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Abstract

We review recent work on active colloids or swimmers, such as self-propelled microorganisms, phoretic colloidal particles, and

artificial micro-robotic systems, moving in fluid-like environments. These environments can be water-like and Newtonian but can

frequently contain macromolecules, flexible polymers, soft cells, or hard particles, which impart complex, nonlinear rheological

features to the fluid. While significant progress has been made on understanding how active colloids move and interact in Newtonian

fluids, little is known on how active colloids behave in complex and non-Newtonian fluids. An emerging literature is starting to

show how fluid rheology can dramatically change the gaits and speeds of individual swimmers. Simultaneously, a moving swimmer

induces time dependent, three dimensional fluid flows, that can modify the medium (fluid) rheological properties. This two-way,

non-linear coupling at microscopic scales has profound implications at meso- and macro-scales: steady state suspension properties,

emergent collective behavior, and transport of passive tracer particles. Recent exciting theoretical results and current debate on

quantifying these complex active fluids highlight the need for conceptually simple experiments to guide our understanding.

Keywords: Colloids, Active matter, Complex fluids, Bacterial suspensions, Self-propulsion

1. Introduction

Active fluids are ubiquitous in nature and permeate an im-

pressive range of length scales, ranging from collectively swim-

ming schools of fish (∼ km) [1] and motile ants (∼mm) [2]

to microorganisms (∼ µm) [3, 4, 5, 6] and molecular motors

within individual cells (∼ nm) [7, 8]. Suspensions of active par-

ticles, commonly defined as self-propelling particles that inject

energy, generate mechanical stresses, and create flows within

the fluid medium, constitute so-called active fluids [9, 10].

This internally-injected energy drives the fluid out of equilib-

rium (even in the absence of external forcing) and can lead to

swirling collective behavior [11] and beautiful pattern forma-

tion [12, 13], that naively appear unique to life. Indeed, the

motility of swimming microorganisms such as nematodes, bac-

teria, protozoa and algae has been a source of wonder for cen-

turies now. Anton van Leeuwenhoek, upon discovering bacte-

ria in 1676, observed, “I must say, for my part, that no more

pleasant sight has ever yet come before my eye than these many

thousands of living creatures, seen all alive in a little drop of

water, moving among one another” [14]. Since then, scien-

tists have observed and classified other collective large-scale

patterns in active fluids, such as vortices [15, 16], flocks [17],

and plumes [18, 19, 20] that form at high concentrations of their

organisms and highlight the link between life, fluid motion and

complex behavior. Surprisingly, synthetic materials/particles

have been recently developed which also exhibit these life-

like complex behaviors. Examples are shaken granular mat-

ter [21, 22], phoretic colloidal particles [23, 24], soft field-

responsive gels [25], and included in this review externally-

actuated artificial swimmers [26, 27, 28, 29].

These active particles (living or synthetic, hard or soft), as

collected in Fig. 1, have sizes that range from a few tenths of

a micron to a few hundred microns, spanning colloidal length

scales over which thermal noise is important [30]. The mo-

tion of these active colloids allows one to either direct (chan-

nel) or extract (harness) the energy injected at one length scale

at other scales. For instance, activity can render large, normally

athermal spheres diffusive [31] and yield controllable, directed

motility of micro-gears [32, 33, 34].

Recently, there has been much interest in the production and

dynamics of suspensions of active colloids [10]. The study of

such active suspensions is driven by both practical and scientific

relevance. From a technological and engineering standpoint,

active suspensions play an integral role in medical, industrial,

and geophysical settings. The spread and control of microbial

infections [35, 36], design of microrobots for drug delivery [37]

or non-invasive surgery [27], biofouling of water-treatment sys-

tems [38] and biodegradation of environmental pollutants [39]

are just a handful of examples. From a scientific standpoint,

active suspensions are interesting in their own right because

they are non-equilibrium systems that exhibit novel and unique

features such as turbulence-like flow in the absence of inertia

[40, 41], anomalous shear viscosities [42, 43, 44], enhanced

fluid mixing [45, 46], giant density fluctuations [15, 22] and
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Figure 1: An overview of active colloidal systems - natural and synthetic. (a)-(c): Individual natural swimming microorganisms arranged in order of increasing

size: (a) prokaryotic bacterium Escherichia coli with cell body approximately 2 µm [48], (b) Eukaryotic unicellular alga Chlamydomonas reinhardtii with a cell

body that is approximately 8 µm [5], and (c) multi-cellular organism C. elegans that is appoximately 1 mm long [49]. (d)-(f) Examples of collective behavior seen

in aggregates of microorganisms: (d) a bacterial colony of P. vortex on agar [50], (e) bioconvection of algae under shear [18], and (f) cooperative behavior in sperm

[51]. (g)-(i) Synthetic swimmers: (g) field driven translation of helical magnetic robots [52], (h:A) magnetically driven chain comprised of paramagnetic spheres

attached via DNA strands [26], (h:B) metachronal waves generated by reconstituted microtubule-motor extracts [53], and (i) magnetically driven surface snakes

comprised of self-assembled 80-100 µm spheres [54].
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liquid crystal like orientational ordering [47]. Because these

features are generic to many other active materials (e.g. cell,

tissues, vibrated granular matter), active suspensions can also

serve as a toolbox for understanding and deciphering generic

features of active materials across many length scales.

