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Abstract. The paper describes the concept, implementation, and eval-
uation of a new on-body capacitive sensing approach to derive activity
related information. Using conductive textile based electrodes that are
easy to integrate in garments, we measure changes in capacitance inside
the human body. Such changes are related to motions and shape changes
of muscle, skin, and other tissue, which can in turn be related to a broad
range of activities and physiological parameters. We describe the physi-
cal principle, the analog hardware needed to acquire and pre-process the
signal, and example signals from different body locations and actions. We
perform quantitative evaluations of the recognition accuracy, focused on
the specific example of collar-integrated electrodes and actions, such as
chewing, swallowing, speaking, sighing (taking a deep breath), as well as
different head motions and positions.

1 Introduction

On-body sensing and activity recognition are a key concept in Pervasive Comput-
ing [1,16]. It enables a broad range of applications, from new mobile user inter-
faces, sports assistant systems, to health and assisted living. Today, the majority
of on body activity recognition systems rely on motion sensors, such as accelerom-
eters, gyroscope, magnetic field sensors, and combinations thereof [9,18,28]. On
one hand it is due to the availability of cheap, miniaturised devices. On the other
hand, motions of body parts are the key factor in almost all human activities. De-
spite their success motion sensors have some limitations:

1. Not all activities can be sensed from motion. For example, dietary monitoring
has recently received significant interest in activity recognition. However,
neither chewing nor swallowing can be easily detected by motion sensors [7].

2. Attaching motion sensors is not practicable for every body location. This is
particularly true for hands and the head.

3. Signals from motion sensors can be ambivalent (as different actions are for
example associated with similar motions) and noise (e.g. as sensor positions
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shift). Thus, even if a particular activity can be captured using motion sen-
sors, the accuracy could benefit from additional sensors that provide com-
plimentary information and have different, independent sources of error.

As a consequence there has been significant interest in alternative sensing modal-
ities. Textile stretch [14] and fibre optical sensors [13] have been proposed to
detect posture. Another approach has been to add sensors for environmental
parameters such as ambient sound, temperature, or air pressure [20,23].

Finally there are some more experimental approaches involving signals from
“inside” the body. Body sound from the wrist has been used to detect hand
motions [2] and from the ear to detect chewing [3]. In [10] the use of Electroocu-
lographic eye tracking has been demonstrated for the recognition of reading
activity. It has also been shown how to use force sensitive resistors to detect
muscle [22,4] activity. Another interesting example is the use of radar directed
at the body can detect vital signs [25].

The work presented in this paper falls into the above category of novel sensing
approaches that attempt to utilise information from inside the body. It adapts
the physical principle of capacitive sensing used in industry (for example to
inspect closed boxes on a conveyor belt) to wearable activity sensing. In simple
words, we consider a capacitor build out of a conductive textile electrode and
the human body as dielectric. We then analyse capacitance changes caused by
muscle motion, tissue displacement, electrode deformation, etc. This approach
is attractive for activity sensing for the following reasons:

1. It provides information that is difficult to obtain with other unobtrusive sen-
sors. For example, in the quantitative study presented in this paper, we use
textile electrodes integrated in a collar to recognise among others, chewing
and swallowing.

2. A sensor at a single location provides signals from a broad range of actions
and physiological parameters. Thus, in addition to chewing and swallowing,
we demonstrate the recognition of speaking, head motions (shaking, nod-
ding), head positions, and deep breathing using the collar setup.

3. The sensing principle can be applied to different body locations. Besides
collar and wrist setups, we show signals from the upper leg that can be
used for modes of locomotion recognition and signals from the chest that are
relevant for vital signs monitoring.

4. The system is based on textile electrodes that can be easily and unobtrusively
integrated into clothing. It requires neither direct skin contact nor special
fixation beyond the pressure of normal close fitting garments.

Related Work. Specifically for capacitive sensing previous work proposed us-
ing basically the same method to measure pulse on the wrist [26]. We have done
a preliminary evaluation of this approach for pulse and breathing rate measure-
ments on the chest [12]. There also exists a large body of work on capacitive
coupling electrodes for hearth rate monitoring and ECG, e.g. [21,27]. However,
our work is based on a fundamentally different principle. Whereas our approach
generates an electric field and measures the influence of capacitance changes due
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to structural changes inside the body, the capacitive coupling electrodes cited
above, measure the electric field generated by the body.

