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Abstract.  

While colocalization within a bacterial operon enables co-expression of the constituent genes, 

the mechanistic logic of clustering of non-homologous monocistronic genes in eukaryotes is 

not immediately obvious. Biosynthetic gene clusters that encode pathways for specialised 

metabolites are an exception to the classical eukaryote rule of random gene location and 

provide paradigmatic exemplars with which to understand eukaryotic cluster dynamics and 

regulation. Here, using 3C, Hi-C and Capture Hi-C organ-specific chromosome conformation 

capture techniques along with high-resolution microscopy, we investigate how chromosome 

topology relates to transcriptional activity of clustered biosynthetic pathway genes in 

Arabidopsis thaliana. Our analyses reveal that biosynthetic gene clusters are embedded in 

local hot-spots of three-dimensional contacts that segregate cluster regions from the 

surrounding chromosome environment. The spatial conformation of these cluster-associated 

domains differs between transcriptionally active and silenced clusters. We further show that 

silenced clusters associate with heterochromatic chromosomal domains towards the periphery 

of the nucleus, while transcriptionally active clusters re-locate away from the nuclear 

periphery. Examination of chromosome structure at unrelated clusters in maize, rice and 

tomato indicates that integration of clustered pathway genes into distinct topological domains 

is a common feature in plant genomes. Our results shed light on the potential mechanisms 

that constrain co-expression within clusters of non-homologous eukaryotic genes and suggest 

that gene clustering in the one-dimensional chromosome is accompanied by 

compartmentalisation of the three-dimensional chromosome. 

Significance statement  

Clusters of co-expressed and co-localised biosynthetic pathway genes in plants are a 

paradigmatic example of the non-random organisation of the eukaryotic genome and present 

an ideal opportunity to understand the logic of eukaryote gene cluster regulation. Here, we 

carry out an in-depth analysis of the chromosomal topology of biosynthetic gene clusters and 

their positioning in nuclear space. We demonstrate that plant biosynthetic gene clusters reside 

in highly interactive domains that undergo marked changes in local conformation and nuclear 

positioning in cluster expressing and non-expressing organs. As such, metabolic gene clusters 

rank amongst the most dynamic regions in the genome of the model species A. thaliana. Our 

results shed light on the potential mechanisms that constrain co-expression within clusters of 

genes.   



Main Text 

Introduction. Gene order is a central feature that distinguishes eukaryotic genomes from 

their prokaryotic counterparts. Prokaryotic genomes are characterised by co-localisation of 

functionally related genes in operons (1). In contrast, functionally related genes in eukaryotes 

are commonly dispersed throughout genomes. Progress in genomics and transcriptomics have 

shown that gene order in eukaryotes is far from random, and that the positioning of genes 

affects their transcriptional activity and evolutionary retention (2-4). In addition, diverse 

examples of co-localised and functionally related genes (‘operon-like’ gene clusters) have 

been identified in eukaryotes that are reminiscent of gene organisation in prokaryotes (5-11). 

While the polycistronic transcription of bacterial operons provides an immediate and 

established mechanistic logic for co-expression of functionally related genes, for eukaryotic 

operon-like clusters of genes that are predominantly transcribed as single monocistronic units 

with individual promoters this mechanistic logic is not obvious (1, 3, 12).    

In plants, it has recently been discovered that genomes contain regions characterised by 

operon-like clusters of co-localised and non-sequence-related genes involved in the 

biosynthesis of natural products. These clusters encode pathways for the biosynthesis of 

diverse molecules, ranging from medicinal alkaloids to polyketide components of wax layers 

and triterpenes that shape the root microbiota (13-16). The identification of this clustering 

phenomenon has led to the development of new genomics-driven strategies for pathway 

discovery (17-20). Plant biosynthetic gene clusters range in size from ~35 kb to several 

hundred kb. They are located in genomic regions that are prone to chromosomal 

rearrangement, and have arisen by recruitment of genes from elsewhere in the genome 

followed by neofunctionalization (14, 21-23). Individual metabolic gene clusters and their 

variants are usually confined to narrow taxonomic windows (14).  

The genes within these biosynthetic clusters are typically co-expressed in specific plant 

organs and/or in response to certain environmental triggers. High transcriptional activity in 

metabolite producing cells is often contrasted by tight transcriptional silencing in non-

producing cells (14, 19, 24, 25).  

It is hypothesised that physical linkage of functionally-related genes in eukaryotes is 

associated with specialised regulatory processes (3, 12). Physical linkage may facilitate co-

ordinate gene regulation through shared promoter and regulatory DNA elements as well as 

common epigenetic modifications of cluster-associated histones and DNA motifs (19, 20, 26-



31). Furthermore, it has been proposed that three-dimensional (3D) chromosome structure 

and localisation to specific nuclear territories are mechanisms for co-ordinate transcriptional 

regulation of adjacent genes. Seminal work on clusters of homologous genes in humans and 

animals, such as the HOX and β-globin clusters, support this hypothesis (32-34).  

In plants and for eukaryotic clusters of non-homologous genes in general, however, it 

remains unknown how groups of neighbouring and co-expressed genes integrate into the 

nuclear three-dimensional environment. A recent study in the filamentous fungus Epichloë 

festucae reported the localisation of a biosynthetic gene cluster in a single topologically 

associated domain (TAD) and the authors suggested that activation of this cluster may be 

associated with a remodelling of this chromosome structure (35).    

In previous studies we have shown that common signatures of chromatin marks delineate 

plant biosynthetic gene clusters, and also that Arabidopsis thaliana chromatin mutants have 

altered cluster transcript levels compared to the wild type (20). Furthermore in diploid oat 

(Avena strigosa), we have shown by high resolution DNA in situ hybridisation that 

expression of a biosynthetic gene cluster for the synthesis of antimicrobial defense 

compounds known as avenacins is associated with chromatin decondensation (25).     

Here, we characterise the chromosome topology of metabolic gene clusters in plants, using 

previously characterised gene clusters in A. thaliana as our models. We have recently shown 

that these clustered biosynthetic pathways form a metabolic network that shapes the root 

microbiota (13). These gene clusters are co-ordinately transcribed in the roots but silenced in 

the aerial organs of the plant (20, 23, 24, 36). They therefore offer an ideal experimental 

system for investigating the organ-specific regulation of plant biosynthetic gene clusters. 