The suspending fluid in these active (colloidal) suspensions

can be simple and Newtonian (e.g. water) or complex and non-

Newtonian. Complex fluids are materials that are usually ho-

mogeneous at the macroscopic scale and disordered at the mi-

croscopic scale, but possess structure at intermediate scale. Ex-

amples include polymeric solutions, dense particle suspensions,

foams, and emulsions. These complex fluids often exhibit non-

Newtonian fluid properties under an applied deformation (e.g.

shear) including viscoelasticity, yield-stress, and shear-thinning

viscosity. An overarching goal in the study of complex flu-

ids is to understand the connection between the structure and

dynamics of the fluid microstructure to its bulk flow behavior

[55, 56]. For example, recent experiments by Keim and Arratia

[57, 58], which visualize a monolayer of dense colloidal par-

ticles under cyclic shear at low strains, have shown how local

particle re-arrangements connect to the suspension bulk yield-

ing transition. This work highlights how local measures of the

microstructure can shed new light on the bulk material response

in an amorphous material.

In active fluids, it is even more challenging to link the ac-

tivity at the microscale to the fluid meso- and macro-scales.

For instance, living tissues are continuously exposed to stim-

uli, which can lead to growth and remodeling of their struc-

ture. This remodeling in the tissue microstructure is often im-

plicated in medical conditions such as asthma. Recent work

by Park et al. [59] has shown how tissue microstructural de-

tails, such as cell shape, affects bulk properties, such as fluidity

and rigidity. In a similar vein, recent experiments have shown

that the interplay between the motion of active particles and the

complex fluid rheology of the suspending medium leads to a

number of intricate and often unexpected results. In particular,

the local mechanical stresses exerted by microorganisms in an

active colloidal suspension can alter the local properties of its

environment [60, 61]; while simultaneously, the complex fluid

rheology modifies the swimming gaits and spread of individual

organisms [62, 63]. It is essential to understand this two-way

coupling in order to uncover the universal principles underly-

ing these active complex materials and in order to design and

engineer new active materials.

In this paper, we review recent work on active colloids mov-

ing in fluidic environments and show how recent theory and

experiments can elucidate the connections between microscale

descriptions and the resulting macroscale collective response.

We begin in Section 2 at the level of individually swimming

colloids and how their motion couples to the suspending New-

tonian (2.1) and non-Newtonian fluids (2.2). In Section 3, we

focus on suspensions of swimming colloids at both dilute (3.1)

and non-dilute (3.2) concentrations. A number of studies have

shown that active colloids moving in Newtonian fluids (sections

3.1.1 and 3.2.1) can introduce non-Newtonian features, such as

shear dependent bulk viscosities and viscoelasticity, to the sus-

pension. In contrast, the change in the bulk rheology due to

activity – when the suspending fluid is itself non-Newtonian

(sections 3.1.2 and 3.2.2) – is just beginning to be explored

theoretically as well as experimentally. Figure 2 illustrates the

importance of non-Newtonian fluid properties for individually

swimming bacteria and for non-dilute concentrations of bacte-

ria. We conclude by highlighting new experimental techniques

that will help address challenges and answer emerging ques-

tions related to active colloids in complex fluids.

2. Fluid rheology and single swimmers

2.1. Single swimmer in Newtonian fluids

Many organisms move in the realm of low Reynolds number

Re ≡ ℓUρ/µ ≪ 1 because of either small length scales ℓ, low

swimming speeds U or both. In a Newtonian fluid with density

ρ and viscosity µ, this implies that inertial effects are negligi-

ble, the hydrodynamics is governed by the Stokes’ equation,

and stresses felt by the swimmer are linear in the viscosity. To

therefore achieve any net motion (i.e. swim), microorganisms

must execute non-reversible, asymmetric strokes as shown in

Fig. 3 in order to break free of the constraints imposed by the

so-called “scallop theorem” [64].

In the Stokes’ limit, the flow caused by the moving particle

can then be described as linear superposition of fundamental

solutions such as stokelets and stresslets. The exact form of the

generated flow depends on the type of swimmer. For instance,

an externally-actuated swimmer with fixed gaits creates flow

that decay a distance r away from the swimmer as 1/r. A freely

propelled swimmer is however both force free and torque free;

therefore the induced fields are due to force dipoles, which de-

cay as 1/r2, or higher order multipoles. Naturally-occurring,

freely-moving organisms can typically be classified into one

of two categories: (i) pullers (negative force dipole) such as

Chlamydomonas reinhardtii [5] or (ii) pushers (positive force

dipole) such as the bacteria Escherichia coli [45] and Bacillus

subtilis [15, 42]. Note that other organisms such as the alga

Volvox carteri may fall between this pusher/puller distinction;

other organisms move by exerting tangential waves along their

surfaces and are called squirmers [4]. While this pusher/puller

classification is limited and oversimplified, it provides a di-

chotomy for a reasonable framework.

The dipole approximations are useful in estimating force dis-

turbances far from the swimmer. Closer to the moving swim-

mer, the flow field is time-dependent and can significantly de-

viate from these dipole approximations [65, 66]. Significant

theoretical work exists on characterizing these complex tem-

poral and spatial flow fields around individual swimmers and

obtaining approximate descriptions that may then be used as a

first step in understanding how two and more swimmers inter-

act [67]. Other geometries such as infinitely long waving sheets

and cylinders have also been used to gain insight into the motil-

ity behavior of undulatory swimmers such as sperm cells and

nematode (C. elegans) [68, 69, 70].