Capacitive sensing is widely used in industry for proximity sensing but more-
over, to examine the content of closed boxes on a conveyor belt. Taking the idea
further, there has been a significant amount of research on electric capacitance
volume tomography [29] that attempts to reconstruct complex structures from
multiple capacitive measurements.

The use of on-body capacitive sensing for user interfaces has been proposed
by [31]. Later the same group has used on-body capacitive sensing for motion
tracking in a dance application [8]. In this work the capacitive measurement
had been used to measure distance between body parts, which is different from
our approach. Capacitive gesture recognition for pervasive computing (but not
wearable systems) has been discussed in [30] and in a string of other publication
by this group. In the wearable field capacitive sensing is the basis of widely
used textile pressure sensors as well [24]. Moreover, it was used for tracking
people using electrode arrays embedded in a carpet [19] and as insole system
measuring weight bearing [17]. To our knowledge, capacitive sensing had not
been investigated for monitoring activities in the breadth attempted in this work.

Paper Contributions. We propose and evaluate a new way to derive activity-
related information by “looking inside” the human body with a capacitance
sensor.
Specifically the paper makes the following contributions:

– While capacitive sensing in itself is an established principle we have put
forward a novel concept for using it in wearable activity recognition.

– Starting from extensive simulations, we designed and implemented the sens-
ing hardware needed to deal with the specific requirements of our approach,
in particular, the large dynamic range and very low electronics noise.

– We performed extensive experiments with different electrodes locations and
activities. We present selected signals from those experiments and use them
to explain the properties and potential of the proposed sensing approach.

– We performed quantitative evaluations of the recognition performance
achieved with our system in the specific example of collar electrodes. Our
recordings include the activities while working at a computer and while walk-
ing (to investigate the impact of motion artifacts).

– To further underscore the potential of this sensing approach, we present
initial quantitative results (from the same collar electrode positions) for
spotting swallowing in the continuous data stream, distinguishing between
different swallowing amounts, and estimating respiration rate for shallow,
normal, deep breathing.

We would like to point out that the aim of this work is not to prove the utility
of the new modality for a particular real life application. Instead, we aim to
establish a basic understanding of how to implement and use the modality and
what sort of information it can provide. For a new sensing modality, such basic
understanding is a necessary pre-condition for conceiving and demonstrating
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concrete applications. Thus, we aim to lay the groundwork for other researchers
to build on, when including this new sensing modality in their systems and
enriching their future applications.

2 Sensing Principle

A capacitor is, in essence, a device that can store energy in an electric field. The
best known example is the parallel plate capacitor, having two rectangular con-
ductive plates separated by a gap filled with a non-conductive dielectric material.
There are no specific requirements on the material from which the conductive
plates are made. Thus, enabling conductive textile to be used, which means that
they are very unobtrusive and easily integrated in clothing.

The electric field of a capacitor depends on the material placed between the
plates, which can “dampen” the field. The damping depends on the molecular
properties of the material as well as on its structure and shape. It can be as simple
linear dependence like in the parallel plate capacitor, but also arbitrarily complex
relationship reflecting elaborate shapes (including cavities) and inhomogeneities
in the molecular properties.

The factor determining the voltage V that a given charge Q produces (dis-
tance between the plates and the influence of the material between them) are
summarised as the capacitance C of the device. The key equation at the heart of
the active capacitive sensing is C = Q

V
, where Q and V can be easily measured,

and C depends on the properties of an object including what is hidden inside it.
Thus, object of changing structure, cavities, or changing surface, e.g. making it
wet, will change C.

Hence, by measuring two electric parameters we can “look” inside an object in
a non-invasive way. Clearly the information that we get is very limited: a single
scalar value. Consequently, a capacitive measurement with a single electrode
pair can not reveal complex structural information. However, it can indicate
structural changes that take place within objects.

Capacitive Measurements on the Human Body. Figure 1 shows the simu-
lated electric field distribution in the human body during a capacitive measure-
ment. This data is part of extensive simulation that we have performed as part
of our system design. We used the SEMCAD package [11]. The simulation was
performed with the following configuration:

– Instead of using two electrode plates, we use just one. The second electrode
is then effectively “earth”. This is a common approach in many capacitive
systems (e.g. touchpads) and allows us to more easily integrate several close-
by electrodes.

– We use AC current instead of DC to charge the capacitor. Since the capaci-
tance of different materials varies with the oscillation frequency, this allows
us to better optimise sensitivity of the system to certain effects.

