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Abstract

Collaborative prediction (CP) is a problem of predicting un-
observed entries in sparsely observed matrices, e.g. prod-
uct ratings by different users in online recommender sys-
tems. However, the quality of prediction may be quite sen-
sitive to the choice of available samples, which motivates ac-
tive sampling approaches. In this paper, we suggest an active
sampling method based on the recently proposed Maximum-
Margin Matrix Factorization (MMMF) (Srebro, Rennie, &
Jaakkola 2004), a linear factor model that was shown to
outperform state-of-art collaborative prediction techniques.
MMMF is formulated as a semi-definite program (SDP) that
finds a low-norm (rather than traditional low-rank) matrix
factorization, and is also closely related to learning max-
margin linear discriminants (SVMs). This relation to SVMs
inspires several margin-based active sampling heuristics that
augment MMMF and demonstrate promising results in a va-
riety of practical domains, including both traditional recom-
mender systems and novel systems-management applications
such as predicting latency and bandwidth in computer net-
works.

1 Introduction

Given a large but sparsely sampled matrix, the collaborative
prediction (CP) problem is to predict the unobserved entries
from the observed samples, assuming the entries are depen-
dent. Typical application include online recommendation
systems that attempt to predict user’s preferences towards
different products (e.g., movies, books), based on previously
obtained product ratings from different users. Collaborative
prediction can be also applied to non-traditional domains
such as distributed systems management applications con-
sidered in this paper. In such applications, we wish to pre-
dict the end-to-end performance, such as connectivity and/or
latency in computer networks or bandwidth in peer-to-peer
content-distribution systems, based on a limited number of
available measurements between pairs of nodes. Moreover,
collaborative prediction tasks may arise in various other do-
mains, e.g. in image processing, where we may want to re-
construct unobserved (occluded) parts of an image from the
observed pieces.

A typical assumption that leads to various collaborative
prediction techniques is a factorial model that assumes the
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presence of some hidden factors that affect user’s prefer-
ences towards the products. For example, genre of a movie,
its comic factor, and its violence factors may affect user’s
preferences. Similarly, two nodes that are located in same
part of the network may share several “hidden factors” such
as intermediate nodes on their path to a third node; more-
over, even distant nodes can share some other hidden factors
which determine a quality of service they provide: e.g., a
high-bandwidth can be achieved by downloading from a re-
mote but powerful server instead of local laptop with a wire-
less connection. In this paper, we will focus on linear factor
models which result into a matrix-factorization approach to
collaborative prediction.

The predictive accuracy of such models can improve dra-
matically when more samples become available; however,
sampling can be costly: a user may become annoyed if she is
asked to rate many products or a network may become con-
gested if too many measurements are performed. Besides,
suggesting a product to buy or a server to download from
has a high cost if the user does not like the product, or the
download bandwidth turns out to be low. Therefore, a cost-
efficient active sampling becomes an important component
of any successful collaborative prediction approach.

In this paper, we propose an active-learning extension of
the recently proposed Maximum Margin Matrix Factoriza-
tion (MMMEF) approach to collaborative prediction that was
shown to outperform state-of-art collaborative prediction
methods and has some nice theoretical guarantees (Srebro,
Rennie, & Jaakkola 2004; Rennie & Srebro 2005). MMMEF
is a matrix factorization approach formulated as a convex
optimization problem that uses low-norm constraints, unlike
previous non-convex approaches, such as low-rank (SVD-
like) or non-negative matrix factorizations (Lee & Seung
2000). Besides, MMMF is closely related to maximum-
margin linear discriminants (SVMs), i.e. it can be viewed
as simultaneous learning of multiple SVMs and a set of fea-
tures common to to all SVMs. This insight is directly ex-
ploited by our active learning approach that extends MMMF
with margin-based active-learning heuristics, where the mar-
gin is used to estimate informativeness of a candidate sam-
ple, as suggested in (Tong & Koller 2000). Besides the
straightforward “most-uncertain” (min-margin) sample se-
lection, we also investigate alternatives that take into ac-
count the cost of sampling.



