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AbstractÐWe describe a new method of matching statistical models of

appearance to images. A set of model parameters control modes of shape and

gray-level variation learned from a training set. We construct an efficient iterative

matching algorithm by learning the relationship between perturbations in the

model parameters and the induced image errors.

Index TermsÐAppearance models, deformable templates, model matching.
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1 INTRODUCTION

THE ªinterpretation through synthesisº approach has received
considerable attention over the past few years [3], [6], [11], [14].
The aim is to ªexplainº novel images by generating synthetic
images that are as similar as possible, using a parameterized model
of appearance. One motivation is to achieve robust segmentation
by using the model to constrain solutions to be valid examples of
the class of images modeled. A suitable model also provides a
basis for a broad range of applications by coding the appearance of
a given image in terms of a compact set of parameters that are
useful for higher-level interpretation of the scene.

Suitable methods of modeling photo-realistic appearance have

been described previously, e.g., Edwards et al. [3], Jones and

Poggio [9], or Vetter [14]). When applied to images of complex and

variable objects (e.g., faces), these models typically require a large

number of parameters (50-100). In order to interpret novel images,

an efficient method of finding the best match between model and

image is required. Direct optimization in this high-dimensional

space is possible using standard methods but it is slow [9] and/or

liable to become trapped in local minima.
We have shown previously [11], [3] that a statistical model of

appearance can be matched to an image in two steps: First, an

Active Shape Model is matched to boundary features in the image,

then a separate eigenface model is used to reconstruct the texture

(in the graphics sense) in a shape-normalized frame. This approach

is not, however, guaranteed to give an optimal fit of the

appearance model to the image because small errors in the match

of the shape model can result in a shape-normalized texture map

that cannot be reconstructed correctly using the eigenface model.
In this paper, we show an efficient direct optimization approach

that matches shape and texture simultaneously, resulting in an

algorithm that is rapid, accurate, and robust. In our method, we do

not attempt to solve a general optimization problem each time we

wish to fit the model to a new image. Instead, we exploit the fact

that the optimization problem is similar each time so we can learn

these similarities offline. This allows us to find directions of rapid

convergence even though the search space has very high

dimensionality. The approach has similarities with ªdifference

decompositionº tracking algorithms [7], [8], [13], but rather than

tracking a single deforming object we match a model which can fit

a whole class of objects.

2 BACKGROUND

Several authors have described methods for matching deformable

models of shape and appearance to novel images. Nastar et al. [12]

describe a model of shape and intensity variations using a

3D deformable model of the intensity landscape. They use a

closest point surface matching algorithm to perform the fitting,

which tends to be sensitive to the initialization. Lanitis et al. [11]

and Edwards et al. [3] use a boundary finding algorithm (an

ªActive Shape Modelº) to find the best shape, then use this to

match a model of image texture. Poggio et al. [6], [9] use an optical

flow algorithm to match shape and texture models iteratively, and

Vetter [14] uses a general purpose optimization method to match

photorealistic human face models to images. The last two

approaches are slow because of the high dimensionality of the

problem and the expense of testing the quality of fit of the model

against the image.
Fast model matching algorithms have been developed in the

tracking community. Gleicher [7] describes a method of tracking

objects by allowing a single template to deform under a variety of

transformations (affine, projective, etc.). He chooses the parameters

to minimize a sum of squares measure and essentially precom-

putes derivatives of the difference vector with respect to the

parameters of the transformation. Hager and Belhumeur [8]

describe a similar approach, but include robust kernels and

models of illumination variation. Sclaroff and Isidoro [13] extend

the approach to track objects which deform, modeling deformation

using the low energy modes of a finite element model of the target.

The approach has been used to track heads [10] using a rigid

cylindrical model of the head.
The Active Appearance Models described below are an

extension of this approach [4], [1]. Rather than tracking a particular

object, our models of appearance can match to any of a class of

deformable objects (e.g., any face with any expression, rather than

one persons face with a particular expression). To match rapidly,

we precompute the derivatives of the residual of the match

between the model and the target image and use them to compute

the update steps in an iterative matching algorithm. In order to

make the algorithm insensitive to changes in overall intensity, the

residuals are computed in a normalized reference frame.

