0 if t < 0

h(t) if t > 0
. (3)

The frequency response function H(ω) that satisfies the causality con-
dition in Eq. (3), can be obtained by Fourier transforming the h(t) by ex-
pressing its causal property with a unit step, or Heaviside’s, function U(t),

H(ω) = F{h(t)} = F{h(t)U(t)}

which can be expressed as a convolution of the Fourier Transforms of h and
U

H(ω) = F [h(t)] ∗ F [U(t)]

where the Fourier transform of the unit step function is

F [U(t)] =
∫ ∞

−∞

U(t)e−jωtdt =

[
πδ(ω)− j

{
1

ω

}]
.

It is understood that the second term in the brackets is interpreted as a
distribution and when combined with a function its Cauchy principle value
(p.v.) is taken. Substituting in the convolution equation above

H(ω) =
1

2π

∫ ∞

−∞

H(ω′)

[
πδ(ω − ω′)−

{
j

ω − ω′

}]
dω′

H(ω) =
1

2
H(ω)− j

2π
p.v.

∫ ∞

−∞

{
H(ω′)

ω − ω′

}
dω′
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H(ω) = − j
π

p.v.

∫ ∞

−∞

{
H(ω′)

ω − ω′

}
dω′

switching ω and ω′ produces Hilbert transform of H(ω):

H(ω) =
j

π
p.v.

∫ ∞

−∞

{
H(ω′)

ω′ − ω

}
dω′.

Separating the real and imaginary parts of H(ω) yields:

HR(ω) = −
1

π
p.v.

∫ ∞

−∞

HI(ω
′)

ω′ − ω
dω′ (4)

HI(ω) =
1

π
p.v.

∫ ∞

−∞

HR(ω
′)

ω′ − ω
ω′. (5)

These relations between the real and imaginary parts of the frequency
response function represent and assure the causality of the impulse response.
They also show that when the real part of a causal function is known, the
imaginary part can be obtained and vice versa.

Since in vibrations we deal with positive frequencies, the integral in the
Hilbert transform pair (4) and (5) can be re-expressed so long as H has
the property H(−ω) = H∗(ω) that allows us to make the substitutions
HR(−ω) = HR(ω) and HI(−ω) = −HI(ω) in the following derivations:

HR(ω) = −
1

π
p.v.

∫ 0

−∞

HI(ω
′)

ω′ − ω
dω′ − 1

π
p.v.

∫ ∞

0

HI(ω
′)

ω′ − ω
dω′

HR(ω) =
1

π
p.v.

∫ ∞

0

HI(−ω′)

ω′ + ω
dω′ − 1

π
p.v.

∫ ∞

0

HI(ω
′)

ω′ − ω
dω′

HR(ω) = −
1

π
p.v.

∫ ∞

0

HI(ω
′)

(
1

ω′ + ω
+

1

ω′ − ω

)
dω′

HR(ω) = −
2

π
p.v.

∫ ∞

0

HI(ω
′)

(
ω′

ω′2 − ω2

)
dω′. (6)

Similarly,

HI(ω) =
2

π
p.v.

∫ ∞

0

HR(ω
′)

(
ω

ω′2 − ω2

)
dω′. (7)

The last two equations (6) and (7) are known as the Kramers-Krönig
relations that are used to describe causal impulse response functions (viz.,
Waters et al., 2005).
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1.3 Damping Measurement Criteria

Since damping can only be measured indirectly by observing the response
of a system, we review below the different means by which damping can be
characterized. This section also introduces the terms commonly used in
association with damping in vibrating systems. For example, in elastic
systems, a measure of damping during time-dependent or cyclic motion is
defined as the dissipated part �W of total elastic energy stored, W , during
one cycle. Their ratio is called the specific damping ratio

Ψ =
�W
W

and the corresponding loss factor is defined as

χ =
Ψ

2π
=

1

2π

�W
W

.

As described later, loss factor is related to the Q-value as:

χ =
1

Q
.

Logarithmic Decrement Logarithmic decrement method is used in con-
junction with decaying free vibration response of an oscillator taking advan-
tage of the exponential nature of the response envelope as described in the
transient or complementary solution expressions above:

η(t) = Ae−γt cos(ωdt− α).

Again, the quantity γ = C/2M is the decay constant and its inverse is
the decay time, τ . Hence, the amplitude variation depends on time expo-
nentially, exp(−t/τ).

The relative change of the amplitude in one period is called the logarith-
mic decrement, δ, which describes the rate of decay

δ = γTd = γ2π/ωd = (πC/ω0M)(ω0/ωd).

Logarithmic decrement is also related to the damping ratio or damping
factor ζ:

δ =
2πζ√
1− ζ2

and for very small values of ζ << 1

δ ≈ 2πζ.
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Logarithmic decrement is determined by measuring the response at two
maxima on its envelope that are apart by one or more periods:

δ =
1

n
ln
η(0)

η(n)

where n is the number of periods between the measurement positions with
amplitudes η(0), η(n) measured at times t = t0, tn, respectively.

η(t)

η(0)

η(n) t

Figure 1. Logarithmic decay of amplitude of damped vibrations of a sdof
oscillator.

Quality Factor Damping values can be directly obtained from the fre-
quency response functions. Normalizing the displacement amplitude of a
harmonically forced oscillator with the static displacement ηst gives:∣∣∣∣η(ω)ηst

∣∣∣∣ = 1√
[1− (ω/ω0)2]2 + 4ζ2(ω/ω0)2

where ηst = F0/K.
From the response measurements, the maximum amplitude is measured

at approximately ω ≈ ω0 [
|η(ω)|
ηst

]
max

≈ 1

2ζ
= Q

resulting in the Q-value. Quality Factor of the system, which is inversely
related to the damping factor ζ, can now be directly measured from the
FRF.
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Using Q-value to determine amplitude is useful when damping is low and
the resonant amplitudes are high. In frequency response plots, bandwidth
of the resonance at half-power points provide another measurement method.

Frequency Response & Half-Power At half power points in an FRF,
we can write

Q√
2
=

1

{[1− (ω/ω0)2]2 + 4ζ2(ω/ω0)2}1/2
=

1

2
√
2ζ
.

Expanding the denominator

(ω/ω0)
4 − (ω/ω0)

2(2− 4ζ2) + (1− 8ζ2) = 0

produces the roots:

(ω1/ω0)
2 = 1− 2ζ2 − 2ζ

√
1 + ζ2

(ω2/ω0)
2 = 1− 2ζ2 + 2ζ

√
1 + ζ2.

For small values of damping ratios, such that ζ < 0.05

(ω1/ω0)
2 ≈ 1− 2ζ

(ω2/ω0)
2 ≈ 1 + 2ζ.

Subtracting these equations

ω2
2 − ω2

1 = 4ζω2
0

(ω2 − ω1)2ω0 = 4ζω2
0 .

Then the damping ratio follows as

ζ =
�ω
2ω0

where �ω = ω2 − ω1 is the bandwidth at half-power points. Effect of
damping on displacement amplitude is illustrated in Fig. (2) with transfer
functions for different damping values.