To define the chromosome architecture of metabolic gene clusters and their integration into 

the nuclear environment we carried out chromosome conformation capture (3C, Hi-C and 

Capture Hi-C) experiments using nuclear preparations from roots and leaves of A. thaliana 

seedlings. We show that the A. thaliana biosynthetic gene clusters are embedded in local 

interactive three-dimensional chromosomal domains that adopt different structures in 

expressing and non-expressing organs. Comparative analysis reveals that these domains 

undergo some of the most drastic genome-wide changes to chromosome topology when roots 

and leaves are compared. We further demonstrate that these biosynthetic clusters are 

localised to heterochromatic areas of the genome when silenced. Incorporation and analysis 



of available Hi-C maps implicates histone H3 lysine 27 trimethylation (H3K27me3) as a 

central feature of the 3D domains at silenced clusters. Examination of chromosome structure 

at unrelated clusters in maize, rice and tomato indicates that integration of clustered pathway 

genes into distinct topologically associated domains is a widespread feature in plants.  

Collectively, our work provides  a high-resolution view of the nuclear organisation of 

biosynthetic gene clusters in plants. It demonstrates that a unique pattern of chromosomal 

conformations is established at clusters. Our findings also open up a novel potential route to 

manipulate plant specialized metabolism by interfering with higher-order regulatory 

mechanisms 

 

Results and discussion.  

Analysis of 3D chromosome conformation reveals organ-specific differences 

To define the three-dimensional chromosome architecture at biosynthetic gene clusters in A. 

thaliana we set out to establish chromosome conformation capture protocols in conditions 

that would reflect transcriptional ‘on’ and ‘off’ states of the clusters. In earlier work we and 

others have shown that expression of several previously characterized biosynthetic gene 

clusters, amongst them the thalianol cluster, is tightly repressed in the leaves and highly 

expressed in the roots of young A. thaliana seedlings (20, 23, 24, 36, 37). To corroborate this, 

we performed whole transcriptome analysis of RNA extracted from roots and leaves of 

seven-day old seedlings (SI Dataset 1). We observed marked changes in the transcript levels 

for three distinct clusters – the thalianol, marneral and arabidiol/baruol clusters – when root 

and leaves were compared (Fig. 1A, B).  

We then performed genome-wide Hi-C analysis for DNA from both organs. We obtained 71 

– 108 million valid unique paired-end reads from each library (Tables S1, S2). We corrected 

and normalised the derived interaction counts for experimental biases and genomic distance. 

The normalized counts serve as measure of interaction strength between any two 

chromosomal sites and were plotted as two-dimensional Hi-C maps. Visual examination 

showed strong interchromosomal contacts between pericentromeric blocks and between all 

telomers in both roots and leaves (Fig 1C). We could also readily detect a number of 

prominent off-diagonal punctate signals that reflect interactions of defined chromosomal loci 



known as interactive heterochromatic islands (IHIs) (Figs 1C, S1) (38, 39). These features are 

overall consistent with those observed in the previously reported overarching conformation of 

A. thaliana chromosomes in whole seedlings (38-40).  

In in-depth comparative examinations of the chromosome architecture, we observed several 

differences between the chromosome features observed for roots and leaves. In leaves, 

significantly increased interaction counts were enriched in the pericentromeric regions while 

in roots enhanced interactions were predominantly localised to the chromosome arms and 

telomeres (Fig. 1C, D, S1, SI Dataset 2). We further detected changes to the IHIs. The 

intensity of individual interchromosomal IHI interactions varied significantly and one 

previously undescribed IHI located on chromosome 1 was identified (Figs. 1D, S2,3).  These 

findings highlight organ-specific reconfigurations of the A. thaliana 3D chromosome 

architecture. Differences in interaction intensity between different tissues have also been 

reported for Hi-C analyses in rice and maize (41).  

In A. thaliana, alterations to interaction intensities of pericentromeric and telomeric regions 

of the genomes and IHIs have been described for mutant lines that are defective for different 

epigenetic pathways such as DNA methylation and histone H3 lysine 9 methylation (38). 

This may suggest that differences in the epigenetic environment between roots and leaves 

underlie the observed 3D changes. Furthermore, differences in nuclear shape and ploidy 

levels of individual nuclei of roots and leaves may be associated with the variations in 

interaction intensities (42).  

Silenced metabolic gene clusters associate with heterochromatic areas within the 

nucleus 

We then focused our analysis on the thalianol metabolic gene cluster. We have recently 

shown that the metabolic products derived from the thalianol cluster have important roles in 

shaping the root microbiome of A. thaliana (13). We have further established that the cluster 

is delineated by repressive histone H3 lysine 27 trimethylation marks (H3K27me3) and the 

histone variant H2A.Z involved in positive regulation (20, 37). The thalianol cluster consists 

of four core genes that cover approximately 33 kb and a peripheral gene that is separated 

from the core cluster by 10 kb (the latter 10 kb region including two unrelated intervening 

genes) (Fig 1A) (13, 24). All cluster genes are widely expressed in root tissues and repressed 

in aerial plant tissues (Fig 1B, S4).  



Visual inspection of our Hi-C maps for roots and leaves show small local interactive domains 

encompassing the thalianol cluster and separating it from the neighbouring genomic 

environment (Fig 2A, S5). Re-analysis of previous whole seedling-derived conformation data 

shows a similar domain at the thalianol cluster (Fig S6) (31). Strikingly, the location and 

interaction strength of the interactive domain change between roots and leaves and two 

distinct interactive domains can be distinguished (Fig 2A). An area encompassing the 

thalianol cluster engages in very strong three-dimensional contacts in roots while in leaves 

the location of the interactive domain shifts downstream and covers the cluster and a region 

downstream of the cluster. This domain is larger than in roots and the intensity of domain-

wide 3D interactions is reduced (Fig 2A). We then performed A/B compartment analyses for 

all chromosome arms of our Hi-C maps and analysed the compartment association of the 

thalianol cluster. In leaves, we found the cluster to be positioned within a B compartment, a 

more compact structural domain with increased intradomain contacts, and in roots, we found 

the cluster to be localised within an A compartment with depleted intradomain contacts and a 

looser structure (Fig S7). 