3 MODELING APPEARANCE

Following the approach of Edwards et al. [3], our statistical

appearance models are generated by combining a model of shape

variation with a model of texture variation. By ªtextureº we mean

the pattern of intensities or colors across an image patch. To build a

model, we require a training set of annotated images where

corresponding points have been marked on each example. For

instance, to build a face model, we require face images marked

with points defining the main features (Fig. 1). We apply

Procrustes analysis to align the sets of points (each represented

as a vector, x) and build a statistical shape model [2]. We then

warp each training image so the points match those of the mean

shape, obtaining a ªshape-free patchº (Fig. 1). This is raster

scanned into a texture vector, g, which is normalized by applying a

linear transformation, g! �gÿ �g1�=�g, where 1 is a vector of

ones, �g and �2
g are the mean and variance of elements of g. After

normalization, gT1 � 0 and jgj � 1. Eigen-analysis is applied to

build a texture model. Finally, the correlations between shape and

texture are learned to generate a combined appearance model (see

[3] for details).
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The appearance model has parameters, c, controlling the shape
and texture (in the model frame) according to

x � �x�Qsc

g � �g�Qgc;
�1�

where �x is the mean shape, �g the mean texture in a mean shaped
patch, and Qs, Qg are matrices describing the modes of variation
derived from the training set.

A shape, X, in the image frame can be generated by
applying a suitable transformation to the points, x : X � St�x�.
Typically, St will be a similarity transformation described by a

scaling, s, an in-plane rotation, �, and a translation �tx; ty�. For
linearity, we represent the scaling and rotation as �sx; sy�,
where sx � �s cos �ÿ 1�, sy � s sin �. The pose parameter vector
t � �sx; sy; tx; ty�T is then zero for the identity transformation
and St��t�x� � St�S�t�x��.

The texture in the image frame is generated by applying a scaling
and offset to the intensities, gim � Tu�g� � �u1 � 1�gim � u21, where

u is the vector of transformation parameters, defined so that u � 0 is
the identity transformation and Tu��u�g� � Tu�T�u�g��.

A full reconstruction is given by generating the texture in a
mean shaped patch, then warping it so that the model points lie on
the image points, X. In experiments described below, we used a
triangulation-based interpolation method to define a continuous

mapping.
In practice, we construct a multiresolution model based on a

Gaussian image pyramid. This allows a multiresolution approach
to matching, leading to improved speed and robustness. For each
level of the pyramid, we build a separate texture model, sampling
a number of pixels proportional to the area (in pixels) of the target
region in the image. Thus, the model at level 1 has one quarter the

number of pixels of that at level 0. For simplicity, we use the same
set of landmarks at every level and the same shape model. Though
strictly the number of points should reduce at lower resolutions,

any blurring of detail is taken account of by the texture model. The
appearance model at a given level is then computed given the
global shape model and the particular texture model for that level.

3.1 An Appearance Model for Faces

We used the method described above to build a model of facial
appearance. We used a training set of 400 images of faces, each
labeled with 68 points around the main features (Fig. 1), and
sampled approximately 10,000 intensity values from the facial
region. From this, we generated an appearance model which
required 55 parameters to explain 95 percent of the observed
variation. Fig. 2 shows the effect of varying the first four
parameters from c, showing changes in identity, pose, and
expression. Note the correlation between shape and intensity
variation.

4 ACTIVE APPEARANCE MODEL SEARCH

We now turn to the central problem addressed by this paper: We
have a new image to be interpreted, a full appearance model as
described above and a rough initial estimate of the position,
orientation, and scale at which this model should be placed in an
image. We require an efficient scheme for adjusting the model
parameters, so that a synthetic example is generated, which
matches the image as closely as possible.