There are numerous other approaches to measure and quantify damping
in materials and mechanical systems such as using Nyquist plots and Bode
plots that can be found in the literature (viz., Mead, 1998; Nashif et al.,
1985).
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Figure 2. Frequency response function of a SDOF oscillator for different
damping values.
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2 Damping in Structures

Vibratory energy is dissipated in structures through numerous damping
mechanisms. Several such damping mechanisms may take place simultane-
ously in a complex a mechanical system, or even in a simple component.
The total damping that characterizes a system is a combination of energy
dissipation effected by different mechanisms throughout the structure.

Damping mechanisms addressed here can be considered largely in three
categories according to their fundamental mode of energy dissipation:

• dissipation within a solid,

• dissipation within or to a fluid medium, and

• dissipation at the interfaces between solids or between a solid and a
fluid.

Some of the damping mechanisms described below are common to almost
all systems and yet others are more specific to operating conditions and
even length scales involved, particularly in cases of design and manufacture
of MEMS and nano-scale devices.

2.1 Dissipation within Solids:

Material or Internal Damping

Internal or material damping refers to inherent energy dissipation dur-
ing cyclic motion or deformation of a material. The kinetic energy is ir-
reversibly converted to thermal energy through one or more mechanisms.
These mechanisms are associated with the internal structure of the material
and have different length scales, such as those associated with dislocations,
grain boundaries, or atomic motion. Internal damping also refers to those
dissipations that arise from thermal, electronic and magnetic fields in the
materials. As such, effectiveness of internal damping mechanisms range over
different temperatures and frequencies.

Internal damping properties of materials can be enhanced by changing
the molecular structure of the materials, or by, using alloys and viscoelastic
materials. For example, carbon in cast iron is known to increase its damping
properties. In the case of composites, however, macroscopic modification of
the material structure provides for increased damping properties. Various
fiber enhancements and foam-type structures are other examples.

In engineering, internal damping is generally characterized by a single
value and, where appropriate, with frequency and temperature dependence.
Internal damping is, in fact, an aggregate of energy dissipation due to nu-
merous microscopic sources and mechanisms in a material.

This section attempts to delineate and explain some of these fundamen-
tal mechanisms of energy dissipation in types of solids that are of interest
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in structural vibrations, namely anelastic and viscoelastic materials. We
exclude here nonlinear elasticity and plasticity and consider linear elasticity
to explain the anelastic properties.

Ideal (linear) elasticity assumes an instantaneous relationship between
stress and strain with a unique equilibrium value and a perfectly reversible
deformation, i.e., with a complete recovery. On the other hand, anelasticity
exhibits the same properties of recoverability and linearity but without the
instantaneous response. In an anelastic material, a unique equilibrium value
of strain corresponds to every stress (and vice versa), but the equilibrium
is reached after a finite time rather than instantaneously. In viscoelasticity,
in addition to time dependence, the initial equilibrium is not completely
recoverable.

Anelastic solids, also described as thermodynamic solids, reach a ther-
modynamic equilibrium in response to a change in applied external forces.
Through self-adjustment the solid reaches the new equilibrium through a
process called as anelastic relaxation, which takes place a over period of
relaxation time. For instance, when a constant stress is applied, anelastic
relaxation manifests itself as a time-dependent (or frequency-dependent)
equilibriation of strain and vice versa. This external manifestation of anelas-
ticity reflects the thermodynamic equilibriation of internal variables in the
solid. In this manner, for each stress level, a strain relaxation develops
in conjunction with a new internal equilibrium of the solid. In anelastic
solids the stress and strain relationship has different moduli corresponding
to the initial and new equilibria and such a change in the modulus requires
a transport process, for example, of atomic migration, dislocation displace-
ments, grain boundary sliding, and phase transformations as well as thermal
relaxation all of which lead to anelastic behavior.

Thermodynamic damping is the most fundamental internal damping
mechanism as it can develop without the presence of material inhomo-
geneities. In the presence of material inhomogeneities, other peaks with
respective Lorentz distributions appear. Among these, Zener peaks re-
fer to dislocation relaxation, Bordoni peaks describe grain boundary re-
laxation, and Snoek peaks refer to defect pair reorientation. Presence of
multiple such relaxation times may lead to multiple or broadened Debye
peaks (Lifshitz and Roukes, 2000).

A three-parameter solid is used commonly to describe thermoelastic
damping or thermoelastic relaxation of materials, which is referred as Zener
model or standard linear solid. The Zener model consists of either a Maxwell
model (spring and damping elements in series) parallel to another spring
or a Voigt element (spring and damping elements in series) in series with
another spring. Such models are found to effectively represent anelastic
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material behavior.
In what follows, we summarize the derivation of relaxation relations

with Zener’s anelastic solid model based on the thermodynamic model men-
tioned above. The resulting expressions describe dissipation due to inho-
mogeneities in a material, representing thermoelastic damping.

The thermoelastic damping expression has the form of a Lorentz dis-
tribution, with a maximum sometimes called the Debye peak, magnitude
of which is the relaxation strength and the peak frequency corresponds to
the inverse of relaxation. Different anelastic relaxations have different fre-
quencies and temperature dependence. When multiple peaks develop, their
effects are superposed.

2.2 Zener’s Anelasticity Model

A homogeneous material subject to homogeneous stress undergoes ther-
mal relaxation through heat exchange with its environment. However, if
the stress or strain field is inhomogeneous, the resulting temperature gra-
dients can lead to thermal relaxation through internal flow or ‘‘thermal
currents’’ to reach new equilibrium from one part of the material to another
(Nowick and Berry, 1972). Such coupling between stress fields and thermal
fields in a solid gives rise to thermoelastic damping. Thermoelastic coupling
is quantified by thermal expansion coefficient, α, as the coupling constant.
Thermal expansion, change in strain due to change in externally applied
temperature and the converse, and thermoelastic effect that describes small
changes in temperature due to isentropic changes in dilatational stress are
examples of thermoelastic coupling.

Thermoelastic effect can be considered by combining strain induced by
temperature change with that obtained under pure elastic conditions, by
considering strain to depend only on stress, σ, and temperature, T ,

ε =
σ

ER
+ α�T (8)

where ER is the relaxed or isothermal modulus, α represents the linear
thermal expansion coefficient, and �T is the deviation from standard tem-
perature (Zener, 1948).

The variation in temperature,�T , is caused by either diffusion or change
in strain. Temperature change caused by diffusion (or equalization or re-
laxation) of thermal fluctuations, can be approximated by

(
d

dt
�T
)

diffusion

= −1

τ
�T (9)
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where τ is the relaxation time. Relaxation time may have different values
depending on the stress and strain restrictions imposed. For example, τε
represents the relaxation time for stress relaxation and temperature relax-
ation under constant strain. Analogously, a relaxation time τσ is defined
for strain relaxation and temperature relaxation under constant stress. Just
as an increase in temperature leads to an increase in length, an adiabatic
increase in length leads to a decrease the temperature:(

d

dt
�T
)

adiabatic

= −γε̇ (10)

with γ = (∂T/∂ε)adiabatic. Combining the two mechanisms of temperature
change in (9) and (10), we have:

d

dt
�T = −1

τ ε
�T − γε̇. (11)

Isolating �T from the coupled equation (8) and substituting it and its
derivative in equation (11) above eliminates �T and leaves us with the
stress-strain relationship:

ER ε+ EU τε ε̇ = σ + τε σ̇ (12)

where the unrelaxed modulus is

EU = (1 + αγ)ER.