Electric field intensity just below the electrode is several orders of magnitude
higher then just a few cm further inside the body. Further inside the body the



Active Capacitive Sensing: Exploring a New Wearable Sensing Modality 323

Fig. 1. Simulation of the electric field generate by an electrode on the chest. Left: the
simulation setup. Right: the resulting field. Note that the different tones correspond to
a dB (logarithmic) scale.

intensity is even lower. With regard to information that the capacitive signal
could provide, the following conclusions can be drawn:

1. Any action that produces changes in the position of the electrode (in partic-
ular its distance to the skin) will have a very strong effect on the signal. This
is on one hand a major source of noise, on the other, it can contain useful
information related to motion or posture (when a person moves or changes
posture the electrode will in general be displaced or deformed).

2. Any changes taking place directly below the electrode will produce a clear (al-
though much weaker) signal. Such changes can be muscles flexing or hyoid
movement during swallowing. The exact range of this regime varies depend-
ing on the setup between less then 1 cm to a few cm.

3. Changes deeper inside the body will only produce a distinguishable change
in capacitance if they involve a large volume. A good example is breathing,
where a large amount of air enters the lungs inside of the body.

3 Sensing Hardware

The overview of our sensing hardware is shown in the top part of Figure 2. We
used four front-end boards to provide four independent channels, converting the
capacitance into voltage. The voltage is AD-converted and sent out via ZigBee.
We used a Tmote mini node for the wireless transmission to a Tmote-sky, which
is connected to PC USB port.

The electrode itself is made of conductive textile, which is both thin and
flexible. It can be easy integrated by cutting a required shape and sewing into
the middle of 4 layers of soft paper (ink eraser tissues).

Front-end Boards. Our simulations have shown that existing commercial so-
lutions for capacitive measurement are not sufficient to meet our demands:
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Fig. 2. Top left: top level diagram of the sensing hardware. Top right: implemented
hardware including the electrode used for the neck experiments (left side). Bottom:
schematic of the analog part of the front-end board.

– Small capacitance and ultra-low noise: the capacitance to be measured varies
front several pf to several hundred pf, where information is the signal change,
which could be as small as 0.01pf.

– High measuring frequency: as confirmed by our simulation, the higher fre-
quencies can better penetrate the body , and can thus provide more infor-
mation inner-body changes.

Theses requirements have to be achieved in a small form factor, battery powered
device. We have chosen to design and implement our own measurement circuit
as shown on the bottom of Figure 2. The circuit is based on concept from [26].
The capacitor consisting of the conductive textile electrode, the human body,
and ground is part of a copitts oscillator that generates a sinusoidal voltage. The
oscillation frequency of the circuit is given by

f =
1

2π
√

L(Ccircuit + Csensor)
, (1)

where L and Ccircuit are the characteristic inductance and capacitance of the
circuit, and Csensor is the measured capacitance of the electrode. In our system
Ccircuit is 17MHz.

This sinusoidal signal from the copitts oscillator is differentiated by the ca-
pacitor and resistor after a 1st-stage amplification, converting the change of
frequency to the change of amplitude. After a 2nd-stage amplification, which
isolates and provides enough driving current, this change of amplitude (up to at
most 100Hz) is extracted by an envelope detector. The 3rd-stage amplification
then amplifies the change into a proper input range of the ADC.



Active Capacitive Sensing: Exploring a New Wearable Sensing Modality 325

Fig. 3. Different sensor setups with which experiments were performed. Chest place-
ment, wrist placement, and neck placements. For the neck setup, sensor placement in
an elastic band and integration in a pullover collar are shown.

Because the distance between sensor and skin affects the results most, the
circuit must provide both broad measuring range and high precision. A 24-
bit ADC was used for this purpose. At the same time, signal noise must be
suppressed. Common noise removing methods as isolating the power supply with
appropriate capacitors or adding resistor for impedance matching, do not work
in our case, because they are meant to remove high frequency noise only. Thus,
we optimised our hardware design by separating digital and analog circuits,
amplifying and digitising close to the front-end, and using multi-stage low-pass
filters. Because we focused on human body activity, sample rate was set to 40Hz,
with low-pass filters’ 3dB frequency fixed to ∼15Hz. In addition, we used ultra-
low noise DC-DC voltage regulators to provide amplifier reference voltage.