After detecting these differences, we revisited the comparative analysis of our Hi-C libraries 

to identify differential interactions associated with the cluster. By calling genome-wide 

significant differential interactions we observed a striking pattern of both local and global 

changes to the three-dimensional structure of the thalianol cluster. Our comparative analysis 

shows that the chromosomal region encompassing the thalianol cluster ranks amongst the 

most differentially interacting areas of the A. thaliana genome in the root – leaf comparison 

(Fig 2B). In leaves, the cluster engages in significantly enriched interactions towards the 

pericentromeric areas of the chromosome (Figs 2C, S8). In contrast, root-specific interactions 

are significantly elevated towards the long arm of chromosome 5 outside the pericentromeric 

region (Fig 2C, SI Dataset 3). 

We identified similar conformational features for the marneral and arabidiol/baruol gene 

clusters (Figs 2B, S9). These patterns reflect the different transcriptional states of the clusters. 

In leaves, when the biosynthetic gene clusters are silenced, the clusters are directed towards 

heterochromatic areas of the genome and in roots, when active, are located towards open, 

transcriptionally active areas of the genome. Accordingly, the genes located in regions 

differentially interacting with metabolic gene clusters show significantly lower expression 

levels in leaves compared to roots (2D).  



To corroborate the change in localisation we performed 3D DNA FISH analysis of the 

thalianol cluster. Chromocenters are preferentially associated with the nuclear periphery in A. 

thaliana nuclei (43, 44) and as such we analysed cluster localisation towards the periphery in 

nuclei of roots and leaves. We show that the cluster region strongly associates with the 

nuclear periphery in leaf tissues while in roots this association is significantly reduced (Fig. 

2E).  

Conformational switching accompanies changes in transcriptional activity at the 

thalianol metabolic gene cluster 

To better define the changes to the 3D chromosome architecture at metabolic gene clusters 

we established a Capture Hi-C (CHi-C) protocol for A. thaliana (45, 46). We defined a set of 

genomic regions with sizes between 200 kb and 600 kb and designed capture probes that 

cover all restriction fragments within. We chose the regions based on the annotation of 

metabolic gene clusters and distribution along all chromosomes and central chromosome 

features (SI Dataset 4). We obtained libraries with similar yield of valid di-tags but with 

much improved sequence depth at the captured sites compared to our Hi-C library and 

previously published data (Tables S3, S4, S5 and S6).  

Analysis of the CHi-C library enabled us to recapitulate the chromosome-wide interaction 

switch of the thalianol cluster (Fig S10). Furthermore, it enabled us to precisely analyse the 

local variations in three-dimensional chromosome structure at the thalianol cluster coinciding 

with the transcriptional ‘on’ and ‘off’ state. In roots, when active, the cluster is located within 

an interactive domain that consists of two layers of variable strength. The smaller and higher 

intensity domain precisely demarcates the thalianol cluster, ranging from THAA2, the 

peripheral cluster gene, to the THAS gene with a size of 50 kb. The larger domain extends 

from the non-cluster gene At5g47910 to the thalianol cluster (Figs 3A, S11A). 

In contrast to the root specific domain, the interactive domain formed in leaves, when the 

cluster is silenced, is larger in size and starts at the THAA2 gene, the peripheral cluster gene, 

and ends at the non-clustered and non-co-expressed genes At5g48150 and At5g48160. 

Overall the domain is 110 kb in size and covers the thalianol cluster and a group of genes 

with increased expression level in roots compared to leaves (At5g48070 to At5g48140) (Fig 

3B, S11A, S11B).  



Structural modelling of the major 3D domains associated with the thalianol cluster indicates 

that when active the locus assumes a compact conformation and when silent it is incorporated 

into a chromosomal loop (Fig S12). 

Differential visualisation of CHi-C maps of root and leaves shows a striking border between 

the silencing and activating domains around the gene At5g48050, an area depleted of obvious 

regulatory elements (Fig 3C). Independent 3C experiments that measure contact intensity 

between individual restriction fragments corroborate the identified domain structure (Fig 3E).  

This association with two local interactive domains, i.e. a bimodal chromosomal 

configuration, may allow the thalianol cluster to read regulatory information from two 

distinct chromosomal areas (Fig 3D). For the HoxD cluster in mice, location between two 

topologically associated domains (TADs) and dynamic association to either of them ensures 

collinear distribution of Hox transcription factors to the correct developmental body 

structures (47).  

It is striking that the chromocenter interactions of the clusters are partly driven by contacts of 

the cluster downstream region that are specific for the silencing domain (Fig S10). We 

suggest a three-fold mechanism in which the cluster is brought in proximity to the envelope: 

(a) the cluster is released from an interactive domain associated with strong transcriptional 

activity; (b) establishment of new contacts with a region downstream of the cluster; (c) 

positioning towards heterochromatic chromosomal areas near the nuclear periphery. 

Similar to the thalianol cluster, the 3D chromosome architecture at the marneral cluster is 

associated with a complex pattern of local and regional interactions that differ between roots 

and leaves. As seen in our Hi-C maps, a large regional interactive domain is formed between 

the marneral cluster and a genomic area 300 kb away from the cluster. This domain is 

specifically formed in leaf organs when the cluster is silenced (Figs. S13, S14A, S14B). The 

CHi-C analysis reveals an additional local interactive domain encompassing the marneral 

cluster that exhibits more pronounced contact intensities in roots, where the cluster is 

transcribed, compared to leaves. This suggests a similar dual conformational switch between 

the actively transcribed and silenced forms of the cluster, as observed for the thalianol cluster 

(Figs. S13, S14C, S14D). At the arabidiol/baruol cluster we observed a single local 

interactive domain that precisely encompasses the cluster and shows increased contact 

frequency in leaves compared to roots and therefore negatively correlates with transcriptional 

activity (Figs. S15, S16).  