Rewriting Eq. (12) leads to an expression:

σ + τεσ̇ = ER(ε+ τσ ε̇) (13)

which describes the deviation from an elastic (Hook) solid into an anelastic,
or standard, solid described by Zener (1948).

The relationship between τσ and τε can be obtained by integrating both
sides of (13) over a very small time δt, which yields∫ δt

0

(σ + τεσ̇)dt = ER

∫ δt

0

(ε+ τσ ε̇)dt. (14)

The first term on each side of (14) vanishes as δt→ 0 leaving

τε�σ = ER τσ�ε.

In this case, the relation between the changes in stress and strain take place
over such a short time that there is no time for relaxation to take effect and
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the relationship between them, an adiabatic process, is through an unrelaxed
elastic modulus, EU as

�σ = EU �ε
and

τσ
τε

=
EU

ER
. (15)

Deviation of the ratio in (15) from unity indicates relaxation of stress or
strain.

Assuming ε = ε̇ = 0, equation (13) becomes:

σ + τεσ̇ = 0

with the solution
σ(t) = σ0e

−t/τε

where σ0 = σ(0). When an initial strain ε0 is suddenly applied at t = 0,
the relaxation of stress follows

σ(t) = ERε0 + (σ0 − ERε0)e
−t/τε .

After the relaxation is completed, the relationship is simply σ(t) = ERε0
and, hence, the modulus is the relaxed elastic modulus. Analogously, for a
suddenly applied stress σ0, the corresponding strain time history becomes
(Beltzer, 1988)

ε(t) =
1

ER
σ0 +

(
ε0 −

1

ER
σ0

)
e−t/τσ .

Substituting harmonic excitation and response expressions

σ(t) = σ0e
−jωt and ε(t) = ε0e

−j(ωt−φ)

in the anelastic solid expression (13) yields:

σ0 =
1− jωτσ
1− jωτε

ER ε0 = Eε0. (16)

The angle by which strain lags behind stress is a measure of internal friction:

tanφ = Q−1 =
�{E}
�{E} =

ω(τε − τσ)

1 + (ωτε)(ωτσ)

which can be simplified as a Lorentzian distribution:

tanφ =
ER − EU

Ē

ωτ̄

1 + (ωτ̄)2
(17)
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with the geometric means: τ̄ =
√
τστε and Ē =

√
EREU . The first part of

the internal loss expression (17) represents the relative difference in relaxed
and unrelaxed elastic moduli and the second part represents its frequency
dependence. The relative difference of the moduli is defined as the relaxation
strength

�E =
ER − EU

Ē
.

The loss in Eq.(17) has a maximum value at ωτ̄ = 1:

(tanφ)max = Q−1
max =

1

2
�E .

The magnitude of the complex modulus E in (16), the ratio of stress to
strain, is expressed as:

|E| = 1 + ω2τ2σ
1 + ω2τστε

ER = EU −
EU − ER

1 + ω2τ̄2

for which approximate values are expressed for low and high frequencies as
(Beltzer, 1988):

EU − |E| =
EU − ER

(ωτ̄)2

tanφ =
EU − ER

Ē (ωτ̄)

⎫⎪⎪⎬
⎪⎪⎭ ωτ̄ � 1

|E| − ER = (EU − ER) (ωτ̄)
2

tanφ =
EU − ER

Ē
(ωτ̄)

⎫⎬
⎭ ωτ̄ � 1

which can be further simplified as:

|E| =
{
EU ωτ̄ � 1

ER ωτ̄ � 1
.

2.3 Thermoelastic Damping

It is known that a homogeneous material under homogeneous stress can
undergo thermal relaxation only by heat exchange with its surroundings
since there is no other heat flux path. However, if the stress field changes
periodically, as it does during vibration, it gives rise to periodic changes in
temperature, even if the material is homogeneous, resulting in temperature
gradients. Heat flux due to temperature gradients lead to increase in entropy
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indicating an increase of internal energy by reducing mechanical energy
(Zener, 1940).

Thermoelastic damping that develops during vibration of a homogeneous
system has been calculated for transverse and longitudinal waves by com-
puting the values for relaxation strength and relaxation time. An example
of thermoelastic damping is given for a beam of thickness h that vibrates
in flexure at a frequency f (Zener, 1937, 1938)

Q−1(f, T ) = �T
f · f0
f2 + f2

0

which has the same functional form as a Lorentz distribution and a Debye
peak as a function of frequency given by:

f0 =
πkT

2h2ρCp

where ρ is the density and Cp is the specific heat capacity under constant
pressure or stress and the relaxation strength is defined as

�T = α2EUT

ρCp
.

The relaxation time, in terms of the Debye peak frequency, f0, is

τT = 1/2πf0 = h2/π2Dth

with the thermal diffusivity Dth = kT /ρCp and kT is the thermal conduc-
tivity. These relations are used in various forms to determine thermoelastic
damping in mechanical systems, particularly in micro- and nano-mechanical
systems where it can have a significant influence.

2.4 Viscoelastic Damping

The basic relations between stress and strain no longer hold through a
simple proportionality of a modulus for linear viscoelastic materials under a
time-dependent stress and strain. Compared with a completely recoverable
behavior of an anelastic solid, viscous and viscoplastic properties describe
nonrecoverable behavior and viscoelasticity falls in between and may have
both recoverable and nonrecoverable parts. Such a partially recoverable
behavior can be modeled using a four-parameter model that consists of
a Voigt model in series with a spring and a damping element, which is
commonly used to describe viscoelastic behavior. Origin of such models
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may be explained through a partial differential equation of arbitrary order
(Nowick and Berry, 1972).

a0σ+a1
∂σ

∂t
+a2

∂2σ

∂t2
+ · · ·+an

∂nσ

∂tn
· · · = b0ε+b1

∂ε

∂t
+b2

∂2ε

∂t2
+ · · ·+bn

∂nε

∂tn
· · ·

This differential stress-strain equation can be used to express most of the
complex relationships for a viscoelastic material.

For example, by keeping only a0 and b0, it describes an elastic solid:

σ = Eε

or, keeping a0 and b1 and setting other coefficients to zero produces New-
ton’s law of viscosity with the coefficient of viscosity η0:

σ = η0

(
∂

∂t

)
ε.

The Voigt model that is commonly used to describe viscoelastic solids has
a spring and a dashpot with a0, b0, b1

σ =

[
E + η0

(
∂

∂t

)]
ε = Eε+ η0 ε̇.

The anelastic solid described earlier has an additional spring term that
makes it a Voigt model in series with a spring:

σ + τε σ̇ = ER ε+ EU τε ε̇.

where the relaxation time τε and the relaxed and unrelaxed elastic moduli
ER and EU are those described earlier.

2.5 Friction Damping

Miscroslip vs. Sliding Friction or contact damping refers to conversion
of the kinetic energy associated with the relative motion of two surfaces in
contact to thermal energy. Contact stresses generate inhomogeneous stress-
strain fields on and near the surfaces leading to temperature gradients and,
thus, transport of thermal energy from the contact areas.