For multi-channel measurements, oscillation frequencies of the individual chan-
nels must be distinctive. We chose L1 to 0.33uH, 0.47uH, 0.68uH, and R3 corre-
spondingly to 470Ω, 680Ω, and 680Ω. Further, the insulation material between
sensor and skin should be either of a high dielectric coefficient or thick enough to
avoid crosstalk on nearby channels.

4 Signals Analysis

Using the hardware described in the previous section we have performed exten-
sive experiments with different placement of electrodes and activities to under-
stand what type of signal the proposed method can provide. In this section we
give some interesting examples, that illustrate the points made above and relate
to the systematic evaluation that are described in Section 5.

Chest Electrodes. In Figure 4 we first look at the signal collected by elec-
trodes on the chest (see 3), showing breathing cycles. This is an example of the
third category described above: signals originating far from the electrode, but
involving large body volume. The signal from the left electrode has a superim-
posed component related to the heart beat, as the electrode is in close proximity
to the heart. Heart beat becomes more visible when the wearer holds his breath.

Wrist Electrodes. The properties of the proposed sensing approach are well
illustrated by the signal from a wrist electrode which is shown in Figure 4.
Although the electrode is by far not near to the lungs, there is a clear breathing
signal. Even though the electrode is placed far from the chest, the electric field
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Fig. 4. Left top: breathing and pulse signals from chest electrodes. Signals from left
and right electrodes (top and middle trace) and their difference (bottom trace). Left
bottom: signals from front and back chest electrode at higher amplification, when
wearer is holding breath. The pulse can be clearly seen then. Right: signal from a wrist
mounted electrode and spectrogram. Right top: signal showing a mixture of pulse and
breathing. Right middle: low pass filtered signal showing breathing. Right bottom: high
pass filtered signal showing pulse.

Fig. 5. Left: signals from upper leg electrodes (front middle front up, side and back)
during a modes of locomotion experiment. Right: signals from lower arm and wrist
electrodes during a movement sequence.

still passes through and around the chest when going towards “earth”. This
means that the large volume breathing effect is still visible.

The pulse signal is clearly seen even when breathing. In fact, it is even clearer
then from the electrode above the heart. This is because the wrist contains many
blood vessels directly below the skin surface and the distance to the electrode
matters much more than volume of change. This was illustrated in Figure 1.

As Figure 5 shows, arm and wrist signals also contain activity-related informa-
tion. Raising the arm, closing the hand, or shaking the arm, all produce distinct
patterns related to muscle and tissue motion. Note that the muscles and tendons
moving fingers are extending from the lower arm, which is why the hand closing
gesture (and potentially other palm and finger motions) can be distinguished at
the wrist.
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Fig. 6. Signals from the neck electrodes. Left: chewing a piece of bread and swallowing.
Middle: swallowing 15ml of water. Right: different head positions.

Upper Leg Electrodes. The recognition of modes of locomotion (differenti-
ation between sitting, standing, walking etc.) is a standard problem in activity
recognition. Figure 5 left shows how the sensor can be used for this purpose,
with the electrodes wrapped around the upper leg. Walking, sitting standing
and doing crunches all produce different signal patterns. They are mostly due to
muscle shape changes compressing top level tissue and skin (potentially also the
sensor material). An interesting questions for future research is whether care-
ful electrode placement and elaborated signal processing can provide cues on
activation and state of different muscles.

Neck Electrodes. We investigated electrode positions at the neck (see Fig-
ure 3). This position was chosen for three reasons.

1. It is a rich source of information as head motions, positions, speaking and
chewing, all cause skin and muscle motions directly below the skin. The
hyoid moves as people swallow. Veins are covered by thin tissue only.

2. Many of the activities to which those signals relate, are difficult to detect
using other non-obtrusive sensors. Head position and motion requires head
mounted sensors, which is not always practical. For chewing and swallowing
most existing solutions require electrodes to be glued to the skin (although
we have also used sound from the ear in previous work [3]).

3. People are used to wearing things like scarfs, ties, collars, etc. on the neck.
Our electrodes are just pieces of textile and can be unobtrusively integrated.

Figure 6 shows the signals from chewing and swallowing. Chewing is best seen
in front upper electrode as skin motion and deformation caused by jaw motions.
To a much lesser extend the signal is present in the other three electrodes.
The swallowing signal shape is very clear: in the front electrodes it has a “W”-
like shape caused by the hyoid moving up and down. Swallowing water and
swallowing bread causes different shapes.