A feature common to these theoretical studies is that the

swimming gait - i.e, the temporal sequence of shapes generat-

ing the propulsion - is assumed to be constant and independent
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Figure 2: Swimming bacteria at dilute and non-dilute concentrations in Newtonian and non-Newtonian fluids. (a) Escherichia coli trajectories in water-like

Newtonian fluid. Trajectories consist of straight segments (runs) punctuated by re-orienting tumbles. Scale bar is 15 µm. (Inset) A fluorescently-stained E. coli [48].

Scale bar is 2 µm. (b) Replacing the Newtonian fluid with a polymeric solution results in straighter trajectories with suppressed tumbling and cell body wobbles [61].

Scale bar is 15 µm. (c) In Newtonian fluids, high concentrations of bacteria exhibit collective motion near an air/water interface [11]. Scale bar is approximately 15

µm. (d) In a liquid crystal, the swimming bacteria tend to align with the local nematic director. At high enough bacterial concentrations, the flow generated by the

bacteria affects the long-range nematic order of the liquid crystal and creates dynamic patterns of the director and bacterial orientations [71]. Scale bar is 30 µm.

of the fluid properties. Recent experiments paint a more col-

orful picture. Even in simple Newtonian fluids, fluid viscous

stresses can significantly affect the microorganisms swimming

gait and therefore their swimming speed [61, 63].

2.2. Single swimmer in complex fluids

The two-way coupling between swimmer kinematics and

fluid rheological properties can give rise to many unexpected

behaviors for microorganism swimming in complex fluids. For

instance, the stresses in a viscoelastic fluid are both viscous and

elastic, and therefore time dependent. Consequently, kinematic

reversibility can break down and propulsion is possible even

for reciprocal swimmers [75, 76]. This effect is especially im-

portant for small organisms since the time for the elastic stress

to relax is often comparable to the swimming period [63, 77].

Therefore, elastic stresses may persist between cyclic strokes.

Emerging studies - some of which are highlighted in Fig. 4 -

are revealing the importance of fluid rheology on the swimming

dynamics of microorganisms. Consider the effects of fluid elas-

ticity on swimming at low Re. Would fluid elasticity enhance

or hinder self-propulsion? Theories on the small amplitude

swimming of infinitely long wave-like sheets [78] and cylinders

[79] suggest that fluid elasticity can reduce swimming speed,

and these predictions are consistent with experimental obser-

vations of undulatory swimming in C. elegans [62]. On the

other hand, simulations of finite-sized moving filaments [80]

or large amplitude undulations [77] suggest that fluid elastic-

ity can increase the propulsion speed - consistent with experi-

ments on rotating rigid mechanical helices [81]. In recent work

on Chlamydomonas reinhardtii [63], we found that the beating

frequency and the wave speed characterizing the cyclical bend-

ing of the flagella are both enhanced by fluid elasticity. De-

spite these enhancements, the net swimming speed of the alga is

hindered for fluids that are sufficiently elastic. In complemen-

tary studies on E. coli, we found that the swimming velocity

of the bacteria is enhanced for fluids that are sufficiently elas-

tic [61]. Visualization of individual fluorescently labeled DNA

polymers reveals that the flow generated by individual E. coli is

sufficiently strong to stretch polymer molecules, inducing local

elastic stresses in the fluid. These elastic stresses suppress inef-

ficient wobbling, acting on the E. coli body in such a way that

the cells swim faster. Overall, the emerging hypothesis is that

there is no universal answer to whether motility is enhanced or

hindered by viscoelasticity or shear-thinning viscosity. Instead,

the microorganism propulsion speed in complex fluids depends

on how the fluid microstructure (e.g. polymers, particles) inter-

act with the velocity fields generated by a microorganism.

2.2.1. Surfaces and swimming

Swimming near surfaces plays a central role in many impor-

tant biological settings. For example, sperm cells are guided by

microgrooves and fluid flows along the surface of the female

reproductive path [82]. Similarly, bacteria swim and adhere to

4
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Figure 3: Single natural swimmers moving in Newtonian fluids. (a) (i) Experimentally measured period averaged, color-coded velocity field around Escherichia

coli bacterium [67]. (ii) Three-dimensional streamlines of a simulation of the flow in a frame co-moving with the bacterium [66]. (b) (i) Averaged streamlines

around Chlamydomonas reinhardtii [72] - the color map denoting velocity magnitudes. (ii) Snapshots of the computed nutrient concentration fields C around a

model swimmer swimming in a nutrient gradient (B) [70]. (c) (i) Streamlines around a swimming nematode C. elegans [73]. (ii) Computed velocity fields around a

flexible self-propelling swimmer [74].
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Figure 4: Single swimmers moving in viscoelastic fluids. (a) The axial component of fluid velocity generated by a rotating, force-free helical segment [93]. (c) (i)

The sequence of shapes (swimming gait) attained by the cilia in Chlamydomonas reinhardtii in Newtonian fluid of viscosity around 6 Pa.s. The direction of the

power stroke is indicated. (ii) The ciliary shapes seen when the same organism moves in a viscoelastic fluid are dramatically different [63]. (d) Contour plots of

the polymers stress generated around a moving soft swimmer for a (i,ii) soft kicker and a (iii, iv) soft burrower. The mobility is affected by both the softness of the

swimmer as well as by the elasticity of the fluid through which the swimmer moves [77].
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Figure 5: Collective dynamics in active colloids. (a) A snapshot of a swarming bacterial colony of B. subtilus on agar. Velocity vectors are overlayed on the bacteria.