Contacts that generate friction damping can be characterized by the
relative motion between the surfaces: microslip and sliding. When contact
is between nominally conforming surfaces that do not have a relative rigid-
body motion, contact behavior is sometimes described as micromotion or
microslip, and may not reach slip or sliding conditions. Friction remains
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more or less in the “static” range and is associated with the tangential
stiffness of the contact zone. Examples of microslip can be found in bolted
or riveted joints, braided wire ropes, and inserted gas turbine blades.

When the contacting surfaces have a relative whole-body motion as in
the case of brakes, damper rings in gears, and Lanchester dampers, full
slip can develop between the surfaces. In such cases, friction damping has
a preferred range of normal contact force within which it becomes most
effective. Below such an optimum normal force, excess relative motion at the
interface develops without significant energy dissipation. Above it, excess
pressure inhibits the relative sliding motion for friction to act as an effective
damper (Akay, 2002).

The simplest case to illustrate the effects of friction on vibration is an
oscillator with a friction damper as represented in the following equation of
motion (Den Hartog, 2013):

mẍ+ kx = F0 cosωt− μNsgn(ẋ).

Action of a friction damper on a simple oscillator is analogous to the fluid
damper where the drag force acts against the direction of motion of the
oscillator. There is rich literature on the dynamic response of systems in
the presence of sliding friction including on the damping effects of friction
(viz., Dowell and Schwartz, 1983b,a; Dowell, 1986, 1983).

Focusing on microslip or quasi-static contact damping, knowledge of
friction characteristics is necessary to predict its damping effects, much like
any other dynamic problem that involves friction. However, this knowledge
is normally obtained through measurements, since we do not yet have an
acceptable model of friction that is based on first principles.

Friction damping that develops during microslip, by necessity, is asso-
ciated with the tangential stiffness between the contacting surfaces. The
tangential forces that develop not only resist relative motion but effectively
change the boundary conditions and the resonant frequencies in the struc-
ture and thus lead to nonlinearities in the response.

Considering a simple oscillator with friction force resisting its motion,
its motion can be described by:

mẍ+ cẋ+ kx = f0 cosωt− fμ(t)

where the nonlinear friction force is approximated by a spring and a viscous
damper acting in the direction of motion

fμ(t) ≈ kex+ ceẋ

where ke and ce represent the effective values of stiffness and damping,
respectively, and are found from measurements (Filippi et al., 2004).
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Granular Damping Granular damping, or particle damping, in vibra-
tions refers to absorption of waves or oscillations through the use of a col-
lection of particles or granular materials. Granular materials are known to
provide effective means of dissipation of vibratory energy largely through
inelastic collisions and friction among the granules.

Physical properties of individual granular materials very much differ
from their ensemble properties in terms of elasticity and dissipation. The
collective behavior is governed not only by the physical properties of indi-
vidual grains but also through their interactions with each other and the
manner by which the ensemble is contained. These parameters include fric-
tion between the particles, filling factor or packing force, shape of the device
in which they are contained and frequency and amplitude of the vibrations
to which they are subjected. Based on these factors, the collective behav-
ior of granular particles may be a plug-like solid, a fluid, or a gas, each
phase having different dissipation characteristics. Elastic particles, such as
ball bearings, absorb vibration energy effectively only when exposed to a
vibration field collectively, similar to the so-called beanbag absorbers. Al-
though each ball bearing may rebound upon impact on an elastic solid,
when collected in a flexible container such as a bag, they behave inelasti-
cally, due to friction among the particles and due to diffusion of their energy
(Jaeger et al., 1996).

Packing force of granular materials in a rigid container determines their
density and, thus, directly affects their collective behavior. Very high pack-
ing forces can severely limit relative motion among the grains and thus
reduce damping effectiveness.

2.6 Damping in Fluid Media

Radiation Damping Radiation damping describes a broad range of damp-
ing effects such as those associated with gravitational fields, quantum me-
chanics and optics, but we focus here on radiation damping effects on en-
gineering structures. Radiation damping is a term also used in connection
with civil engineering piles and footings to describe soil-structure interac-
tion.

Radiation damping of a structure refers to energy lost from a vibrating
surface through sound radiation. As a simple demonstration, we consider a
sdof oscillator in a waveguide with the usual properties K,M excited by a
harmonic force F0e

iωt such that 2πc/ω > D, where c is the speed of sound
and D is the diameter of the duct, so that radiation can be assumed to be
a plane wave. Since the pressure acts on the mass against its surface, the
forces arising from radiation have opposite signs and add together to form
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the total acoustic radiation force and can be expressed as

Fa = 2π(D2/4)ρc η̇

where ρ is the density of the fluid medium in the duct, and η represents
the displacement of the oscillator. The equation of motion for the oscillator
then becomes

M
d2η

dt2
+ (πD2/2)ρc

dη

dt
+Kη = F0e

iωt.

The harmonic solution yields a compliance expression:∣∣∣ η
F

∣∣∣ = 1√
(K −Mω2)2 + (πD2ρcω/2)2

.

We note here that radiation damping is frequency dependent, which be-
comes significant in cases of radiation damping that involves higher-order
systems, such as plates and beams that have their own modal and critical
frequencies.

The rather straightforward approach and the expression described above
takes a more complicated form in the case of more complex structures. Since
radiation damping results from loss of energy radiated into the adjacent
medium, its prediction requires modeling vibrations of the structure cou-
pled with the medium. In media such as air, radiation damping from heavy
machinery may be negligible whereas in water or soil, it is more significant.
The fluid-structure coupling determines both the frequencies and magni-
tude of damping due to radiation. Although approximate expressions are
available, more complete expressions for damping require solution of the
coupled equations.

By defining a damping factor for radiation damping as the ratio of acous-
tic energy radiated to the maximum kinetic energy stored per cycle of vi-
bration in such a structure, an approximate value can be given for the first
mode of a rectangular plate with fixed edges as (Mangiarotty, 2005; Mead,
1998):

δac = 1.155X10−5 ρ0
ρm

√
E

ρm

(
N +

1

N

)
where N = a/b is the ratio of its length to width and ρm and E are the
material elastic properties and ρ0 is the density of the fluid medium. For a
simply-supported panel a similar result is given as:

δac = 1.155X10−5 ρ0
ρm

√
E

ρm

(
N2 +

2

3
+

1

N2

)1/2

.
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We note that acoustic damping factor of a given material in these expres-
sions depends on the density of the medium and the ratio of its length to
width of the plate.

Fluid Damping - Drag Different from radiation damping, fluid damping
refers to energy lost through drag forces on a solid body moving in a fluid.
The fundamental mechanisms may involve vortex shedding, but not always.

Drag force FD is proportional to the square of the relative velocity and,
thus, is dominant at high relative velocities and may be negligible at low
velocities. Drag force is also proportional to the density of the fluid medium
and to the cross-sectional area of the body facing the flow:

FD = −cDS
(
1

2
ρv2
)
.

The drag coefficient cD depends on the shape of the body and usually found
empirically. Because drag force acts against the relative motion, it is usually
accompanied by a sign switching function that depends on the direction of
velocity v. For a unidirectional motion, drag force is:

FD = −cDS
(
1

2
ρv2
)
sgn(v).

The corresponding equation of motion for a simple oscillator becomes:

mẍ+
1

2
cDρS ẋ

2 sgn(ẋ) + kx = 0.