Figure 6 illustrates our analysis of head postures (left, right up, down). Clear
differences can be seen in the amplitude levels on the different electrodes. These
are due to electrode deformations, tissue compression, and skin movement. The
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Fig. 7. Influence of motion artifacts on the neck electrodes. Left: signals for different
head positions. Right: swallowing water while walking.

Fig. 8. Swallowing signal when the collar presses the electrode against the neck with
100 Pa, 150 Pa, and 340 Pa

same factors are responsible for the very articulate rhythmic signals for nodding
and head shaking. Finally, speaking shows a strong but very variable signal.
Nevertheless, in Section 5, we will show that it is distinct enough for a reasonable
recognition results.

Motion Artifacts and Electrode Attachment. Previous paragraphs have
detailed that the proposed sensor is highly sensitive to a broad range of factors.
Thus, motion artifacts and sensor attachment are obvious concerns. To illus-
trate the effect of motion artifacts, signal for different head position and for
swallowing, recorded while a person was walking, are shown in Figure 7. While
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the noise due to walking can be clearly seen, key features of the specific activity
remain visible. Overall, motion artifacts influence signal quality, however they
do not completely obscure the signal information content. This is confirmed by
dedicated recognition experiments in Section 5.

Concerning sensor attachment, a primary question is how tight the electrode
must be pressed onto the body. During the recognition experiments participants
were assisted to attach the collar “tight but comfortable”. For a more quanti-
tative assessment, we have recorded sample signals while measuring the force,
which the collar extended. From this force the pressure on the neck was esti-
mated. The results for pressures of 100Pa (band extended by 1mm), 150Pa
and 340Pa (for comparison, the atmospheric pressure is around 100’000Pa) are
shown in Figure 8. Interestingly, the least pressure leads to the best signal. This
is because the main contribution to the signals comes from deformation of skin
and soft tissue directly below the electrode, which is suppressed when the collar
is to tight.

5 Quantitative Evaluation

In this quantitative evaluation we focus on the collar setup. As detailed in Sec-
tion 4 this setup provides information related to different activities, such as head
motions, chewing and swallowing, which are difficult to detect with other unob-
trusive sensors. For the same reason it is also challenging, as the system needs
to deal with a broad range of variable signals.

We proceeded in four stages. First we investigate how well the signals cor-
responding to 11 different activities can be differentiated in isolation. Thus, we
check how much relevant information is contained in the signal. Secondly, we in-
vestigate how well the swallowing can be spotted in the continuous data stream.
We choose swallowing because it is a short subtle signal (as opposed to activ-
ities, such as nodding which are longer and repetitive). Swallowing spotting is
also relevant for nutrition related applications. Here we demonstrate that rele-
vant activities are not “swamped” by noise from the NULL class. Thirdly, we
attempt to distinguish different swallow sizes, this tests the limits of information
we can extract. In further testing these limits, we attempt to distinguish differ-
ent breathing modes, which can be relevant for many sports and health-related
applications.

5.1 Recognition of Activities

Experimental procedure. Three subjects (one female, two male; aged be-
tween 25 and 45 years) have worn the electrode collar during computer work and
when walking in corridors of the office building. In both scenes we asked them
to perform a set of head movements for 20 s each: nodding, shaking head, look
down, up, left, right, and straight. Moreover, the individuals were asked to drink
and swallow water from a cup (10× ∼6ml), chew and swallow bread pieces (total
5×2 cm3), and speak (reading a text aloud from the computer screen or talking
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Fig. 9. Activity recognition confusion matrices using three capacitive sensors embedded
in the collar. Left: activities while sitting and walking, Acc = 0.69. Right: activities
while sitting, Acc = 0.77.

to the experiment observer for 20 s). All actions were repeated for 3 times, in
order to introduce natural variability in the recordings. “Nodding” and “looking
up” were recorded for the sitting scene only, as these were both exhausting for
the participants, and safety critical during the corridor walking. All recordings
for computer work and walking were made in one session for each participant.

To maintain electrode position the collar was fixed with an elastic band, the
subjects were told to fix it so that it is tight but comfortable. We analysed two
front, one side, and one back electrode position in the same way as presented
for our signal study in Section 4 above. Preliminary analysis showed however,
that the back position did not provide useful information. Thus we did not
consider it here. An experiment observer controlled the recording and advised
participants on the activities to perform. In addition all recordings were captured
on video. The recording lasted for about 70minutes for each individual, in total
∼4.3 hours of data were acquires. The observer annotated all activities during
the recording. These annotations were refined in post processing step based on
signal waveforms.