Previous work on active sampling for collaborative filter-
ing includes a value-of-information approach of (Boutilier,
Zemel, & Marlin 2003) and Bayesian model averaging
method of (Jin & Si 2004). Both approaches are based on
probabilistic hidden-factor models and computationally ex-
pensive procedures for choosing next active sample that re-
quire minimization of expected cost (or uncertainty). On
the contrary, our active sampling is quite simple and inex-
pensive as it only compares the margin values produced by
MMME. Another related work proposes an active-sampling
method for low-rank matrix factorizations (Drineas, Kereni-
dis, & Raghavan 2002) that requires a small number of users
to provide the ratings of ALL products — a clearly unrealistic
assumption in any large enough, practical recommendation
system. Although our heuristic active sampling lacks theo-
retical guarantees associated with the above approach, it is
much more practical since it does not impose any unrealistic
sampling assumptions. Empirical evaluation on several ap-
plication domains, from recommender systems to computer
networks and peer-to-peer files distribution systems, demon-
strate the advantages of our active sampling methods.

In summary, this paper makes following contributions. It
proposes a simple, computationally efficient active sampling
extension of the state-of-art MMMMF method for collabora-
tive prediction, compares several active-sampling strategies,
both on traditional collaborative filtering domain (movie
rating prediction) and on novel application domain — dis-
tributed computer systems management, and demonstrates a
noticeable improvement in prediction accuracy over random
sampling.

2 Collaborative Prediction as Matrix
Factorization

Collaborative prediction problem can be stated as follows.
Given a partially observed n x m matrix Y, let us find a ma-
trix X of the same size that provides “best” approximation
for unobserved entries of Y with respect to a particular loss
function, such as sum-squared loss for real-valued matrices,
0/1 loss or its surrogates such as hinge loss for binary and
ordinal matrices, and so on.

Linear factor models, a particular type of factor models
for collaborative prediction, assume that each factor is a
preference vector, and actual user’s preferences correspond
to a weighted linear combination of these factor vectors with
user-specific weights. Let k& be the number of such factors,
then the matrix Y can be approximated by a matrix factor-
ization X = UV, where U is a n X k coefficient matrix
(where each row represents the extent to which each factor
is used) and V is a k X m factor matrix where the rows
represent the “expression level” of the factors in each of m
“products”. Since the rank of the approximation matrix X
is clearly bounded by £, fixing k to some small value leads
to a low-rank matrix factorization approaches.

For example, a standard matrix-factorization approach is
singular value decomposition (SVD) which finds a low-rank
approximation that minimizes the sum-squared distance be-
tween X and a fully observed Y. The problem is, when
Y is not fully observed, as in collaborative prediction and

particularly in end-to-end performance prediction, SVD is
not directly applicable and finding a low-rank approxima-
tion to a partially observed function using a sum-squared
loss becomes a difficult non-convex optimization problem,
for which no exact solution method is known. Also, even
for completely known matrix Y, approximating it with re-
spect to other losses that the sum-squared loss (e.g., ex-
pected classification error) is still a non-convex optimiza-
tion problem with multiple local minima (Srebro, Rennie, &
Jaakkola 2004).

In order to overcome such limitations, a novel Maximum
Margin Matrix Factorization (MMMF) approach was pro-
posed by (Srebro, Rennie, & Jaakkola 2004). This approach
replaces the bounded-rank with the bounded norm constraint
on U and V and yields a convex optimization problem.
Namely, Lemma 1 in (Srebro, Rennie, & Jaakkola 2004)
shows that finding the matrices U and V' having low Frobe-
nius norms ||U||pro and ||V||Fro is equivalent to minimiz-
ing the trace-norm (the sum of singular values) ||.X |5~ of
X, since

HX”E = XIEILIflV 1UFrollVIFro =
(1
Since the trace-norm is a convex function (Srebro, Rennie,
& Jaakkola 2004), minimizing it together with any convex
loss function or constraint results into a convex problem.
For simplicity, we focus herein on binary-valued matrices
Y € {—1,1}"*™ and thus use the MMMF with hinge-loss,
as in max-margin linear discriminant (SVM) learning. The
MMMF optimization problem can be then stated as:

min | X[ +e Y h(YiXip), @)
ij€S
where c is a trade-off constant and h(z) = max(0,1 — z)
is the hinge-loss, minimizing which is equivalent to mini-
mizing slack variables &j > 0 in soft-margin constraints
Yi; X > 1-&;.