4.1 Modeling Image Residuals

The appearance model parameters, c, and shape transformation
parameters, t, define the position of the model points in the image
frame, X, which gives the shape of the image patch to be
represented by the model. During matching, we sample the pixels
in this region of the image, gim, and project into the texture model
frame, gs � Tÿ1

u �gim�. The current model texture is given by
gm � �g�Qgc. The current difference between model and image
(measured in the normalized texture frame) is thus
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Fig. 1. A labeled training image gives a shape free patch and a set of points.

Fig. 2. Effect of varying first four facial appearance model parameters, c1 ÿ c4 by �3 standarad deviations from the mean.



r�p� � gs ÿ gm; �2�
where p are the parameters of the model, pT � �cT jtT juT �.

A simple scalar measure of difference is the sum of squares of
elements of r, E�p� � rT r. A first order Taylor expansion of (2)
gives

r�p� �p� � r�p� � @r

@p
�p; �3�

where the ijth element of matrix @r
@p is dri

dpj
.

Suppose during matching our current residual is r. We wish to
choose �p so as to minimize jr�p� �p�j2. By equating (3) to zero,
we obtain the RMS solution,

�p � ÿRr�p� where R � @r

@p

T @r

@p

� �ÿ1
@r

@p

T

: �4�

In a standard optimization scheme, it would be necessary to
recalculate @p

@p at every step, an expensive operation. However, we
assume that since it is being computed in a normalized reference
frame, it can be considered approximately fixed. We can thus
estimate it once from a training set. We estimate @r

@p by numeric
differentiation. The jth column is computed by systematically
displacing each parameter from the known optimal value on
typical images and computing a weighted average of the residuals.
To improve the robustness of the measured estimate, residuals at
displacements of differing magnitudes, �pjk, are measured (typi-
cally up to 0.5 standard deviations, �j, for each parameter, pj) and
summed with a weighting proportional to exp�ÿ�p2

jk=2�2
j �=�pjk. We

then precompute R and use it in all subsequent searches with the
model.

Images used in the calculation of @r
@p can either be examples

from the training set or synthetic images generated using the
appearance model itself. Where synthetic images are used, one can
either use a suitable (e.g., random) background, or can detect the
areas of the model which overlap the background and remove
those pixels from the model building process. This latter makes the
final relationship more independent of the background. Where the
background is predictable (e.g., medical images), this is not
necessary.

4.2 Iterative Model Refinement

Using (4), we can suggest a correction to make in the model
parameters based on a measured residual r. This allows us to
construct an iterative algorithm for solving our optimization
problem. Given a current estimate of the model parameters, c,
the pose t, the texture transformation u, and the image sample at
the current estimate, gim, one step of the iterative procedure is as
follows:

1. Project the texture sample into the texture model frame
using gs � Tÿ1

u �gim�.
2. Evaluate the error vector, r � gs ÿ gm, and the current

error, E � jrj2.
3. Compute the predicted displacements, �p � ÿRr�p�.
4. Update the model parameters p! p� k�p, where initially

k � 1.
5. Calculate the new points, X0 and model frame texture g0m.
6. Sample the image at the new points to obtain g0im.
7. Calculate a new error vector, r0 � Tÿ1

u0 �g0im� ÿ g0m.
8. If jr0j2 < E, then accept the new estimate; otherwise, try at

k � 0:5, k � 0:25, etc.

This procedure is repeated until no improvement is made to the
error, jrj2, and convergence is assumed. In practice, we use a
multiresolution implementation, in which we start at a coarse
resolution and iterate to convergence at each level before
projecting the current solution to the next level of the model. This
is more efficient and can converge to the correct solution from
further away than searching at a single resolution. The complexity
of the algorithm is O�npixelsnmodes� at a given level. Essentially, each
iteration involves sampling npixels points from the image then
multiplying by a nmodes � npixel matrix.