The lengths correspond to the speeds and are used to identify individual clusters [15]. (b) Scalar fields such as tracer concentration can be passively advected by

the background velocity field generated by motile bacteria, demonstrating the mixing efficiency of active suspensions [94]. (c) (i-iii) Simulated spatial distribution

of microorganisms in Taylor-Green vortices for different mobilities and elasticities. Relatively higher elastic effects cause an initially uniform distribution of

microorganisms to aggregate. In real systems, where bacteria secrete polymers, this effect may enhance the aggregation and biofilm formation [95].(iv) Bacterial

biofilm streamers (red) form efficiently at high bacterial concentrations and may lead to catastrophic blockage in synthetic and natural channels through which fluids

flow [96]. (d) Bright field microscopy image of a mixture of motile bacteria and polymers, evidencing the formation of bacterial clusters due to depletion effects

[97]. (e) (i) Florescence microscopy image of a microtubule active nematic with defects of charge +1/2 (red) and -1/2 (blue). (ii) Snapshot of simulated nematic

with marked defects. The color of the rod indicates its orientation and the black streamlines guide the eye over the coarse-grained nematic field [98].

Figure 6: Interplay between passive and active particles. (a) Passive spheres temporarily capture micro-swimmers. The active colloids are Au-Pt rods moving in

aqueous hydrogen peroxide [99]. Trajectories of single rods are shown in blue. (b) Bacterially driven microgears: Collisions between swimming bacteria and gears

drive clockwise or counterclockwise rotation depending on the orientation of the teeth (i vs ii) [32]. (c) Surface topology in the presence of motile bacteria guides

an (i) initial distribution of colloids to (ii) either aggregated (left) or depleted (right) regions [100]. (d) Tracers moving in bacterial baths exhibit anomolous size and

concentration dependent effective particle diffusivities Deff . The dashed line is the particle thermal diffusivity given by the classical Stokes-Einstein relationship.

Colors correspond to bacterial concentrations (lowest, green to highest, red) [101].
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surfaces before biofilms can form [83]. Hydrodynamic effects

typically drive the organisms towards solid surfaces [4]. Once

in the vicinity of such boundaries, these swimmers exhibit ad-

ditional fascinating features not observed in bulk swimming.

Features include circular trajectories [84], rheotaxis [85, 86],

and suppressed bacterial tumbling [87]; these arise specifically

due to the no-slip boundary condition near the solid interface.

A bacterium swimming along the surface experiences higher

shear stress compared to the bulk. Combined with the rotations

of the cell body and the flagellar bundle, the cell swims in a

clockwise trajectory as viewed from above the surface. Inter-

estingly, at an air-water interface where the boundary condi-

tion is full-slip, the effect is opposite i.e., the bacterium swims

counter-clockwise. Applying an external shearing flow biases

the trajectory by reorienting the rod-shaped bacteria - the organ-

isms then tend to swim upstream, a feature known as rheotaxis.

Furthermore, swimming near surfaces can be influenced by

the fact that the ambient medium is often a non-Newtonian

fluid. Recent theoretical work [88] has shown that residence

times of a bacterium near a solid wall can be significantly en-

hanced due to fluid elasticity. Also, at an air-fluid surface, or-

ganic molecules in nutrient-rich growth media can adsorb at the

interface creating a local, high-viscosity region. This modifies

the full-slip boundary condition, and the interface acts more

like a solid boundary [89, 90]. Even in the case of clean air-

water surface, the possibility of interface deformations intro-

duces interesting characteristics. For example, nonlinearities

due surface tension can even propel bodies that have reciprocal

swimming strokes [91], a strategy that does not work at hard

surfaces or in the bulk of Newtonian fluids for low-Reynolds

number swimmers.

We have discussed slip and boundary effects near surfaces

external to the swimming active colloids. An interesting ques-

tion that arises is the role of boundary conditions at the surface

of the swimmer. Indeed, in microstructured fluids, the swim-

mer might modify the local microstructure and slip through

the medium. In polymer solutions, shear-thinning viscosity

effects E. coli may contribute to the increase in bacterial cell

velocity [60]. For the undulatory swimmer C. elegans, shear-

thinning viscosities in polymer solutions have little to no effect

on the swimming speed [73], while in colloidal suspensions, the

swimming speed increases [92]. More work is needed to fully

understand the role of slip at the surface of the swimmer.

2.3. Synthetic swimmers in complex fluids

As shown above, fluid rheology can significantly affect the

swimming behavior of microorganisms. In this section, we will

explore a different, and perhaps simpler, question: Can the fluid

non-Newtonian rheological properties enable propulsion? To

answer this question, one needs to think back to the “scallop

theorem” which tell us that only non-reciprocal deformations

of the swimmer can break time reversal symmetry and result in

net motion. One of the main assumptions of the theorem is that

the swimmer is moving in a purely viscous (Newtonian) fluid.

If we relax this assumption, then it may be possible to break

kinematic reversibility and achieve net motion even for recipro-

cal swimming strokes. A simple thought experiment may lead

to this conclusion: Consider Purcell’s scallop now swimming in

a shear-thinning fluid. One can imagine that if the scallop opens

and closes its mouth at different rates, it may encounter differ-

ent shear viscosities and viscous stresses as it opens and closes

its mouth; the shear-rates associate with opening and closing

motions are different. This viscous stress “imbalance” may be

enough to lead to net motion. It is important to note, however,

that just because kinematic reversibility is broken, it does not

mean that one has achieved efficient propulsion; it only means

that propulsion is possible.