Analogous to the dry friction problems, the above equation can be ex-
pressed to obtain the phase plane for (x, ẋ) by a first-order differential equa-
tion for ẋ2:

dẋ2

dx
+

1

2

cDρS

m
ẋ2 sgn(ẋ) = −2 k

m
x.

Examples of its solution can be found elsewhere (Kneubühl, 1997).
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Squeeze-Film or Fluid-Film Damping

�Air-Film Dampers It is known that when two plates are brought in
close contact with each other (for example, through spot-welding), the vi-
brational damping rate and the attenuation of radiated sound from the
plates are markedly enhanced. This method of vibration damping and noise
reduction can be used effectively in several applications where standard vis-
coelastic layer damping cannot be used, such as in hostile chemical environ-
ments and/or at high temperatures. For example, vibrations of combustion
chambers can be reduced by applying patches of metal plates at strategic
locations on the chambers. Other applications include damping of vibra-
tions in centrifugal separators and circular saw blades. In the latter case,
damping can be obtained by means of the thin air layer between the blade
and a rigid block placed in close proximity of the blade (Meins, 1963; Allen,
1977). They are particularly useful to reduce vibration of moving devices,
such rotating shafts.

The principle of operation is based on the motion of fluid in a narrow gap
between a moving vibrating surface and a fixed one. As the moving surfaces
oscillate toward and away from the fixed surface, pressure in the fluid layer
periodically increases and decreases, squeezing the fluid out and pulling it
back in, respectively. When the layer thickness is small, fluid motion is
largely normal to the oscillation direction and parallel to the surfaces. The
energy required to pump the fluid either through its edges or from a region
of compression to a region of rarefaction under a vibrating plate is supplied
by the motion of the plate and results in the damping of its motion.

The flow impedance per unit length of a thin film of fluid with density
ρl can be expressed as (Morse, 1986; Ingard and Akay, 1987)

Z = R+ jX = −jωρl/(1− F )

with
F (x) = x(1 + j) tanh[(1− j)/2x]

where x = dν/D is the ratio of viscous boundary layer and fluid layer
thickness. Approximate expressions of F are given as:

F (x) ≈
{
(1 + j)x x << 1

1 + (j/6x2)− (1/30x4) x >> 1

with these values the flow impedance becomes:

Z =

{
ρlω [(dν/D)− j] dν/D << 1

ρlω
[
12μ/D2 − j(1.2ω)

]
dν/D >> 1
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where μ is the viscosity of the fluid.
At very low frequencies, where traditional damping techniques are not

as effective, flow resistance per unit length becomes R = 12μ/D2 and the
corresponding damping factor for bending vibrations of a plate takes the
form:

δ ∼ (λ/D)(λμ/D2)(1/ω0m)

where λ represents the bending wavelength of the plate with mass m per
unit length vibrating at frequency ω0.

Q-value of the plate due to fluid layer damping is obtained as

Q = ω0mD
3/μλ2.

Further damping can develop from acoustic streaming that develops in
a squeeze film between two flat surfaces. Beyond a certain oscillation fre-
quency and amplitude combination, in addition to the periodic flow in and
out of the layer edges, continuous streams develop changing the flow pattern
in the layer (Akay and Xu, 1998).

2.7 Other Fluid Damping Mechanisms

It is worth mentioning other fluid damping mechanisms details of which
can be found in literature.

�Couette Flow Damping Similar to squeeze film damping but the sur-
faces move parallel to each other developing a unidirectional flow. Its effects
on MEMS devices continue to be of interest.

�Damping in Porous Materials: Biot Damping Named after M.
A. Biot who developed the theory of mechanics for porous media, Biot
damping describes dissipative effects of a material with fluid-filled pores
(Biot and Tolstoy, 1992). Damping in porous materials results from a com-
bination of the damping in the solid porous structure, the fluid that sat-
urates it, and the relative motion at the interface of the two (Göransson,
2006). The skeleton of the porous solid carries the stress waves as the acous-
tic pressure waves propagate through the fluid medium. The configuration
and properties of the porous material and the fluid pressure influence the
energy balance between the two media and thus the resulting dissipation.
Biot damping is particularly significant in sound transmission and soil con-
solidation problems in geophysics.
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�Aerodynamic & Hydrodynamic Damping Aerodynamic damping
is commonly used in connection with wind effects on structures such as
buildings, airplanes, and cables. The forces generated by wind may attenu-
ate vibrations but more commonly induce vibrations and instability. When
the wind forces cause instability, they are described as negative damping
forces. In aerodynamics, terms pitch-, yaw-, and roll-damping refer to mo-
ments due to differential forces rather than dissipation of energy.

Similarly, hydrodynamic damping used in describing motion of marine
vessels, typically consist of any combination of radiation damping into the
fluid medium, viscous damping and its contributions to turbulent bound-
ary layer, the so-called wave drift damping that describes added resis-
tance due to waves in sea, and damping that results from vortex shedding
(Kareem and Gurley, 1996).

�Damping with Magnetorheological & Ferro Fluids Effective vis-
cous and stiffness properties of a fluid, such as oil, can be adjusted as desired
when mixed with ferrous particles and subjected to magnetic field. Magne-
torheological (MR) fluids refer to liquids with micron-size particles unlike
ferro fluids (FF) which contain nano-sized particles. The ability to con-
trol their physical characteristics allows their use as lubricants, seals and
dampers, for example.

Damping Materials and Devices Choice of damping treatment is gov-
erned by the amount of vibration energy to be dissipated and by the oper-
ating conditions under which a damping treatment is used. Environmental
conditions with hazardous chemicals or extreme temperatures may prohibit
use of some of the treatments.

The basic mechanisms of dissipation are utilized in many different forms
as mentioned above. In addition, use of tuned dampers, impact dampers,
pendulum dampers also dissipate energy largely through momentum ex-
change between moving parts and the dissipation mechanisms within them.
One can consider sloshing fluids in the same category.
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3 Dissipation Mechanisms

Dissipation refers to conversion of kinetic energy associated with motion,
oscillations or waves to heat, which is described as the thermalized oscil-
lations of molecules of the medium in which the propagation takes place.
Whether in a solid or a fluid, the conversion process leads to an increase
in the kinetic energy of the molecules in the medium. In this sense, dis-
sipation describes the conversion of ordered kinetic energy at macroscopic
scale to disordered kinetic energy at the molecular scale. As described in
the previous section, damping models contain empirical constants that de-
scribe dissipation through, for example, viscosity, coefficient of friction, or
material losses in solids.

Modeling dissipation based on first principles, requires knowledge of the
heat capacity of the medium, which describes the increase in its internal
energy per unit temperature. The various damping mechanisms described
earlier involve some form of external excitation that leads to an increase in
internal energy of the medium. Since internal energy is proportional to the
average kinetic energy of its molecules, understanding the dynamic response
of molecules and accurate prediction of their behavior constitutes a key to
modeling dissipation.