Of note, the establishment of dynamic local 3D domains associated with clusters of co-

regulated genes may not be restricted to our target clusters. We observed strong interactions 

between a cluster of homologous ribulose biphosphate carboxylases genes encoding small 

subunits of the Rubisco enzyme and an adjacent region (48). These interactions are specific 

for roots where the cluster is silenced and are not detectable in leaves when the cluster is 

expressed (Figs. S17, S18). Future single-cell Hi-C analysis may further refine the correlation 

between chromosomal conformation of clusters and different expression states.   

Cluster-associated silencing domains are lost in H3K27me3 mutant   

Our earlier work and studies in filamentous fungi have suggested that biosynthetic gene 

clusters are delineated by conserved chromatin modifications (20, 28, 49, 50). Amongst them 

is H3K27me3, a well-described histone mark primarily associated with gene silencing (51, 

52). Peaks of H3K27me3 are detectable at all three metabolic gene clusters investigated here 

and we have previously shown that cluster expression levels are elevated in A. thaliana 

mutant lines with reduced H3K27me3 levels (Figs. S18, S19, S20) (20, 52). Recent Hi-C 

analyses of A. thaliana chromosomes have described small interactive domains and 

chromatin loops that are enriched for H3K27me3 marks (38, 53). Therefore, we decided to 

re-analyse available Hi-C maps of H3K27me3 mutants and monitor the cluster-associated 

interactive domains (38).  

For the thalianol, marneral and arabidiol/baruol clusters we found a significant reduction in 

the interaction strength of the associated interactive domains in H3K27me3 depleted 

chromatin suggesting a role for this chromatin mark in their formation (Figs. 4A, B, C, S22A, 

B, C). In animals, a spatial domain that connects different gene clusters in 3D space has been 

shown to be constrained by H3K27me3 histone modifications (32, 34). Similarly, we 

detected high interaction counts between the thalianol and marneral gene clusters, which are 

separated by 2.4 Mb on chromosome 5 (Fig S23A). The interaction intensity was strongly 

elevated in wild type versus H3K27me3-depleted chromatin in re-analysis of existing Hi-C 

maps, thus correlating with H3K27me3 levels (Fig S23B). In embryonic cells of mice, 

H3K27me3 labelled three-dimensional domains are formed within central active nuclear 

regions in contrast to the peripheral localisation of the H3K27me3 marked interactive 

domains identified here (34). In Neurospora crassa, loss of H3K27me3 marks in chromatin 

mutants leads to relocalisation of subtelomeric regions towards the interior of the nucleus and 

upregulation of target genes (54).  



Interestingly, at the cluster of homologous ribulose biphosphate carboxylases genes we did 

not observe strong H3K27me3 markings in non-expressing root tissues (Fig. S24). In 

contrast, we identified significant cluster-associated H3K4me3 markings, well-described 

histone marks associated with gene activation, in the expressing leave tissues (Fig. S24). We 

did not, however, detect strong enrichment of H3K4me3 markings at biosynthetic gene 

clusters (Figs. S19, S20, S21). 

Metabolic gene clusters reside in local interactive domains in diverse plant species  

Next, we asked whether biosynthetic gene clusters are similarly located within distinct 

interactive domains in other plant species. To address this question, we analysed available 

Hi-C maps of tomato, maize and rice (41, 56). Each of these species contains at least one 

well-described metabolic gene cluster (Fig S25) (14). Chromosome topology in tomato, 

maize and rice is characterised by a more pronounced structuring of chromosomes into TADs 

compared to chromosome topology in A. thaliana (41, 56, 57). TADs are chromosomal 

regions with extensive internal chromatin contacts and limited interactions with adjacent 

regions (58, 59). As such, they resemble the cluster-associated interactive domains in A. 

thaliana described here. We therefore identified TADs in the respective genomes and 

analysed their association with the maize DIMBOA and rice momilactone and phytocassane 

clusters, as well as the tomatine biosynthetic gene cluster in tomato (SI Dataset 5) (17, 60-

62). We observed that each cluster is positioned within a defined TAD that encompasses all 

individual cluster genes (Fig 5A, B, C, D). As seen for the biosynthetic gene clusters in A. 

thaliana and the ergot alkaloid EAS cluster of E. festucae cluster-associated TADs include 

additional genes outside the respective clusters (Fig 5A, B, C, D) (35). We did not observe 

obvious long-range contacts with other regions of the genome for the investigated clusters. 

TADs in maize, rice and tomato are suggested to be separated by different expression and 

epigenetic states but are not associated with co-expression of the genes located within the 

same domain (41). All four clusters investigated here show strong co-expression pattern and 

for clusters in rice and maize we have previously reported an enrichment for H3K27me3 

chromatin modifications (20, 63). Analysis of gene expression datasets associated with the 

investigated Hi-C maps show high expression levels for the tomatine cluster, medium 

expression levels for the DIMBOA cluster and very low expression levels for both rice 

cluster (Fig. S26A, B, C, D). This suggests that formation of cluster-associated domains is 

not restricted to specific expression states. Future comparative studies analysing chromosome 

architecture under conditions with variable cluster expression states in maize, rice and tomato 



should shed light on the structural flexibility of the cluster-encompassing TADs in these other 

species.  

Conclusions. 

In summary, we report that metabolic gene clusters reside in defined local interactive 

domains in plant genomes. In A. thaliana, the structure of these domains is flexible and 

changes its configuration between organs that express or do not express the cluster in 

question.  

Local interactive domains surrounding clusters of genes may insulate these clusters from their 

chromosomal neighbourhood. This may prevent the spreading of repressive and active 

chromatin environments at gene clusters into nearby chromosome areas (64, 65). Cluster-

associated interactive domains may further constitute local microenvironments that support 

tight co-regulation of gene expression. Local domains with increased internal contacts have 

been observed for neighbouring, functionally unrelated genes with shared transcriptional and 

epigenetic states in different eukaryotic species (66, 67). The formation of these domains may 

indicate a general principle in eukaryotic genome organisation and may provide a structural 

platform for evolution of functionally related and co-ordinately regulated gene clusters.  

Structural flexibility of 3D domains at biosynthetic gene clusters is accompanied by 

repositioning of clusters inside the nuclear space. Peripheral localisation of clusters is 

observed in non-expressing organs and interior localisation in expressing organs (Fig S27). 