Matrix factorization can be also viewed as a simultaneous
learning of feature vectors and linear classifiers. Assume a
factorization X = UV is found, the rows of the n x k ma-
trix U can be viewed as a set of n feature vectors, while
the columns of V' can be viewed as linear classifiers, and
the entries of the matrix X are the results of classification
using these classifiers. The original entries in the matrix ¥
can be viewed as labels for the corresponding feature vec-
tors, and the matrix factorization task can be interpreted as
finding simultaneously a collection of feature vectors (rows
in U) and a set of linear classifiers (columns in V'), given a
set of labeled samples (columns in the original matrix Y),
such that a good prediction of unobserved entries can be
made. Particulary, the MMMF formulation above can be
viewed as learning a collection of maximum-margin classi-
fiers (SVMs) simultaneously with learning a common set of
features.

3 Active Learning with MMMF
Standard collaborative prediction approaches, including
MMME, assumed no control over the data collection pro-
cess. However, we have a choice between different actions
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that provide us with new samples. For example, in online
recommendation systems, we choose a product suggested to
the current user; in network latency prediction, we can re-
quest a probe (e.g., ping) between a particular pair of nodes;
in content distribution systems, we can suggest a mirror site
for a file download, and so on. Such additional measure-
ments can greatly improve the predictive accuracy of our
model, but they also have a cost (e.g., potentially low band-
width or high network latency if a server is not selected care-
fully). One one hand, we wish to choose the next sample
which is most-informative and leads to greatest improve-
ment in the predictive accuracy in the future (i.e., yields bet-
ter exploration), while on the other hand we want to avoid
choosing samples which might be too costly by exploiting
our current predictions about the sample costs (i.e., the cor-
responding predicted performance). Such exploration vs
exploitation trade-offs must be considered as a part of our
decision-making.

As mentioned in the previous section, MMMF approach
can be viewed as learning a collection of SVMs, which pro-
vides a natural way for combining MMMF with various
active learning approaches developed for SVMs. In this
paper, we a simple heuristic margin-based approach, that
uses the margin as our confidence estimate in the predic-
tions made, similarly to active learning approach of (Tong
& Koller 2000). Namely, (Tong & Koller 2000) suggest to
choose next the the minimum-margin sample, i.e. the one
which is closest to the separating hyperplane, and can be
viewed as the one we are least confident about. This heuris-
tic was shown to be successful in practice, and is very effi-
cient computationally'. The idea of min-margin active sam-
pling is demonstrated in Figure 1.

Besides the “aggressive” most-uncertain sampling we
also tried several other active sampling approaches that take
into account the cost of sampling and may decide to be
more “conservative” about sample choice, e.g., when sam-
pling also means providing a service such as file down-
load, where besides improving the future accuracy we are
also concerned with the immediate cost of sampling. We
assume binary prediction problems (e.g., the performance
over or under a specified threshold) and assume that posi-
tive samples (e.g., high bandwidth or product ratings) have
less cost than the negative samples. We then explore sev-
eral “cost-conscious” active learning heuristics, such as
most-uncertain-positive heuristic that chooses positive min-
margin sample, as well as least-uncertain (max-margin) and
least-uncertain-positive heuristics, which which should cor-
responds to prediction we are most confident about. How-
ever, such sample selection may lead to a less accurate
model, as we show in the empirical section where the differ-
ent sampling heuristics are compared on several data sets.

Our active sampling algorithm (Active MMME, or A-
MMMF) is presented in figure 2. The algorithm assumes

! Although min-margin heuristic may be ineffective for prob-
lems with large label noise close to the separating hyperplane, as
noticed by (Bordes ef al. 2005), in many collaborative prediction
settings there is little or no noise in labeling: e.g., user’s prefer-
ences for a movie typically do not change.
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Figure 1: Main idea of active learning in MMMEF: choose the
most “uncertain” sample next, where the distance to linear classi-
fier (which we will also call “margin” here) measures the confi-
dence in the prediction (i.e. we are least confident in predictions
made for the instances closest to separating line between positive
and negative examples). Note that the matrix is real-valued, with
X;j=distance (with sign) between feature-vector ¢ and linear clas-
sifier j.

a particular active learning heuristic specified as an input.

4 Empirical Evaluation

We tested active learning approaches described above on the
data from various practical applications. We select a sub-
set of most populated rows and columns, to increase matrix
density for testing purposes. We then split each dataset into a
training, testing and active subsets, where active subset sim-
ulates the source of active samples. A training set is typically
selected to be quite small (e.g., 5% of the whole dataset),
to imitate learning “almost from scratch”. We plot the pre-
diction error on the training dataset, for each of the active
strategies compared random sampling of the same number
of instances.