Dissipation is fundamentally a nonlinear process during which energy
transfer takes place irreversibly (viz., Çelik and Akay, 2000). The first-
principles based quantitative models that can accurately predict dissipation
await further advances in molecular dynamics simulations. However, quali-
tative relationships exist for thermal energy at the molecular scale in terms
of average kinetic energy of molecules. Simulation studies that consider
solids as a set of oscillators in a lattice have been continuing since the intro-
duction of the FPU problem (Fermi, Pasta, and Ulam, 1955; Ford, 1992).
Simulations invariably assume that the vibrations of molecules are in ther-
mal equilibrium, or “thermalized,” such that all states of the molecules have
equal probability of having equal energy. As a result, investigations of ther-
malization process look for conditions leading to energy equipartitioning.
Chaotic response of, say, molecules in a lattice describing a solid, is consid-
ered by some as the indicator of thermalization. Later the KAM theorem
explained the role of nonlinearities in such models indicating that not all
nonlinearities lead to thermalization of their oscillations (Kolmogorov, 1979;
Arnol’d, 1963; Moser, 1962; Salamon, 1986).

Notwithstanding the nonlinearity of a dissipation process at molecular
level, linear dissipative media have long been modeled with a set of indepen-
dent linear oscillators. In most of these approaches, a dissipative property
emerges from the collective behavior of an ensemble of independent linear
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oscillators. Such models have been developed to describe, for example, Lan-
dau damping, dissipation in Langevin equation, and virtual damping due
to phase diffusion.

A final point to note about these models is that the linear oscillators
describing a dissipative environment must have a continuous distribution
and, by implication, the number of oscillators is very large, reaching infinity.
Models based on such requirements fall short of describing conditions where
the oscillator numbers are not necessarily very large. Special cases when a
finite number of linear oscillators can be used to describe dissipation of a
medium with near irreversibility is also described later in this section.

3.1 Linear Modeling of Dissipative Systems

In its most fundamental form, classical or quantum dissipation can be
considered as an interaction of a particle with its environment. An approach,
first introduced by Feynman and Vernon (1963), is to model the environment
as a continuous set of non-interacting, linear independent oscillators into
which energy flows from the particle of interest. Presumption of infinite
number of linear oscillators in the environment permits irreversible energy
flow into it, which then acts as an energy sink as briefly summarized below.

Motion for a harmonically bound particle of massM and spring constant
K, with N oscillators attached to it bilinearly, can be described by a set of
coupled equations:

Mẍ(t) +Kx(t) =
∑
n

mω2
n(x− qn) + F (t) (18)

q̈n(t) + ω2
nqn(t) = ω2

nx(t) n = 1.2.3 . . . N (19)

where F (t) is an external force and the summation terms represent the force
by the oscillators, each with displacement qn(t), describing the environment.
The force by the oscillators consists of a dissipative, or systematic, part and
a fluctuating, or random, part described below.

To determine the force exerted by the oscillators on the bound particle,
response of each oscillator is expressed as:

qn(t) = −
∫ t

0

cosωn(t−τ) ẋ(τ) dτ+qn(t0) cosωn(t
′−t0)+

q̇n(t0)

ωn
sinωn(t

′−t0)

where qn(t0) and q̇n(t0) are values of qn(t) and q̇n(t) at t
′ = t0. Substituting

for qn(t) from above in equation (18), with t = t′ − t0:
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Mẍ(t)+

(
MΩ2

0 +
N∑

n=1

mω2
n

)
x(t) +

∫ t

0

N∑
n=1

mω2
n cosωn(t− τ)ẋ(τ)dτ

=
N∑

n=1

mω2
n

[
qn(0) cosωnt+

q̇n(0)

ωn
sinωnt

]
+ F (t).

(20)

We now set

Γ′(t) =

N∑
n=1

mω2
n cos(ωnτ), Π

′(t) =

N∑
n=1

mω2
n

[
qn(0) cosωnt+

q̇n(0)

ωn
sinωnt

]
(21)

and the system frequency

Ω2 = Ω2
0 +

N∑
n=1

m

M
ω2
n

where the prime indicates the discrete summations for Γ and Π. With these
notations the equation of motion (22) takes the form:

Mẍ(t) +MΩ2(t) +

∫ t

0

Γ′(τ)ẋ(t− τ)dτ = Π′(t) + F (t). (22)

Coupled equations of motion for an unforced (F = 0) particle of mass
M with attached oscillators that are initially quiescent has the form:

Mẍ(t) +MΩ2x(t) +

∫ t

0

Γ′(τ)ẋ(t− τ)dτ = 0

q̈n(t) + ω2
nqn(t) = ω2

nx(t) n = 1.2.3 . . . N.

The solution of these equations show recurrence: energy is exchanged be-
tween the particle and the attached oscillators. However, when the attached
oscillators are distributed continuously with a particular frequency distri-
bution, energy is irreversibly absorbed by the attached particles even in the
absence of a dissipation source in the classical sense.

Feynman and Vernon (1963) showed how a continuous distribution of
oscillators describe loss using a perfectly linear, undamped set of oscillators.
A simple demonstration of their approach is made using the distribution
introduced by Caldeira and Leggett (1983) for the oscillators as G(ω) =
2Mγ0/πmω

2 in making the summation Γ′ an integral Γ:
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∑
n

→
∫ ∞

0

G(ω) dω.

Expression Γ(τ) can be written and evaluated as

Γ(τ) =

∫ ∞

0

G(ω)mω2 cos(ωτ)dω = 2Mγ0 δ(τ)

where the constant γ0 is analogous to a velocity-dependent damping con-
stant that introduces the familiar viscous damping into the equation of
motion:

ẍ(t) + γ0ẋ(t) + Ω2x(t) = 0.

As shown later in this section, in cases where the summation can not
be substituted by an integral, special frequency distributions are shown
to closely imitate the dissipative behavior of a continuously distributed,
i.e., infinite number of oscillators (Carcaterra and Akay, 2004, 2007, 2011;
Carcaterra et al., 2006; Koç et al., 2005; Akay et al., 2005).

�Dynamics of an Ensemble of Oscillators It is instructive to examine
the behavior of the attached oscillators independently of the particle to
which they are attached.

Consider an ensemble of simple oscillators each with a slightly differ-
ent frequency, ω. If the entire set of oscillators start with the same initial
conditions, their motions become out of phase with time and the average
displacement of the ensemble decays, displaying a process known as deco-
herence (Ng, 2006, 2010; Carcaterra and Akay, 2004).

Motion of an oscillator in the ensemble with a displacement y and angular
frequency ω is described by

ÿ + ω2y = 0

with the general solution

y(t) = y0 cosωt+ ẏ0
sinωt

ω

where y0 and ẏ0 represent the initial values of y and ẏ, respectively.
If all the oscillators start with the same initial conditions, the average

displacement of the ensemble in time becomes

< y(t) >= y0H(t)

∫
ρ(ω) cosωt dω, ẏ0 = 0
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alternatively, the average velocity is

< ẏ(t) >= ẏ0H(t)

∫
ρ(ω) cosωt dω, y0 = 0

where H represents the Heaviside step function, ρ(ω) is the distribution of
the oscillation frequency in the ensemble, with the constraint∫ ∞

−∞

ρ(ω) dω = 1.

The impulse response of the ensemble is always real and vanishes for
t < 0.

G(t) = H(t)

∫
ρ(ω) cosωt dω, ẏ0 = 0.

For ensemble frequencies having a Lorentz distribution with half-width-
at-half-maximum �ω, we have

ρ(ω) =
1

π

�ω
(ω − ω̄)2 + (�ω)2

where ω̄ is the mean angular frequency of the ensemble. For this distribu-
tion, the impulse response is

G(t) = H(t)�ej(ω̄+j�ω)t = H(t)e−(�ω)t cos ω̄t

which shows that the average displacement of the oscillators decay with
a relaxation time τ−1 ≈ �ω. The process described above is also called
kinematic decoherence (Ng, 2006, 2010).