A particular challenge is to accurately annotate natural swallowing [5]. Typ-
ically, the swallowing reflex is initiated unconsciously, which makes it difficult
to identify and annotate it during recordings. In this study, we asked the par-
ticipants to indicate swallowing with a hand sign. In addition, we reviewed the
sensor data and video material to decide unclear cases of potential swallows. For
this purpose we installed the video camera in the computer work scene such that
it captured the hyoid movement. This procedure is a standard technique used in
swallowing analysis [5,15]. For the walking scene, we had to rely on participant
hand signs and review of sensor waveforms.

Analysis method and results. The analysis employed a linear discriminant
classifier.Timedomain features, suchas signalmean, variance,maximum, etc.were
derived from all three sensors (45 in total) in sliding windows of 1.5 s length with-
out overlap. We employed 10-fold cross-validation to obtain training (9 parts) and
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testing (1 part) observations. The training was controlled to avoid class skew. The
classification output was compared to our annotation and the class-normalised ac-
curacy computed.Wefirstperformeda combinedanalysis over the sitting andwalk-
ing segments. For comparison, we analysed the sitting activities separately as well.
“Nodding”, “looking up”, and “chewing bread” were excluded from the walking
scene for practicability reasons.

Our combined results for sitting and walking activities showed an accuracy
of 69%. For the sitting activities 77% were achieved. Figure 9 shows the clas-
sifier confusion matrices for both analyses. While the different head postures
and movements incurred some confusions, we observed that particular activities
such as speaking and chewing could be very well discriminated. Moreover, the
discrimination of fluid and bread swallowing is remarkable. Although including
walking reduces performance, these results indicate that the sensor can provide
useful information in the presence of motion artifacts.

5.2 Spotting of Swallowing

We analysed the viability of spotting swallowing events in the continuous sensor
data, as it is an essential component of food and fluid intake [7]. In particular, we
were interested to analyse the spotting performance with regard to swallowing
pattern variability and the effect of artifacts, such as walking. For this analysis we
focused on fluid swallows and utilised the same experimental data as presented
in Section 5.1 above. As this dataset included a variety of other activities, we
could test the spotting performance under realistic conditions.

Analysis method and results. We used an online pattern spotting procedure,
Feature Similarity Search (FSS), developed in previous work [6] to evaluate swal-
lowing detection performance in this work. The procedure uses trained feature
patterns to continuously search the sensor data. In the search step, a variable
observation window is used to derive features from data section. Between these
features and the trained feature pattern we computed the Euclidean distance
to compare and select a section. For the selection, a threshold was applied on
the computed distances. At each time point only on such section can be correct,
hence potential sections are kept in a buffer, until no further section could over-
lap with such already ones. Both, selection threshold and the variable window
bounds were derived during the training step.

In this analysis we used time domain features from all three capacitive sensors,
including the same types as described in Section 5.1 above, and three additional
feature sets of the same type, describing three equally sized partitions of the
section under investigation. This approach allows to convert the temporal swal-
lowing signal pattern into a spatial one. The search was performed at constant
time intervals of 0.25 s. We used a 10-fold cross-validation by splitting the dataset
into 10 partitions and using nine for training and one for testing at each iteration.
The partitions were controlled to not intersect with the swallowing sections.

In our evaluation, we included sitting and walking scenes to study spotting
performance under noisy pattern condition. For comparison, we also analysed
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Fig. 10. Precision-recall tradeoff for spotting swallowing in three subjects. Left: swal-
lowing while sitting and walking. Right: swallowing while sitting.

the sitting scene separately. In total 212 swallows were recorded, amounting to
2.8% of the dataset size. Figure 10 shows the precision-recall tradeoff for both
spotting situations and the three participants. We observed that the performance
was more variable in the combined sitting and walking analysis. Performance
increased for the sitting scene, as to be expected from the reduced motion noise.
The results show that the spotting is feasible, in particular when not walking.
Under calm conditions a performance of 80% recall at 60% precision or more,
can be expected. Although our dataset is smaller than the ones investigated for
acoustic and electromyography swallowing spotting in earlier works [5], these
results are very promising.