The first dataset, called Movies, includes movie rat-
ings collected through user interactions with the site
www.movielens.org. This includes ratings on the scale of 1
(worst) to 5 (best) by 500 users of 1000 movies. We selected
a subset of 50 users and 50 movies that correspond to most-
populated rows and columns. We then impose a threshold to
make the data binary, i.e. we assume that the rating larger
than 3 is considered “good”. The results are presented in
Figure 3a. We can see that the most-uncertain sampling pro-
vides a significant improvement over the random sampling,
while the max-margin sampling, as expected, is not very in-
formative and practically does not improve the error. We
also computed the actual cost of sampling, assuming no cost
for positive samples selected and unit cost of the negative
ones, and plotted it in Figure 3b. Clearly, random sampling
would roughly have the slope of the cost curve equal to the
proportion of negative samples in the data. Surprisingly, the
alternative strategies did not deviate significantly from this
random-sampling linear cost growth, although we can see
some deviation for larger number of samples. We can see



Active Max-Margin Matrix Factorization (A-MMMF)

Input: Sparse binary (-1/1) matrix Y, batch size k, max # of
new samples IV, active-sampling heuristic A (most-uncertain etc).
Output: Full binary-valued matrix X predicting unobserved
entries of Y.

Initialize: Y’ =Y /* currently observed data */

N’ = 0 /* current number of active samples */

1. X' = MMMEF(Y’) /* compute full real-valued matrix X’,
where \X{j |=distance(feature-vector %, linear classifier j),
sign(X;;) predicts unseen Yj;. */

2. U = set of unobserved entries of Y’

3. S = active_select(h, X', U, k) /* select k best unobserved

samples from U using heuristic h and current predictions X’ */

4. Request labels for new samples s;; € S, and add them to Y.

5FN"+k < N

N’ = N’ +k; goto 1
else return sign(X') /* return only binary -1/1 predictions */

Figure 2: Active max-margin matrix factorization (A-
MMMF) algorithm.
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Figure 3: Prediction results on Movie dataset: (a) prediction ac-
curacy and (b) total cost of sampling.

that the most-uncertain and most-uncertain-positive strate-
gies are actually better not just in terms of future predictive
error, but also in terms of total sampling cost.

Similar results were observed in multiple systems man-
agement domains. These include several publicly available
network latency datasets that we borrowed from (Mao &
Saul 2004) and proprietary data from an IBM-internal file
distribution system, described in more detail below.

PL-RTT2003 dataset (from (Mao & Saul 2004)) was
originally obtained from PlanetLab pairwise ping round-trip
time (RTT) measurement project (Stribling ). A subset of
minimum round-trip times measured at 3/23/2004 0:00 EST
was selected, and missing values were filtered out, since
none of the algorithms used in (Mao & Saul 2004) could
handle missing values. Namely, if there where some miss-
ing values either in a column or a row corresponding to some
node, both the row and the column corresponding to such
node were eliminated from the matrix (Mao 2006).

PL2005 dataset was obtained directly from the Plan-
etLab project, and average round-trip times measured at
02/01/2005 0:00 were selected. We eliminated only rows
or columns that corresponded to completely missing mea-
surements (e.g., node serving only as a source or only as a
destination), but unlike (Mao & Saul 2004) we did not elimi-
nate the corresponding node from the matrix, so the resulting
matrices are not necessarily square.

NLANR-AMP dataset was obtained by (Mao & Saul
2004) from the NLANR Active Measurement Project (NLA
), that collects measurements between the pairs of nodes at
NSF supported HPC cites, with about 10% of the nodes lo-
cated outside of the US. All-pairs measurements were col-
lected over 110 nodes on 01/30/2003; each host was pinged
once per minute, and the minimum response time per day
was chosen for each pair of nodes.