As such, these cluster regions are amongst the most dynamic regions in the A. thaliana 

genome. The relocation of clusters towards heterochromatic areas of the nucleus may be 

important in the efficient silencing of these clusters. It has been shown that mis-expression of 

thalianol cluster genes leads to severe developmental defects in the plant and so tight co-

ordinate regulation of the thalianol cluster genes is likely to be critical for survival (24). The 

co-localisation of pathway genes in operon-like gene clusters may directly support the 

formation of single 3D domains. Such conformation may in turn facilitate co-ordinate 

engagement of these genes in nuclear re-positioning and transcriptional co-regulation as 

compared to a scenario in which genes are dispersed in different chromosomal locations and 

embedded in separate 3D domains.  

Furthermore, we show that loss of the histone mark H3K27me3 is associated with alterations 

in the interaction intensity of the cluster-associated chromosome architecture, supporting the 



important role for this chromatin modification in shaping chromosome structure in A. 

thaliana (38, 68).  

Our results reveal the complex chromosomal architecture surrounding metabolic gene 

clusters and shed light on the potential mechanisms that constrain co-expression within 

clusters of eukaryotic genes. We show that clustering of genes on the linear eukaryotic 

chromosome is accompanied by compartmentalisation of the three-dimensional chromosome.    

Furthermore, we provide evidence that the spatial organisation of plant chromosomes is 

plastic. These advances will provide the basis for future studies to better understand the role 

of chromosome organisation in defining gene cluster structure, expression and evolution.  

 

 

 

 

  



Materials and Methods 

Arabidopsis thaliana plants used in this study were of the Col-0 wild type. For all 

experiments, A. thaliana seeds were surface sterilised and grown vertically on petri dishes 

containing Murashige and Skoog plant salt medium supplemented with 0.5 % phytagel and 

0.75 % sucrose (69). Plants were grown at 22 °C with a 16 h light/8 h dark photoperiod for 

seven days. Triplicate 3C, duplicate Hi-C and CHi-C and triplicate RNA-seq experiments 

were performed as described in SI Materials and Methods. DNA FISH experiments were 

essentially performed as described before and are outlined SI Materials and Methods (70, 71). 

All Hi-C, CHi-C and RNA-seq data were deposited to the National Center for Biotechnology 

Information (NCBI) Gene Expression Omnibus (GEO) database (accession no. 

PRJNA576277) (72). A. thaliana wild type and H3K27me3 mutant Hi-C datasets (accession 

no. SRP043612) and ChIPseq datasets (GSE108960, GSE108960) as well as tomato, rice and 

maize Hi-C datasets (PRJNA486213 and PRJNA391551) were previously reported (38, 41, 

55, 73-76).   

 

Acknowledgments 

This work was supported by the Royal Society funded University Research Fellowship 

UF160138 (HWN) and Newton Advanced Fellowship NAF\R1\180303 (SLF-V, LH), a 

Marie Curie Actions EMBO Long-Term Fellowship (HWN), the joint Engineering and 

Physical Sciences Research Council/BBSRC-funded OpenPlant Synthetic Biology Research 

Centre grant BB/L014130/1 (HWN, AO), CONACYT Masters Scholarships (ARC, JES), 

CONACYT Research Fellowship 2015 (SLF-V), the UK Biotechnological and Biological 

Sciences Research Council (BBSRC) Institute Strategic Programme Grants ‘Molecules from 

Nature’ BBS/E/J/000PR9790 (AO) and BB/J004480/1 (PF, SW), the John Innes Foundation 

(AO), and the University of Bath (HWN, LD). We would like to thank Stefan Schoenfelder 

and Simon Andrews for helpful discussions in setting up CHi-C protocols and defining 

capture probes, Silin Zhong for directing us to the Hi-C associated RNAseq datasets,  as well 

as Kasia Oktaba for discussion on Hi-C experimental details.  



References: 

1. Rocha EP (2008) The organization of the bacterial genome. Annu Rev Genet 42:211-

233. 

2. Pal C & Hurst LD (2003) Evidence for co-evolution of gene order and recombination 

rate. Nat Genet 33(3):392-395. 

3. Hurst LD, Pál C, & Lercher MJ (2004) The evolutionary dynamics of eukaryotic gene 

order. Nat Rev Genet 5(4):299-310. 

4. Michalak P (2008) Coexpression, coregulation, and cofunctionality of neighboring 

genes in eukaryotic genomes. Genomics 91(3):243-248. 

5. Osbourn AE & Field B (2009) Operons. Cell Mol Life Sci 66(23):3755-3775. 

6. Rokas A, Wisecaver JH, & Lind AL (2018) The birth, evolution and death of 

metabolic gene clusters in fungi. Nat Rev Microbiol 16(12):731-744. 

7. Nützmann HW, Scazzocchio C, & Osbourn A (2018) Metabolic gene clusters in 

eukaryotes. Annu Rev Genet 52:159-183. 

8. Slot JC (2017) Fungal gene cluster diversity and evolution. Adv Genet 100:141-178. 

9. Giles NH, et al. (1985) Gene organization and regulation in the qa (quinic acid) gene 

cluster of Neurospora crassa. Microbiol Rev 49(3):338-358. 

10. Wong S & Wolfe KH (2005) Birth of a metabolic gene cluster in yeast by adaptive 

gene relocation. Nat Genet 37(7):777-782. 

11. Walton JD (2000) Horizontal gene transfer and the evolution of secondary metabolite 

gene clusters in fungi: an hypothesis. Fungal Genet Biol 30(3):167-171. 

12. Sproul D, Gilbert N, & Bickmore WA (2005) The role of chromatin structure in 

regulating the expression of clustered genes. Nat Rev Genet 6(10):775-781. 

13. Huang ACC, et al. (2019) A specialized metabolic network selectively modulates 

Arabidopsis root microbiota. Science 364(6440). 

14. Nützmann HW, Huang A, & Osbourn A (2016) Plant metabolic clusters - from 

genetics to genomics. New Phytol 211(3):771-789. 

15. Schneider LM, et al. (2017) The Cer-cqu gene cluster determines three key players in 

a beta-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular 

waxes. J Exp Bot 68(17):5009. 

16. Winzer T, et al. (2012) A Papaver somniferum 10-Gene Cluster for synthesis of the 

anticancer alkaloid noscapine. Science 336(6089):1704-1708. 