This possibility - that the fluid non-Newtonian rheological

properties can enable propulsion - has been explored theoreti-

cally for a handful of special cases, particularly for viscoelas-

tic fluids. Normand and Lauga [102] and Pak, Normand, and

Lauga [103] analyzed the role of fluid elasticity on model

tethered-flappers, which execute prototypical small amplitude

reciprocal motion. Analysis of the flow fields generated by

swimmers moving in Oldroyd-B and FENE-P model fluids sug-

gests that elastic effects can generate forces that scale quadrati-

cally with the amplitude of the motion. This demonstrates that

normal-stress differences due to elasticity can be exploited to

enable propulsive forces, circumventing the scallop theorem.

In a related study, Fu, Wolgemuth and Powers [104] studied a

variation of the Taylor sheet problem [68]: an infinitely long

“wiggling” cylinder in an Oldroyd-B fluid. Using domain per-

turbation techniques, the authors find that net motion is possi-

ble for reciprocal motion in which the backward and forward

strokes occur at different rates, possible due to an imbalance of

generated normal stress differences. Another case is a ‘squirm-

ing’ sphere, which executes small-amplitude motion along its

surface. Using concepts drawn from differential geometry and

utilizing the reciprocal theorem, Lauga [105] found that in an

Oldroyd-B fluid the accumulation of local elastic stresses drives

the sphere forward. This is true even when the surface motion

is time-reversible, breaking free of the constraints imposed by

the scallop theorem. These theoretical works clearly allude to

the possibility of elasticity-enabled propulsion.

Perhaps the first experimental demonstration of elasticity-

enabled propulsion was provided by Arratia and co-workers

[75, 76]. In these experiments, an asymmetric particle (in this

case a dimer) is actuated by an external magnetic field and it

is forced to execute periodic reciprocal strokes, which results

in no net motion in viscous Newtonian fluids. In a dilute poly-

meric solution [75], however, net motion is achieved by elas-

tic stresses which do not entirely cancel out over one forcing

period, but instead have a small rectified component that accu-

mulates. This elasticity-enabled propulsion has also been ob-

served in “structured” fluids such as worm-like micellar solu-

tions [76]. Furthermore, propulsion may be enabled by other

non-Newtonian fluid properties, such as shear-rate dependent

viscosity. Indeed, Qiu et al. [29] have observed the propulsion

of reciprocally-swimming micro-scallops in shear-thinning and

shear-thickening fluids.

Promising advances have been in the design of self-

propelling micro- and nano-swimmers. These advances in-

clude using hydrogen peroxide as a fuel source [106] and elec-

tric field-induced polarization [107]. However, powering self-
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propelling synthetic swimmers still remains a challenge [108].

Detailed experiments [75, 76] demonstrate that driven artifi-

cial swimmers can move through complex fluids with only re-

ciprocal actuations and a simple body shape. These synthetic

externally-driven swimmers are appealing for biological appli-

cations since their propulsive mechanism is less complicated

than alternate strategies. The propulsive efficiency of micro-

swimmers is commonly defined as the ratio of the power to drag

the swimmer at its period-average velocity to the total power

dissipated by the fluid during a period. The synthetic recipro-

cal swimmers in polymeric solutions have propulsive efficien-

cies (≈1% [75]) similar to those of non-reciprocal swimmers

in Newtonian fluids, including magnetic torque-driven helical

micro-robots (≈ 1% [109]) and self-propelling force-free bac-

teria (≈ 2% [110]). Further understanding of factors control-

ling this efficiency could greatly simplify fabrication of micro-

swimmers.

3. Suspensions of Active Colloids & Swimmers

In general, a single active entity in a fluid - Newtonian or

complex - behaves very differently from a suspension com-

prised of multiple such entities. Examples are shown in Fig.

5. Interactions between multiple swimmers (or active colloids)

can lead to many fascinating phenomena not seen in suspension

of passive particles at equilibrium including anomalous density

and velocity fluctuations, large scale vortices and jets, and trav-

eling bands and localized asters. Identifying means to relate

the microstructural features (e.g. swimmer local orientation)

to macrostructural properties and bulk phenomena would yield

ways to control, manipulate, and even direct the properties in

these novel living systems.

3.1. Dilute suspensions of active particles

A suspension of active colloids is considered dilute when in-

teractions among particles are negligible. Even in the absence

of particle interactions, however, the interplay between activity

and the fluidic environment, as reviewed below, leads to novel

and even unexpected phenomena.

3.1.1. Active particles in Newtonian fluids

In the absence of activity, the shear viscosity η of a dilute

suspensions of (passive) hard spheres is given by the Einstein

relation, η = ηs(1 +
5
2
φ) [111], where ηs is the viscosity of the

suspending fluid and φ is the volume fraction of the particles.

In the presence of activity, however, the shear viscosity can be

a strong function of the microorganisms swimming kinematics.

We will briefly discuss the origins of this behavior below.

By using a kinetic theory based approach and solving the

Fokker-Plank equation for the distribution of particle orienta-

tions under shear, Saintillan [112] showed that for a dilute sus-

pension of force dipoles, the zero-shear viscosity η still follows

an Einstein-like relation, η = ηs(1 + Kφ), with the constant K

now related to swimmer kinematics. For pushers, K < 0, while

for pullers, K > 0. This leads to an interesting result: activity

can either enhance or reduce the fluid viscosity depending on

the swimmer kinematics (puller or pusher).