Phase Damping Instead of frequency distribution, if all oscillators are
assumed to have the same frequency but each with a time-dependent phase,
their collective response again exhibits dissipation. Since the response decay
does not involve any dissipation in a real sense, sometimes phase damping
is also called virtual damping when used in the context of phase noise in
electronics (Ham and Hajimiri, 2003). Describing, as before, the response
of a single oscillator as:

y(t) = y0 cos[ω0t+ φ(t)]

where y0, ω0 and φ(t) are initial displacement, oscillation frequency and the
phase variation, respectively.

Assuming that the phase distribution φ(t) can be characterized as a
Wiener process, that is a zero-mean Gaussian random process, it can be
shown that: < φ2(t) >= 2Dt where D is the diffusion constant.
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For a Gaussian distribution of φ(t) for all oscillators at any given time,
t:

< cosφ >= e−<φ2>/2 < sinφ >= 0

and, therefore, the average response

< y(t) >= y0 e
−φ2(t)/2 cosω0t

and the autocorrelation

< y(t)y(t+ τ) >=
1

2
y20 e

−Dt cosω0τ

show the decaying behavior of the collective response.
The corresponding power spectral density of the oscillators is a Lorentzian

distribution.

Sy,y(f) = y20
D

(ω − ω0)2 +D2

where the diffusion constant D represents the damping rate.
While the concept of virtual damping is used in connection with phase

noise in electronics, as seen above it has a direct bearing on dissipation
models in vibrations.

Forced Oscillations - Landau Damping When the object, to which
the oscillators are attached, is subjected to a harmonic force, response of
each oscillator is described by:

ÿ + ω2y = F0 cosΩt

with the general solution

y(t) = y0 cosωt+ ẏ0
sinωt

ω
+

F0

ω2 − Ω2
[cosΩt− cosωt].

Considering only the forced response, displacement of the center-of-mass of
an ensemble with a distribution ρ(ω) can be expressed as:

< y(t) >= F0

∫ ∞

−∞

cosΩt− cosωt

ω2 − Ω2
ρ(ω) dω. (23)

For distribution ρ(ω) that is narrow and centered at ω̄ and without
other peaks, when the ensemble is driven at a frequency close to the mean
frequency, Ω ≈ ω̄, using the expansion ω = Ω + (ω − Ω), < y(t) > can be
expressed as (Ng, 2006):
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< y(t) >=
F0

2ω̄

[
cosΩt

∫ ∞

−∞

1− cos(ω − Ω)t

ω − Ω
ρ(ω)dω

+sinΩt

∫ ∞

−∞

sin(ω − Ω)t

ω − Ω
ρ(ω)dω

]
.

The ensemble response has a fast oscillating component at frequency Ω
and a slow-oscillating component ω − Ω that acts like an envelope.

Noting that �ω is a measure of the width of the frequency distribu-
tion ρ(ω), all transients vanish in the asymptotic behavior of the ensemble
average displacement for t� 1/�ω leaving:

< y(t) >=
F0

2ω̄

[
cosΩt p.v.

∫ ∞

−∞

ρ(ω)

ω − Ω
dω + πρ(Ω) sinΩt

]
.

For a narrow frequency distribution ρ(ω) centered around ω̄, the assem-
bly average given in Eq. (23) can be approximated as (Ng, 2006, 2010)

< y(t) >=
F0 sin ω̄t

ω̄

∫ ∞

−∞

sin 1
2 (ω − Ω)t

ω − Ω
.

Considering the amplitude, A, of an oscillator with frequency ω as

A(ω) =
F0

ω̄

sin 1
2 (ω − Ω)t

ω − Ω

all oscillators with frequency ω are excited at t = 0 and reach a maximum
at t ≈ π/(ω − Ω) and vanish again at t ≈ 2π/(ω − Ω). Such absorption
and return of energy to the ensemble is a familiar display of recurrence.
For frequencies ω closer to Ω, amplitude is larger and the return time is
longer. For oscillators with ω = Ω, amplitude grows linearly with time and
the absorption continues indefinitely. This process of vanishing amplitude
growth except for a few oscillators near Ω is called the Landau Damping
(Ng, 2006).

3.2 Energy Sinks

Energy sink is a concept based on the linear models of dissipation de-
scribed above but adapted for use with a finite number of oscillators. As
described above, linear oscillators when attached to a primary structure
can irreversibly absorb its vibration energy provided their frequencies fol-
low certain frequency distributions continuously. Since it is not practical in
engineering applications to attach oscillators with a continuous frequency
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distribution or, equivalently, to use an infinite number of them, the models
are adapted for a finite set of oscillators (Carcaterra and Akay, 2004, 2007,
2011; Carcaterra et al., 2006; Koç et al., 2005; Akay et al., 2005).

The energy sinks described here rely on the use of a set of undamped,
linear oscillators with a particular frequency distribution that enables it to
rapidly absorb vibration energy from a structure and retain nearly all of it.

3.3 Dissipation in Finite Systems

Returning to the equation of motion (20) of an harmonically excited
particle with a set of linear oscillators attached to it:

Mẍ(t) +MΩ2x(t) +

∫ t

0

Γ(τ)ẋ(t− τ)dτ = F (t)

q̈n(t) + ω2
nqn(t) = ω2

nx(t) n = 1.2.3 . . .

where we have assumed quiescent initial conditions, qn(t0) = 0, q̇n(t0) = 0,
for the attached oscillators. The kernel of the dissipative term is

Γ(τ) =
∑
n

mnω
2
n cos(ωnτ).

In general, harmonic series such as Γ(τ) have properties similar to those
of almost-periodic-functions and exhibit recurrence (Bohr, 1947), precluding
the use of independent linear oscillators to model irreversible absorption of
vibratory energy, except for early times of observation (Carcaterra and Akay,
2004).

However, it has been reported that when the attached oscillators follow
particular frequency distributions, they very closely mimic the dissipation
characteristics of an infinite number of oscillators, reducing and nearly elim-
inating the effects of recurrence (Carcaterra and Akay, 2004, 2007, 2011;
Carcaterra et al., 2006; Koç et al., 2005; Akay et al., 2005).

�Example The prototypical system under consideration consists of a
rigid primary structure with a substructure comprised of a set of linear
oscillators of equal mass mn attached to it, as described in Fig. 3. The
system does not possess any mechanism to dissipate energy in the classical
sense, thus stiffness alone characterizes the connections between the sub-
structure and the primary structure. The total mass, m (m =

∑
mn), of

the attachments is assumed to be fraction of the primary mass, M , say,
m/M ≤ 0.1. Under these conditions, the significance of the stiffness or
frequency distribution is demonstrated for two different cases.
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Figure 3. Schematic description of a SDOF structure with a set of linear
oscillators attached to it.

For example, Figure 4 shows a typical impulse response of the primary
structure with the attached set having a linear frequency distribution as
shown in Fig. 4 (a). The oscillators have a constant frequency difference
between the neighboring frequencies. As expected of linear oscillators with
a linear frequency distribution, the response shows a recurrence (b); and
as shown in Fig. 4(c), energy periodically returns to the primary struc-
ture when the number of oscillators is finite, in this case N = 100. The
return time corresponds to the constant frequency difference t∗ = 2π/Δω
(Koç et al., 2005).