5.3 Swallowing Amount Estimation

We investigated the classification of drinking sizes as this information could be
used to estimate fluid consumption. For this investigation we used the same
collar and setup as in the activity recognition analysis.

We asked three individuals (one female, two male; aged between 25 and 30)
that were not the same as in the activity recognition analysis to drink 5ml and
15ml water amounts. The amount was controlled using a calibrated glass. The
experiment observer filled the glass for each drink. The participants were asked
to swallow the fluid at once. A sequence of 10 swallows of each amount was taken
and the sequence was repeated for three times, resulting in ∼30 swallows per
amount. The recording was annotated and post-processed as the ones before.

Swallowing amount recognition was performed using the features variance,
minimum, and maximum from all three sensors (9 features total). The linear dis-
criminant classification was used. Figure 11 shows the Receiver Operator Char-
acteristic (ROC) performance analysis obtained from the classification result.
From the ROC, we computed the “Area under the curve” (AUC) for quanti-
tative performance estimation. The results show that a similar AUC can be
achieved for all participants. ROC and AUC are the most appropriate illustra-
tions for this two-class problem. As Figure 11 illustrates, is the performance
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Fig. 11. ROC analysis for classifying 5ml and 15 ml water swallowing. AUC values
indicate the area under the curve.

clearly above the level of random choice. This result indicates that the sensors
could be used to assess fluid amount. The result is in a comparable range to
previous investigations using audio and Electromyography [5].

5.4 Respiration Rate Detection

As our preliminary signal study showed that breathing could be observed in the
sensor data, we investigated the respiration rate detection from the capacitive
collar system. We studied breathing with the same individuals who participated
in the swallowing analysis (Section 5.3 above).

We asked the participants to breathe in and out in three qualitative modes:
deep, normal, and light. We recorded 10 breathing cycles during walking and
standing of each mode and repeated this protocol three times. In total ∼30
breathing cycles were recorded per mode, participant, and scene. As not all
participants achieved exactly 30 cycles, the numbers were noted and checked
in the waveforms. Our post-recording analysis showed that the breathing was
difficult to identify from the waveforms during walking, hence we could not verify
the number of breaths. Henceforth, we concentrated our analysis on the standing
scene.

For this study we chose the capacitive sensor at the neck side, as this showed
the largest amplitudes during breathing for all participants. The signal was band-
pass filtered using a fourth-order Butterworth filter with fLow = 0.3 Hz and
fHigh = 2 Hz. These frequency ranges reflect the natural variation of the res-
piratory rate in adults. On the resulting signal a hill-climbing peak detection
algorithm was applied with thresholds for positive and negative slope set to σ

2 of
the considered signal. To set the thresholds automatically, a longer observation
period could be used, which contains several breathing cycles at high probability.
The resulting peak detection count were compared to the annotated counts and
the accuracy was computed. Figure 12 shows the detection performance for all
participants and breathing modes.
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Fig. 12. Respiration rate detection results. Left: accuracy for all participants and
breathing modes. Right: deep breathing detection sample.

Although our algorithm performed well to identify breathing, it might fail, if
the breathing is held. In this case the peak detection algorithm may pick the
heart rate, which is in a similar frequency band and amplitude level as the light
breathing. However, under normal breathing using the electrode position at the
neck, heart beat is marginally disturbing the breathing detection.

6 Conclusion

While being at an early state, the proposed application of capacitive sensing
shows promising results, making it appealing for a wide range of applications.
Starting from electric field, we demonstrated that this new sensing concept is
well suited for retrieving activity and physiology-related information at mul-
tiple body locations. This is particularly interesting as our capacitive sensors
are based on textile patches and can be conveniently integrated into regular
clothing.

Since head-related activities are key to many activity recognition applications,
we selected a collar system for our quantitative analysis. We observed that our
approach is sensitive to motion, body shape, and tissue changes in a spectrum
of activities, while providing useful information even under noisy walking con-
ditions. From these results, we concluded that capacitive sensing is a viable and
highly interesting new sensing concept for wearable monitoring. Moreover, from
analysing swallowing and breathing we have seen that the sensor has partic-
ular features that promote its consideration for biomedical investigations and
healthcare.

In summary, we expect that capacitive sensing will have a vital prospect as
modality that is complementary to established concepts in activity monitoring.
This work has initially demonstrated its potential. Further work should address
the integration and optimisation for individual applications, which can even
increase the sensor’s reliability.
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