Due to the exceptionally low shear rates and stresses needed

to realize these potential modifications in viscosity, experimen-

tal verifications of theories have been limited [42, 43, 44]. In

2009, Sokolov and Aranson [42] presented some of the first

experimental evidence of activity-modified viscosity in a fluid

film of pushers (Bacillus subtilis). They found that the pres-

ence of bacteria significantly reduces the suspension effective

viscosity. Subsequent experiments using shear rheometers have

shown that the fluid viscosity can be effectively larger in sus-

pensions of C. reinhardtii (pullers) [43] or lower in suspensions

of E. coli (pushers) [44] compared to the case of passive parti-

cles (non-motile organisms) for the same shear-rates. Activity

also seems to affect the suspension extensional viscosity in a

similar way [113, 114].

Clearly, activity has a fascinating effect on the viscosity

of active suspensions; theoretical and numerical investigations

seem to predict a regime in which the viscosity of the suspen-

sion can be lower than the viscosity of the suspending fluid.

This striking phenomenon has been recently observed in experi-

ments for E. coli (pushers) [44], where it was also found that the

suspension viscosity linearly decreased as the bacterial concen-

tration increased (in the dilute regime). Despite such advances,

however, it has been a challenge to experimentally visualize the

evolution of the microstructure (particle positions and orienta-

tions) during the rheological (viscosity) measurements. This

type of information and measurements are critical to obtain in-

sights into the physical mechanisms leading to this “vanishing”

viscosity phenomenon in bacterial suspensions.

3.1.2. Active particles in complex fluids

Given the evidence that bacterial activity can alter suspen-

sion viscosity, it is natural to expect that the interaction of active

particles or microorganisms with the fluid microstructure (poly-

mers, particles, liquid crystals, cells, and networks) in com-

plex fluids can also lead to interesting phenomena. Indeed, an

extreme example of this is how even dilute concentrations of

bacteria can disrupt long range order in lyotropic liquid crys-

tals. The presence of bacteria can locally melt the underly-

ing nematic order and generate large scale undulations with a

length scale that balances bacterial activity and the anisotropic

viscoelasticity of the suspending liquid crystal [71]. Related

experiments using active liquid crystals comprised of reconsti-

tuted microtubule-motor mixtures [98] suggest similar disrup-

tive effects on long range order. In this case, the active en-

tities are motile defects, which generate flow, and are spon-

taneously created and annihilated within the ambient environ-

ment, as shown in Fig. 5e. These studies illustrate how even

dilute concentrations of active particles can locally deform and

activate the microstructure of complex fluids. These synergistic

and dynamic materials possess qualities (new temporal and spa-

tial scales) distinct from both passive complex fluids and sus-

pensions of active particles in Newtonian fluids.

The microstructure of complex fluids, however, does not sim-

ply submit to the flow generated by active particles. Instead,

as discussed in Section 2.2 and 2.3, the microstructure couples

to the active particles, altering their swimming gait and speed.

Indeed, the microstructure can even be exploited to adaptively
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guide active particles. For instance, it has recently been shown

that the underlying nematic structure of lyotropic liquid crystals

can align bacteria, controlling their motility and direction [71].

The nematic director can even set the bacterial direction near

walls, where near-wall hydrodynamic torques can reorient cells

[115]. In recent experiments, Trivedi et al. [116] demonstrated

that in lyotropic liquid crystals bacteria can transport particles

and non-motile eukaryote cells along the nematic director. Con-

versely, passive particles (≈ 1-15 µm diameter) can be used to

manipulate and capture active particles (self-propelled Au-Pt

rods) [99], which tend to orbit along surfaces of passive parti-

cles, as shown in Fig. 6a. Together, these works seem to mirror

the trafficking of cargo in cells by active motors [7] and suggest

novel methods to transport active and passive components of

these living, complex fluids, some of which are highlighted in

Fig. 6.

3.2. Non-dilute suspensions of active particles

The investigations briefly discussed above highlight the strik-

ing role of activity on material fluid properties even in the dilute

regime when particle interactions are negligible. As the concen-

tration of particles increases, however, the particle interactions

(either steric and aligning interactions or hydrodynamic inter-

actions) can suddenly give rise to collective motion. Interest-

ingly, as reviewed next (Section 3.2.1), even when the suspend-

ing medium is not a complex fluid, the collective dynamics of

the active particles can lead to non-Newtonian suspension prop-

erties. The interplay between collective particle dynamics and a

suspending complex fluid are yet to be explored in detail, with

the exceptions of the works mentioned in Sec. 3.2.2.

3.2.1. Active particles in Newtonian fluids

Perhaps one of the first models for collective motion in the

absence of fluid hydrodynamic interactions was proposed by

Toner and Tu [17] using a modification of the classical liq-

uid crystal model. This seminal work has been significantly

extended theoretically to cover a range of interactions. Inter-

estingly, these models as well as simpler discrete agent-based

simulations are able to capture many of the universals features

observed in natural active colloidal systems including flocking

and collective behavior.

In order to incorporate the role of fluid interactions, recent

mean-field models use dipole approximations in simple (New-

tonian) fluids. Recent reviews by Koch and Subramanian [117]

and Marchetti, et al. [10] summarize linear stability analyses of

these mean-field models. The general consensus of these stud-

ies is that hydrodynamic interactions mediated by the fluid can,

in some cases, destabilize homogeneous suspensions and assist

collectively moving states.