P2PSim dataset was obtained from the P2PSim project
(P2P ) that measured network latency among 2000 Internet
DNS servers using King method (Gummadi, Saroiu, & Grib-
ble ) (the servers were taken from the Internet-scale Gnutella
network trace).

dGrid2005 dataset was collected from downloadGrid, an
IBM-internal file distribution system; the data were col-
lected in Dec. 2005 over 10913 clients and 2746 servers,
and contain the history of file downloads. The architecture
of downloadGrid is similar in some respects to the Internet-
based Gnutella, Napster and BitTorrent protocols as it allows
peer-to-peer file downloading. However, it differs in utiliz-
ing a centralized decision-making architecture for matching
“servers” (i.e. sources for downloadable files) with “clients”
(i.e. download destinations). While the use of centralized
decision-making is motivated primarily by security issues,
the concomitant centralized data collection provides an op-
portunity for optimization of global system performance. By
running algorithms such as MMMEF on the aggregate system
data, it may be possible to make reasonably accurate per-
formance predictions for unobserved client-server pairs, and
thereby make better assignments than could be made based
solely on directly observed performance data.

From the history of file downloads in the downloadGrid,
we created a matrix where each entry corresponds to the av-



erage bandwidth for a given (client, server) pair. The origi-
nal matrix was extremely sparse (only less than 0.3 % of the
entries were observed) in that recorded performance data for
any given node contains interactions with only a few other
nodes. In order to have enough data for testing the learned
model, we have selected a dense submatrix by choosing
70x70 subset of the clients and servers that yield rows and
columns most densely populated with recorded performance
data. Currently, we also imposed same 70x70 size restric-
tions on the other datasets.

All of the real-valued performance measurements in each
data set were transformed to a -1/1 binary representation by
comparing the measured performance with a given thresh-
old, typically chosen to lie at a certain percentage level
(50%, 70%, or 90%) of the entire set of performance statis-
tics in the particular dataset (i.e. 50% corresponds to median
performance).

We now present our results applying A-MMMF (MMMF
augmented by active sampling) to the datasets described
above. Our evaluation methodology is as follows. For each
70x70 dataset, we perform 20 independent trials, where in
each trial we initialize the MMMF predictor by training on
a randomly selected 5% of the matrix elements. We then
randomly select another 50% of the matrix elements to be
held out as test data. The remaining 45% of matrix elements
serves as a source of samples that may be selected by vari-
ous “active” heuristics. We progressively retrain MMMEF in
stages by selecting a batch of 50 samples from the active set,
transferring them to the training set, and then recomputing
the MMMF solution. We compare five different active se-
lection heuristics here: “Most-uncertain” chooses samples
that are closest to the margin of the current MMMF pre-
dictor. “Most-uncertain-positive” also uses the min-margin
idea but further constrains the selected samples to be esti-
mated positive (i.e. above threshold) by the current MMMF
predictor. “Least-uncertain” and “Least-uncertain-positive”
apply the opposite principle of choosing samples that are
furthest from the margin, i.e., samples for which MMMF is
most confident in its prediction accuracy. Finally, “random”
denotes the baseline uniform random sampling strategy.

Our results, plotted as mean test-set prediction error vs.
number of additional samples selected, are shown in Fig-
ures 4. (We did not plot the error-bars here to avoid the clut-
ter, but the differences were statistically significant.) The
qualitative behavior seen in each dataset is highly consistent.
In each case, we observe as expected that both of the “most-
uncertain” strategies reduce prediction error more rapidly
than with random sampling, and that both of the “least-
uncertain” strategies provide quite poor choices of training
samples, leading to very little improvement in prediction ac-
curacy. Additionally, we note that, in accordance with ac-
tive learning theory, the number of samples needed to reach
a desired accuracy level may be significantly reduced when
using the “most-uncertain’ heuristics compared to using ran-
dom sampling. For example, if we wish to reach the appar-
ent asymptotic performance levels of the “most-uncertain”
strategies, we would need only ~500 active samples in the
PL-RTT2003 dataset, ~700 samples in the NLANR-AMP
dataset, and ~1000 samples in the P2Psim dataset, vs. more
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Active MMMF on PL-RTT2003 data (70 x 70 subset, 4900 nonzero entries)
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Figure 4: Active learning results on (a) NLANR-AMP, (b)
P2PSim, (c¢) PL-RTT2003 and (d) dGrid2005 datasets: improve-
ment in the prediction error with the increasing number of samples.



than 1500 randomly chosen samples in each of these cases.
A final point of interest is that the accuracy of the “most-
uncertain-positive” strategy generally lies close to that of the
“most-uncertain” strategy, and thus may provide a somewhat
safer alternative in scenarios where choosing a sample that
turns out to be negative (below threshold) entails a tangible
cost of delivering poor performance to a customer.