17. Itkin M, et al. (2013) Biosynthesis of antinutritional alkaloids in solanaceous crops Is 

mediated by clustered genes. Science 341(6142):175-179. 

18. Kautsar SA, Duran HGS, Blin K, Osbourn A, & Medema MH (2017) plantiSMASH: 

automated identification, annotation and expression analysis of plant biosynthetic 

gene clusters. Nucleic Acids Res 45(W1):W55-W63. 

19. Shang Y, et al. (2014) Plant science. Biosynthesis, regulation, and domestication of 

bitterness in cucumber. Science 346(6213):1084-1088. 

20. Yu N, et al. (2016) Delineation of metabolic gene clusters in plant genomes by 

chromatin signatures. Nucleic Acids Res 44(5):2255-2265. 

21. Boutanaev AM, et al. (2015) Investigation of terpene diversification across multiple 

sequenced plant genomes. Proc Natl Acad Sci U S A 112(1):E81-E88. 

22. Boutanaev AM & Osbourn AE (2018) Multigenome analysis implicates miniature 

inverted-repeat transposable elements (MITEs) in metabolic diversification in 

eudicots. Proc Natl Acad Sci U S A 115(28):E6650-E6658. 

23. Field B, et al. (2011) Formation of plant metabolic gene clusters within dynamic 

chromosomal regions. Proc Natl Acad Sci U S A 108(38):16116-16121. 

24. Field B & Osbourn AE (2008) Metabolic diversification - Independent assembly of 

operon-like gene clusters in different plants. Science 320(5875):543-547. 

25. Wegel E, Koumproglou R, Shaw P, & Osbourn A (2009) Cell type-specific chromatin 

decondensation of a metabolic gene cluster in oats. Plant Cell 21(12):3926-3936. 

26. Barlow DP (2011) Genomic imprinting: a mammalian epigenetic discovery model. 

Annu Rev Genet 45:379-403. 

27. Cárdenas PD, et al. (2016) GAME9 regulates the biosynthesis of steroidal alkaloids 

and upstream isoprenoids in the plant mevalonate pathway. Nat Commun 7:10654. 

28. Gacek A & Strauss J (2012) The chromatin code of fungal secondary metabolite gene 

clusters. Appl Microbiol Biotechnol 95(6):1389-1404. 

29. Lohr D, Venkov P, & Zlatanova J (1995) Transcriptional regulation in the yeast Gal 

gene family - a complex genetic network. Faseb J 9(9):777-787. 

30. Nützmann HW & Osbourn A (2014) Gene clustering in plant specialized metabolism. 

Curr Opin Biotech 26:91-99. 

31. Ragoczy T, Bender MA, Telling A, Byron R, & Groudine M (2006) The locus control 

region is required for association of the murine beta-globin locus with engaged 

transcription factories during erythroid maturation. Genes Dev 20(11):1447-1457. 



32. Schoenfelder S, et al. (2015) Polycomb repressive complex PRC1 spatially constrains 

the mouse embryonic stem cell genome. Nat Genet 47(10):1179-1186. 

33. Simonis M, et al. (2006) Nuclear organization of active and inactive chromatin 

domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 

38(11):1348-1354. 

34. Vieux-Rochas M, Fabre PJ, Leleu M, Duboule D, & Noordermeer D (2015) 

Clustering of mammalian Hox genes with other H3K27me3 targets within an active 

nuclear domain. Proc Natl Acad Sci U S A 112(15):4672-4677. 

35. Winter DJ, et al. (2018) Repeat elements organise 3D genome structure and mediate 

transcription in the filamentous fungus Epichloe festucae. PLoS Genet 

14(10):e1007467. 

36. Sohrabi R, et al. (2015) In planta variation of volatile biosynthesis: an alternative 

biosynthetic route to the formation of the pathogen-induced volatile homoterpene 

DMNT via triterpene degradation in Arabidopsis roots. Plant Cell 27(3):874-890. 

37. Nützmann HW & Osbourn A (2015) Regulation of metabolic gene clusters in 

Arabidopsis thaliana. New Phytol 205(2):503-510. 

38. Feng S, et al. (2014) Genome-wide Hi-C analyses in wild-type and mutants reveal 

high-resolution chromatin interactions in Arabidopsis. Mol Cell 55(5):694-707. 

39. Grob S, Schmid MW, & Grossniklaus U (2014) Hi-C analysis in Arabidopsis 

identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. 

Mol Cell 55(5):678-693. 

40. Wang C, et al. (2015) Genome-wide analysis of local chromatin packing in 

Arabidopsis thaliana. Genome Res 25(2):246-256. 

41. Dong P, et al. (2019) Tissue-specific Hi-C analyses of rice, foxtail millet and maize 

suggest non-canonical function of plant chromatin domains. J Integr Plant Biol. 

42. Del Prete S, Arpon J, Sakai K, Andrey P, & Gaudin V (2014) Nuclear architecture 

and chromatin dynamics in interphase nuclei of Arabidopsis thaliana. Cytogenet 

Genome Res 143(1-3):28-50. 

43. Fransz P, de Jong JH, Lysak M, Castiglione MR, & Schubert I (2002) Interphase 

chromosomes in Arabidopsis are organized as well defined chromocenters from 

which euchromatin loops emanate. Proc Natl Acad Sci USA 99(22):14584-14589. 

44. Simon L, Voisin M, Tatout C, & Probst AV (2015) Structure and function of 

centromeric and pericentromeric heterochromatin in Arabidopsis thaliana. Front 

Plant Sci 6:1049. 



45. Martin P, et al. (2015) Capture Hi-C reveals novel candidate genes and complex long-

range interactions with related autoimmune risk loci. Nat Commun 6:10069. 

46. Mifsud B, et al. (2015) Mapping long-range promoter contacts in human cells with 

high-resolution capture Hi-C. Nat Genet 47(6):598-606. 

47. Andrey G, et al. (2013) A switch between topological domains underlies HoxD genes 

collinearity in mouse limbs. Science 340(6137):1234167. 