As mentioned above, even when the suspending fluid is New-

tonian, interactions between active particles can induce non-

Newtonian features, such as elasticity. In order to model the

rheology of active suspensions, Hatwalne et al. [118] general-

ized the kinetic equations for liquid crystals and obtained a gen-

eral expression for frequency-dependent stress in an oscillatory

shear flow. This stress depends on the detailed swimming kine-

matics (pusher or puller), the active correlation times, and the

density. Importantly, the theory predicts that – as the system

approaches an orientational-order transition – this previously

Newtonian fluid begins to exhibit elasticity, with elastic stresses

than increase with the orientational order. This work highlights

how the active particle microstructure can dramatically alter the

bulk material properties.

3.2.2. Active particles in complex fluids

The implications of a suspending non-Newtonian fluid on

the bulk material properties of active fluids, such as collec-

tive behavior, are only now starting to be explored. In this

regard, a series of recent theoretical studies by Bozorgi and

Underhill [119, 120, 121] reveal how features unique to non-

Newtonian fluids, i. e. fluid relaxation times, may result in

coordinated collective motion of active colloids. In this se-

quence of papers, the authors analyze the evolution of an ini-

tially uniform distribution of interacting axisymmetric colloids

moving in three canonical viscoelastic fluids, namely Oldroyd-

B, Maxwell, and generalized viscoelastic fluid models. Lin-

ear stability analysis reveals that the emergence of instabilities

and collective motion is controlled by a number of parameters:

colloidal dynamics (such as translational and rotational diffu-

sivities), fluid material properties (such as relaxation times and

viscosity) and interaction-specific features (such as the time for

hydrodynamic interactions to reorient colloids). The authors

find that increasing particle translational diffusivity always hin-

ders the onset of collective motion; whereas, rotational diffu-

sivity always hinders instabilities when the suspending fluid is

Newtonian. Surprisingly, when the suspending fluid is non-

Newtonian, rotational diffusivity can promote the emergence of

these collectively moving states [120]. Recent experiments [61]

have shown that fluid viscosity and elasticity impacts the trans-

lational and rotational diffusivity of individual, non-interacting

E. coli. This suggests that the presence or absence of collective

motion in active fluids can be controlled by simply tuning the

mechanical properties of the suspending medium.

The viscoelasticity of the suspending fluid not only affects

the emergence of collective motion but also influences the

pseudo-steady flows that are eventually established after the on-

set. Fluid elasticity can force strongly collective states to tran-

sition to weakly collective (”suppressed”) states with less long-

range structure. Indeed, a recent theoretical study [121] predicts

that the self-driven structures that emerge when active colloids

move in complex fluids have considerably different length and

time scales from the Newtonian analogue.

4. Future and Perspectives

True appreciation of a complex mosaic is gleaned only by

examining each individual component and appreciating its role

in the way it fits into, integrally contributes to, and thus forms

the whole. Similarly, a theoretical and practical knowledge of

the dynamics of active colloids in complex fluids necessitates

understanding at all scales. It is clear from a review of the lit-

erature that significant progress has been made in this regard.

Still, many aspects remain to be uncovered and understood.
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Crucial to this process is the connection between theory, simu-

lations, and experiments in a meaningful way. We conclude by

focusing on three over-arching questions and aspects that are

yet to be resolved satisfactorily: (i) passive versus active re-

sponse of individual microorganisms, (ii) complex interactions

among particles, and (iii) constitutive equations for suspensions

of active colloids.

4.1. Passive and active response

The first step in understanding active fluids is to understand

swimmer-fluid interactions at the level of a single swimmer.

As is evident from a review of the literature of single swim-

mers in complex fluids (Section 2), the fluid microstructure and

swimming kinematics together impact the organism’s motility

in a non-linear manner. Changes in the swimming behavior, i.e.

the swimming gait, of a living organism may however not be a

purely passive response. Microorganisms can use mechanosen-

sation to actively control their swimming modes and attempt

to adapt to a (complex) fluidic environment. For instance, it

is known that sperm can exhibit different beating shapes in re-

sponse to the properties of the fluid through which they swim

[122]. In reality, the interplay among the fluid stresses, the pas-

sive material properties of the swimmer’s body, and the active

forces produced by the internal motors produces the configura-

tional changes that make up the swimming gait [77, 74]. Sep-

arating the active swimmer response aspects, which may have

behavioral and adaptive evolutionary, to the ambient fluid from

its passive response is very challenging and yet has promis-

ing implications for the design of synthetic swimmers, micro-

robots, and overall understanding of swimming.

A natural step is to develop models that allow for indepen-

dent tuning of these three complementary responses that to-

gether affect the swimmer’s response. Experiments that will

provide insight in this regard must simultaneously visualize the

single swimmers and the time-dependent surrounding flow as

well as obtain information on the organism’s “activity.” For the

case of the nematode C. elegans, this would mean visualizing

calcium ions in the muscle cells during swimming, for example.

Calcium imaging has potential for investigating the molecular

mechanisms involved in muscular contraction and can even be

used to infer neural activity. Due to the wealth of genetic infor-

mation as well as well-developed electrophysiology and optical

techniques (e.g. opto-genetics), the nematode C. elegans is a

promising organism for such investigations.

4.2. Particle interactions

A second challenge is in understanding and manipulating lo-

cal particle interactions between active colloids in order to con-

trol and direct bulk collective behavior. Although theories and

simulations have had some success in linking simple particle in-

teractions (steric, aligning, and hydrodynamic) with the emer-

gence and dynamics of collective motion [26, 123], in general,

active colloidal particles interact in a plethora of ways. Ex-

amples include electro-static repulsions, short-range attractions

[97] and adhesion [59]. In experimental systems, these inter-

actions are difficult to distinguish, seperate, and even quantify.