In addition to minimizing the number of samples needed
to train an effective CP module, it is perhaps of more salient
interest to minimize whatever costs may be associated with
acquiring the training samples. We have also examined this
issue within our binary performance model by formulating
a sampling cost model that is dominated by the SLA cost
of poor performance. In this model, whenever a sampling
strategy chooses a “negative” sample with below-threshold
performance, we assign it a unit cost, whereas selecting a
“positive” sample with above-threshold performance incurs
no cost. In this way we can measure for each of our datasets
the total sampling cost needed to reach a given prediction
accuracy level, using each of our five candidate sampling
strategies. Our results for four of our datasets are plotted be-
low in Figure 5. We note in each case that plots of prediction
error vs. cumulative cost are qualitatively similar to the cor-
responding plots of prediction error vs. number of training
samples. Perhaps not surprisingly, this suggests a fairly lin-
ear relationship between the number of training samples and
the total sampling cost, which would occur if negative sam-
ples are acquired at a fairly constant rate. We can see that
for each dataset, usage of our min-margin sampling heuris-
tics can yield very significant savings in total cost relative to
random sampling, if one is interested in reaching low pre-
diction errors where the curves flatten out. In the P2PSim
dataset, we can obtain a prediction error of 0.25 at cost of
~270, whereas with random sampling the cost would be
over 500. In the NLANR-AMP dataset, we can reach 0.1
prediction error at a cost of ~200 using min-margin sam-
pling, vs. a random sampling cost of ~350. In the PL-
RTT2003 dataset, with min-margin sampling we reach 0.1
prediction error at a cost of ~100, vs. a cost of over 300
using random sampling. Finally, in the dGrid2005 dataset,
min-margin sampling achieves 0.1 prediction error at a sam-
pling cost of ~100, compared to a random sampling cost of
~200.

5 Conclusions and Future Work

We proposed a simple, computationally efficient active sam-
pling extension of the state-of-art MMMMF method for col-
laborative prediction and compares several active-sampling
strategies, both on traditional collaborative filtering domain
(movie rating prediction) and on novel application domain —
distributed computer systems management. Promising em-
pirical results are demonstrated on all applications consid-
ered.

Our greatest interest in future work is to extend our frame-
work to encompass the dynamic aspects of both end-to-end
performance prediction, as well as network management de-
cisions based upon such predictions. Our current formu-
lation ignores the dynamically changing nature of network
states, which may render older measurement information
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Active MMMF on PL-RTT2003 data (70 x 70 subset, 4900 nonzero entries)
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Active MMMF on dGrid2005 data (70 x 70 subset, 2538 nonzero entries)
Threshold = 70%, 20 experiments per point, training set= 5%, test set=50%
0.4 T T T T T

0.05
0

XXX XXX XX X X X X X XXX

0.3r

random
—&— most-uncertain

O most-uncertain-positive|
—— least-uncertain

x - least-uncertain-positive|

0.25F

0.2r

0.15f

future prediction error

0.1r §
Soeo0006-—006—o 0

0.05 L L L L L
0 50 100 150 200 250 300

total cost
(d
Figure 5: Trade-off between the error reduction and the cost of

active sampling on the (a) NLANR-AMP, (b) P2PSim, (c) PL-
RTT2003 and (d) dGrid2005 datasets.



obsolete, and the impact of decisions on states, which may
necessitate a change in decision-making strategies. For ex-
ample, if too many clients are directed to download a file
from a “good” server, it could cause the server to become a
“bad” server due to overloading. One approach we are in-
vestigating for dynamic inference is to extend MMMF by
adding mechanisms for inference over time based on time-
series analysis techniques. This could allow development of
models of the decaying influence of older measurements on
the current inference matrix, as well as forecasting methods
predicting likely future states of the inference matrix based
on how it has evolved in the past. The other major extension
we are investigating is combining dynamic inference models
with models for sequential decision making, e.g., Markov
Decision Process models. We are especially interested in
Reinforcement Learning approaches to this, which would
allow automatic learning of effective management policies
without needing explicit models of management actions in-
fluence state transitions in the network.

Another important future direction is to further improve
the computational efficiency of active MMMF by making it
incremental, i.e. reusing the solution obtained on the previ-
ous sampling iteration without having to solve the MMMF
optimization from scratch.
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