48. Izumi M, Tsunoda H, Suzuki Y, Makino A, & Ishida H (2012) RBCS1A and 

RBCS3B, two major members within the Arabidopsis RBCS multigene family, 

function to yield sufficient Rubisco content for leaf photosynthetic capacity. J Exp 

Bot 63(5):2159-2170. 

49. Connolly LR, Smith KM, & Freitag M (2013) The Fusarium graminearum histone 

H3 K27 methyltransferase KMT6 regulates development and expression of secondary 

metabolite gene clusters. PLoS Genet 9(10):e1003916. 

50. Studt L, et al. (2016) Knock-down of the methyltransferase Kmt6 relieves H3K27me3 

and results in induction of cryptic and otherwise silent secondary metabolite gene 

clusters in Fusarium fujikuroi. Environ Microbiol 18(11):4037-4054. 

51. Feng SH & Jacobsen SE (2011) Epigenetic modifications in plants: an evolutionary 

perspective. Curr Opin Plant Biol 14(2):179-186. 

52. Zhang XY, et al. (2007) Whole-genome analysis of histone H3 lysine 27 

trimethylation in Arabidopsis. PLoS Biol 5(5):1026-1035. 

53. Liu C, et al. (2016) Genome-wide analysis of chromatin packing in Arabidopsis 

thaliana at single-gene resolution. Gen Research 26(8):1057-1068. 

54. Klocko AD, et al. (2016) Normal chromosome conformation depends on subtelomeric 

facultative heterochromatin in Neurospora crassa. Proc Natl Acad Sci U S A 

113(52):15048-15053. 

55. Shu J, et al. (2019) Genome-wide occupancy of histone H3K27 methyltransferases 

CURLY LEAF and SWINGER in Arabidopsis seedlings. Plant Direct 3(1):e00100. 

56. Dong P, et al. (2017) 3D chromatin architecture of large plant genomes determined by 

local A/B compartments. Mol Plant 10(12):1497-1509. 

57. Liu C, Cheng YJ, Wang JW, & Weigel D (2017) Prominent topologically associated 

domains differentiate global chromatin packing in rice from Arabidopsis. Nat Plants 

3(9):742-748. 

58. Dixon JR, et al. (2012) Topological domains in mammalian genomes identified by 

analysis of chromatin interactions. Nature 485(7398):376-380. 



59. Sexton T, et al. (2012) Three-dimensional folding and functional organization 

principles of the Drosophila genome. Cell 148(3):458-472. 

60. Frey M, et al. (1997) Analysis of a chemical plant defense mechanism in grasses. 

Science 277(5326):696-699. 

61. Swaminathan S, Morrone D, Wang Q, Fulton DB, & Peters RJ (2009) CYP76M7 Is 

an ent-cassadiene C11 alpha-hydroxylase defining a second multifunctional 

diterpenoid biosynthetic gene cluster in rice. Plant Cell 21(10):3315-3325. 

62. Wilderman PR, Xu MM, Jin YH, Coates RM, & Peters RJ (2004) Identification of 

syn-pimara-7,15-diene synthase reveals functional clustering of terpene synthases 

involved in rice phytoalexin/allelochemical biosynthesis. Plant Physiol135(4):2098-

2105. 

63. Wisecaver JH, et al. (2017) A global coexpression network approach for connecting 

genes to specialized metabolic pathways in plants. Plant Cell 29(5):944-959. 

64. Acemel RD, Maeso I, & Gomez-Skarmeta JL (2017) Topologically associated 

domains: a successful scaffold for the evolution of gene regulation in animals. Wiley 

Interdiscip Rev Dev Biol 6(3). 

65. Dixon JR, Gorkin DU, & Ren B (2016) Chromatin domains: The unit of chromosome 

organization. Molecular Cell 62(5):668-680. 

66. Rao SSP, et al. (2017) Cohesin loss eliminates all loop domains. Cell 171(2):305-+. 

67. Rowley MJ, et al. (2017) Evolutionarily conserved principles predict 3D chromatin 

organization. Mol Cell 67(5):837-+. 

68. Zhu WS, et al. (2017) Altered chromatin compaction and histone methylation drive 

non-additive gene expression in an interspecific Arabidopsis hybrid. Genome Biol 18. 

69. Murashige T & Skoog F (1962) A revised medium for rapid growth and bio assays 

with tobacco tissue cultures. Physiol Plantarum 15(3):473-497. 

70. Martin AC, Shaw P, Phillips D, Reader S, & Moore G (2014) Licensing MLH1 sites 

for crossover during meiosis. Nat Commun 5. 

71. Pendle A & Shaw P (2016) Immunolabeling and in situ labeling of isolated plant 

interphase nuclei. Plant Cytogenetics: Methods and Protocols 1429:65-76. 

72. Doerr D, Nützmann HW. Chromosome structure at metabolic gene clusters. 

BioProject. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA576277. Deposited 7 

October 2019. 



73. UCLA-NL. Arabidopsis thaliana clf-28 swn-7 for Hi-C (HindIII). Sequence Read 

Archive (SRA). https://www.ncbi.nlm.nih.gov/sra/SRP043612. Accessed March 11th, 

2019. 

74. Shu J, Cui Y. Genome-wide occupancy of histone H3K27 methyltransferases CURLY 

LEAF and SWINGER in Arabidopsis seedlings. Gene Expression Omnibus (GEO). 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108960. Accessed 

February 28th 2020. 

75. The Chinese University of Hong Kong. C3C4 ENCODE project. BioProject. 

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA486213. Accessed May 20th 2019. 

76. The Chinese University of Hong Kong. Diverse 3D chromatin architecture of medium 

and large plant genomes. BioProject. 

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA391551. Accessed May 20th 2019 

(HiC datasets) and February 14th 2020 (RNA-seq datasets). 

 

 

 

https://www.ncbi.nlm.nih.gov/sra/SRP043612
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA486213
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA391551


Figures  

Fig. 1. Organ-specific gene cluster expression and chromosome conformation in A. thaliana. 

(A) The thalianol, marneral and baruol/arabidiol gene clusters. Red arrows, cluster genes. 

Grey arrows, uncharacterised genes.  

(B) Relative quantification of mRNA levels of thalianol, marneral and arabidiol/baruol 

cluster genes in the roots and leaves of 7-day old seedlings as assessed by RNA-seq analysis 

of three biological replicates. Error bars indicate standard error of logFC. 