Figure 4. Response of a SDOF structure with attached linear oscillators
as shown in Fig.(3): (a) Attached oscillators have a linear frequency distri-
bution, (b) displacement response of the structure with periodic increases,
(c) energy of the structure displaying recurrence.

It has been shown that there exist optimum frequency distributions
for such finite sets that increase the period of recurrence, effectively ab-
sorbing vibratory energy in a nearly irreversible manner (Koç et al., 2005;
Carcaterra and Akay, 2004).
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In the example shown in Figure 5, for the particular frequency distri-
bution shown in (a), recurrence nearly disappears in the response. A com-
parison of the energy of the primary oscillator in Figure 5 (c) with that in
Figure 4 (c) also shows the reduction in the energy of the structure as a re-
sult of the frequency distribution of the attached oscillators. Experimental
verifications of such systems have also been reported (Akay et al., 2005).

Figure 5. Response of the SDOF structure as in Fig.(3): (a) Frequency
distribution among the attached oscillators, (b) displacement response of
the structure is no longer periodic, (c) energy of the structure has been
absorbed by the oscillators.

Compared with the conventional methods of vibration reduction, the
concept of energy sinks presents a unique and viable alternative for cases
where the classical vibration absorption or damping techniques have limited
applicability, particularly at low frequencies and under transient conditions.
Energy sinks described here consist of a set of oscillators that collectively
absorb and retain energy when attached to a vibrating structure. An energy
sink admits flow of energy from a transiently excited structure and retains
it in the collective phase space of the oscillators.

3.4 Damping and Dissipation in an Ideal Gas

Damped motion of a piston in a cylinder presents another example of
dissipation at the molecular level where the piston energy is irreversibly
converted to thermal energy in a gas. Piston motion is similar to that of a
particle motion in a thermal environment discussed earlier where its dissi-
pation is modeled with independent linear oscillators. In this case, however,
dissipation modeling is nonlinear and arises from individual impacts of par-
ticles on the piston.

Considering a prototypical system illustrated in Fig. 6 in which a piston
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P with a cross-sectional surface area S moves freely without wall friction. It
moves along the cylinder axis x at speed VP , separating the two reservoirs
of the piston, each maintained at temperatures such that TH > TC .

Gas is modeled as a set of freely moving particles with a velocity distri-
bution, rather than as attached oscillators. Pressures in volumes H and C
that act on the piston in opposite directions are calculated by summing the
impulses from particles impinging on the two surfaces of the piston.

Considering first the pressure in the H reservoir, a single gas particle
has speed components vHx and v′Hx along x, before and after its impact on
the piston surface, respectively, and are related through the piston velocity:

v′Hx = −vHx + 2VP .

Note that this relationship is valid for cases where the particle mass m
is very small compared with the mass M of the piston. The momentum
variation of a particle associated with the impact is 2m(VP − vHx). The
force exerted on the piston surface H is then calculated as a sum of the
x-components of the pulses:

FH(VP , t) = 2m
∑
i

(vHxi
− VP ) δ(t− tiH) (24)

where FH depends both on time t and the piston speed VP . This force
evolves through a sequence of random impulses δ(t − tiH) of random am-
plitude and random time delay. Analogous to the Fluctuation-Dissipation

Figure 6. Piston in a cylinder.

Theorem, we separate the mean and fluctuating parts of FH in Eq. (24).
Designating by n(vHx) dvHx the number of particles per unit volume of gas
that have the speed component vHx, the number dN of particles that hit
the piston surface within the time interval dt can be expressed as:

dN =
1

2
(vHx − VP ) n(vHx) S dvHx dt
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the factor 1/2 comes from the consideration of particles traveling in only one
direction along x. Then, the force produced on the piston by dN number
of impinging particles in the reservoir H becomes:

dFH(vHx) = mS (vHx − VP )
2 n(vHx) dvHx.

Introduction of a velocity distribution fHx(vHx) = n(vHx)/N results in the
corresponding average total force expression:

F̄H = mNS

∫ ∞

0

(VP − vHx)
2 fHx dvHx (25)

where N is the number of particles per unit volume. For piston velocities
that are small compared with the particle velocity in the gas, we can assume
the standard Maxwell distribution for fHx. The influence of piston motion
can be evaluated by modifying the Maxwell distribution to include a drift
velocity VGH = −VP /2 equivalent to the velocity of the center of mass of
the gas in reservoir H, with respect to the piston reference frame:

fHx =

√
m

2πkTH
e
− m

2kTH
(vHx−VGH)2

. (26)

The distribution in (26) is a valid approximation for small drift velocities

compared to the gas particle velocity, VGH �
√
v2Hx, where the upper bar

represents the average value calculated with the standard Maxwell distri-
bution, in the absence of any drift effects (VP = 0). Integrating equation
(25) using (26) produces an average force on the piston facing reservoir H:

F̄H(VP ) = mNS

[
v̄2Hx − 3VP v̄Hx +

9

8
V 2
P

]

and similarly for its opposite side facing C:

F̄C(VP ) = mNS

[
v̄2Cx + 3VP v̄Cx +

9

8
V 2
P

]
.

These expressions differ only in the sign of the linear piston velocity terms.
Independent of its direction piston motion induces damping. When both
reservoirs are at the same temperature, equivalently when the piston is
under pressure equilibrium, the average net force on the piston reduces to:

F̄ (VP ) = F̄H(VP )− F̄C(VP ) = −6mNSVP v̄x (27)
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which reveals the viscous nature of the average damping force. The instan-
taneous net force on the piston follows from equation (24):

F (VP , t) = 2m

[∑
i

(vxi + VP ) δ(t− tiH)−
∑
i

(vxi − VP ) δ(t− tiC)

]
.

(28)
The force (28) on the piston can be expressed as a combination of its average
value and a fluctuating part:

F (VP , t) = F̄ (VP ) + f(t) (29)

where the mean value of force F̄ (VP ) from Eq. (27) represents the damping
force and f(t) represents the fluctuating force that evolves due to impulses
from the particles in the gas.

An explicit expression for the fluctuation can be obtained simply by
considering the case for a stationary piston, and setting VP = 0, in Eq. (29):

F (0, t) = F̄ (0) + f(t)

resulting in the expression for fluctuation:

f(t) = 2m
∑
i

vxiδ(t− ti).

Finally the general expression for the interaction force between the piston
and the gas can be expressed as:

F (VP , t) ≈ −6mNSVP v̄x + 2m
∑
i

vxiδ(t− ti).

This shows how the interaction with the particles in the reservoirs gen-
erates a viscous damping, with damping coefficients CD = 6mNSv̄x, and a
random force on the right-hand side. Moreover, it appears the two terms are
not independent, since they appear to be both driven by the speed vx of the
particles in the gas. This fact again manifests the fluctuation-dissipation
duality. Finally, note how the damping coefficient depends on the average
speed v̄x of the particles contained in the reservoirs, that it is proportional
to the root of the temperature of the gas since T ∝ v2x ∝ v̄2x and therefore
CD ∝

√
T .
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