In earlier work [4], [1], we described a training algorithm based
on regressing random displacement vectors against residual error
vectors. Because of the linear assumptions being made, in the limit
this would give the same result as above. However, in practice, we
have found the above method to be faster and more reliable.

5 AN ACTIVE APPEARANCE MODEL FOR FACES

We applied the Active Appearance Model training algorithm to the
face model described in Section 3.1. The elements of a row of the
matrix R give the weights for each texture sample point for a given
model parameter. Figs. 3 and 4 show the first two modes of the
appearance model and the corresponding weight images. The
areas which exhibit the largest variations for the mode are assigned
the largest weights by the training process.

We used the face AAM to search for faces in previously unseen
images. Fig. 5 shows frames from an AAM search for two faces,
each starting with the mean model displaced from the true face
center. In each case, a good result is found. The search takes less
than one second on a 400MHz Pentium II PC.

6 QUANTITATIVE EVALUATION

To obtain a quantitative evaluation of the performance of the
AAM algorithm, we trained a model on 100 hand-labeled face
images and tested it on a different set of 100 labeled images.
Each face was about 200 pixels wide. A variety of different
people and expressions were included. The AAM was trained
by systematically displacing the model parameters on the first
10 images of the training set.

On each test image, we systematically displaced the model from
the true position by � 10 percent of the face width in x and y, and
changed its scale by � 10 percent. We then ran the multiresolution
search, starting with the mean appearance parameters.
2,700 searches were run in total. Of these, 13 percent failed to
converge to a satisfactory result (the mean point position error was
greater than 5 percent of face width per point). Of those that did
converge, the RMS error between the model points and the target
points was about 0.8 percent of face width. The mean magnitude of
the final texture error vector in the normalized frame, relative to
that of the best model fit given the marked points, was 0.84 (sd:
0.2), suggesting that the algorithm is locating a better result than
that provided by the marked points. This is to be expected since
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Fig. 3. First mode and displacement weights.

Fig. 4. Second mode and displacement weights.



the algorithm is minimizing the texture error vector and will
compromise the shape if that leads to an overall improvement in
texture match.

Fig. 6 shows the mean intensity error per pixel (for an image
using 256 gray-levels) against the number of iterations, averaged
over a set of searches at a single resolution. The model was initially
displaced by 5 percent of the face width. The dotted line gives the
mean reconstruction error using the hand-marked landmark
points, suggesting a good result is obtained by the search.

Fig. 7 shows the proportion of 100 multiresolution searches
which converged correctly given various starting positions dis-
placed by up to 50 pixels (25 percent of face width) in x and y. The
model displays good results with up to 20 pixels (10 percent of the
face width) initial displacement.

7 DISCUSSION AND CONCLUSIONS

We have demonstrated an iterative scheme for matching a
Statistical Appearance Model to new images. The method makes
use of learned correlation between errors in model parameters and
the resulting residual texture errors. Given a reasonable initial
starting position, the search converges rapidly and reliably. The
approach is valuable for locating examples of any class of objects
that can be adequately represented using the statistical appearance

model described above. This includes objects which exhibit shape

and texture variability for which correspondences can be defined

between different examples. For instance, the method cannot be

used for tree like structures with varying numbers of branches, but

can be used for various organs which exhibit shape variation but

not a change in topology. We have tested the method extensively

with images of faces and with medical images [1], [5] and have

obtained encouraging results in other domains. Although an

AAM search is slightly slower than Active Shape Model search [2],

the procedure tends to be be more robust than ASM search alone,

since all the image evidence is used.
The algorithm has been described for gray-level images but can

be extended to color images simply by sampling each color at each

sample point (e.g., three values per pixel for an RGB image). The

nature of the search algorithm also makes it suitable for tracking

objects in image sequences, where it can be shown to give robust

results [5].
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Fig. 5. Multiresolution search from displaced position using face model.

Fig. 6. Mean intensity error as search progresses. Dotted line is the mean error of

the best fit to the landmarks.

Fig. 7. Proportion of searches which converged from different initial

displacements.
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