(C) Two-dimensional Hi-C interaction maps of the 3D conformation of A. thaliana 

chromosomes in roots and leaves. Chromosomes are labelled from left to right and top to 

bottom. Centromeric and pericentromeric regions are marked with black rounded boxes. 

Telomeres are marked with circles. Yellow to blue colouring indicates strong to weak 

interaction tendency. Genomic bin size: 25 kb. 

(D) Location of differentially interacting regions on A.thaliana chromosomes. Distribution of 

the top 10% regions engaging in most differential interactions throughout the genome, are 

shown (p-value < 0.01). Regions with increased interaction tendency in leaves and roots are 



shown in blue and yellow, respectively. Note: regions may interact with different 

chromosomal sites in root and leaf and may thus show both blue and yellow markings. Light 

grey, chromosome arms; dark grey, pericentromeric region; black, centromeric region; pink, 

IHIs.  

  



 

Fig. 2. Integration of the thalianol gene cluster in the 3D nuclear space  

(A) Detailed two-dimensional Hi-C maps of the genomic region surrounding the thalianol 

cluster. White boxes indicate cluster-associated local interactive domains in roots (left) and 

leaves (right). Chromosome co-ordinates are labelled from left to right and top to bottom. 



Yellow to blue colouring indicates strong to weak interaction tendency. Genomic bin size: 25 

kb. 

(B) Violin plot of frequency and range of interaction counts of differentially interacting 

regions. The thalianol, arabidiol/baruol and marneral cluster-associated interactive domains 

are indicated by the red dots. 

(C) Circos plots showing intrachromosomal differential genomic interactions for the thalianol 

cluster in leaves and roots. Chromosome arms are shown in white, pericentromers in light 

grey, centromeres in dark grey and the thalianol cluster in red. Each arc/connection represents 

a significantly enriched interaction (p-value < 0.01). 

(D) Box plots showing normalised expression levels of genes within chromosomal regions of 

differential interaction with the thalianol, marneral and arabidiol/baruol clusters. Variance 

stabilized gene expression values are shown for differentially interacting regions in roots and 

leaves. Gene expression levels are significantly higher in roots compared to leaves (p = 

1.188x10-7, Wilcoxon rank-sum test).  

(E) 3D DNA FISH analysis of nuclear envelope association of the thalianol cluster. 

Representative images and envelope association percentage for bacterial artificial 

chromosomes BAC F20L13 (covering thalianol cluster) and a control, BAC F10H6 (covering 

an area of open chromatin). The nuclei in the left panels are maximum intensity projections 

of a z-stack through each nucleus. On the right, each locus is shown in a single optical section 

through the nucleus in the xy-direction. Note, the higher envelope association rate of F20L13 

compared to F10H6 in leaves (p = 1.11x10-8, two-sided Fisher’s exact test) and the 

significantly lower association of F20L13 in roots compared to leaves (p = 0.019, two-sided 

Fisher’s exact test). Scale bar 5 µm. Blue arrow, foci associated with the nuclear envelope; 

yellow arrows, foci not associated with nuclear envelope. n, number of foci counted. 

 

  



 



Fig 3. Local interactive domains at the thalianol cluster. 

(A, B) Two-dimensional CHi-C interaction map of the thalianol cluster region in roots (A) 

and leaves (B). Yellow to blue colouring indicates strong to weak interaction tendency. 

Genomic bin size: restriction fragment. 

 (C) Differential two-dimensional CHi-C interaction map of the thalianol cluster region in 

leaves vs roots. Co-ordinates are labelled from left to right and top to bottom. Cluster genes 

are shown in red, and additional genes with increased transcript levels in root vs leaves in 

orange. Genes at the borders of the cluster-associated domain are in grey (from left to right – 

At5g47910, At5g48050, At5g48150, At5g48160).  Yellow to blue colouring indicates strong 

to weak interaction tendency. Genomic bin size: restriction fragment. 

(D) Model of interactive domains at the thalianol cluster. A strong interactive domain is 

formed at the thalianol cluster during active transcription and a weaker but larger domain is 

formed during transcriptional repression. 

 (E) 3C analysis of the extended thalianol cluster region. Top, the chromosomal area around 

the thalianol cluster. Cluster genes are shown in red and non-cluster genes in grey.  The 

histograms below display the 3C interaction profile of different sites in the extended cluster 

region. Interaction tendencies in roots and leaves are shown in black and grey bars, 

respectively. Significantly increased interactions in roots are underlined in yellow and 

significantly increased interactions in leaves are underlined in blue. Asterisk indicates 

significant difference between interaction tendencies (Student’s T-test, p < 0.01). 

 

  



 

Fig. 4. Loss of cluster-associated interactive domains in a H3K27me3 mutant.  



(A, B, C) Two-dimensional Hi-C interaction maps of the 3D conformation surrounding the 

thalianol cluster (A), marneral (B) and arabidiol/baruol (C) clusters in seedlings. Left, wild 

type; right clf/swn mutant. Chromosomes are labelled from left to right and top to bottom. 

Yellow to blue colouring indicates strong to weak interaction tendency. Genomic bin size: 25 

kb. The boxplots on the right show logarithmic Fold Change values for the wild type vs the 

clf/swn mutant intradomain interaction counts. The tracks at the bottom of each panel show 

significant peaks and enrichment tracks of H3K27me3 markings in wild-type (left panels) 

and clf/swn double mutants extracted from Shu et al (2019) (55). In yellow, area of cluster 

associated interactive domain.  

 

  



 

Fig. 5. Metabolic gene clusters from other plant species are located in single TADs.  

(A, B, C, D) Two-dimensional Hi-C interaction maps of the 3D conformations of the 

momilactone (A) and phytocassane (B) cluster-associated genomic regions in rice; the 

DIMBOA cluster-associated genomic region in maize (C); and the tomatine cluster-

associated genomic region in tomato (D). Chromosomes are labelled from left to right and 

top to bottom. The biosynthetic gene clusters are indicated with black line and associated 

TADs are shown in the grey boxes. Yellow to blue colouring indicates strong to weak 

interaction tendency. Genomic bin size: 25 kb 

 

 