For instance, quorum sensing is used by bacteria to actively

change their behavior at high bacterial densities [124]. How-

ever, separating this chemically based signaling response from

hydrodynamical based interactions is difficult. These chal-

lenges highlight the need for simple (nonliving) experimental

systems, such as self-propelled phoretic particles [23, 24] and

externally actuated particles [28, 125], for independently vary-

ing particle interactions and testing theories on active complex

fluids.

Furthermore, most simulations and theories focus on

monodisperse active particles that behave identically. However,

diversity is a fundamental aspect of life and is reflected in varia-

tions in the kinematics between individual microorganisms of a

species. Polydispersivity due to extraneous suspended material

such as particles, polymers or other motile or non-motile cells

is inherently seen in many natural environments. Simulations

[126] have shown that bidisperse (motile and non-motile) parti-

cles phase-separate under appropriate conditions. Phase separa-

tion has also been observed in experiments on bacteria moving

in polymeric solutions ( Fig. 5d) [97]. Recent investigations

have also shown that hydrodynamic interactions between bac-

teria and passive spheres can enable larger particles to diffuse

more rapidly than smaller ones [127, 101], as shown in Fig.

6d. These studies highlight fascinating phenomena that occurs

when passive and active particles interact; topics that are fertile

ground for vigorous exploration.

The motion of passive particles or tracers can additionally

be used to probe the characteristics of the environment such

as the local viscosity, permeability and temperature. This, in

fact, forms the basis of microrheology in passive systems -

both in and out of equilibrium [56, 128]. These powerful and

established techniques have recently been extended to active

materials and have shed light on spatial and temporal inhomo-

geneities in these systems, an example being bacterial suspen-

sions [129]. Complementarily, the dynamics of soft and fila-

mentous particles can yield additional information not obtain-

able using rigid tracers: fluorescently stained DNA molecules

can be used to estimate local, history-dependent stresses in fluid

flow [130, 131, 132]. Simulations suggest that the collective dy-

namics of active particles leads to unusual swelling of polymer

molecules [133], whereas we have shown experimentally that

the flow generated by individual motile E. coli are sufficiently

strong to stretch DNA polymer molecules [61]. These studies

suggest how particles, hard and soft, can be used to gauge and

understand activity.

4.3. Constitutive Equations

As reviewed above, the combination of active and passive

ingredients within an fluid can lead to fascinating and some-

times non-intuitive features. Accurate and predictive models

for these features will need to connect microscale physics to

macroscale structures. Classically, as in the case of passive al-

beit complex fluids, the bulk response at large hydrodynamic

scales is described through the use of constitutive equations de-

scribing the features of the fluid, such as the stress and pressure,

in terms of variables such as the deformation and deformation

11



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

rate. These constitutive equations are related to the microstruc-

ture of the complex fluid using concepts from statistical physics

and kinetic theory. For example, the bulk polymeric stress in a

flowing polymer suspension can be related to the ensemble av-

eraged mean stretch of the polymers provided polymer-polymer

and polymer-solvent interactions are known. There have been

many focused efforts to extend these techniques to active com-

plex fluids. We highlight two aspects of this broadly-defined

problem related to thermodynamic and mechanical properties

of active fluids.

First, can thermodynamic variables, such as temperature and

chemical potential, be used in a meaningful way to character-

ize active suspensions [97, 134, 135, 136]? Although the no-

tion of temperature proves useful in some contexts [134, 136],

in general, studies [97] suggest that the temperature cannot be

defined unambiguously for active systems. The second aspect

relates to whether mechanical properties such as the stress ten-

sor and pressure can be defined for active fluids and whether

these properties are consistent when determined in independent

ways. Closely related to this issue is if and when equations of

states for active colloidal fluids can be written down. As an ex-

ample, for passive fluids in thermal equilibrium, pressure may

be defined as (i) either the force per unit area exerted by the fluid

on its containing vessel, (ii) through an equation of state that re-

lates pressure to bulk thermodynamic properties such as density

and temperature and (iii) via hydrodynamic principles, as the

trace of a macroscopic stress tensor. In thermal equilibrium, all

these definitions of pressure coincide but far from equilibrium,

these definitions may not. Theories and simulations are begin-

ning to explore when these definitions may converge for active

fluids.

Recent models for the macroscopic dynamics of active col-

loids in Newtonian fluids have introduced the expressions for

the bulk stress tensor (thereby incorporating activity) and de-

fined pressure as its trace [10, 137]. How this pressure relates

to the mechanical definition of pressure – as the force per unit

area acting on a bounding surface – is an open question. Solon

et al. [138] have shown that, when momentum coupling to the

ambient fluid is negligible, the pressure exerted on a wall by

an assembly of self-propelled colloids depends on the micro-

scopic details of colloid-wall interactions. This remarkable re-

sult strongly suggests that generic equations of state for active

colloidal systems cannot be written down. However even when

an equation of state cannot be written down, the notion of pres-

sure remains useful [137, 138].

We emphasize that it is unclear how these results would

change for a real active colloidal complex fluid. In physical sys-

tems, there is full momentum conservation (for both particles

and suspending fluid) in the bulk as well as inter-colloidal in-

teractions mediated by the fluid. The general case that involves

full hydrodynamics – be they Newtonian or non-Newtonian – is

still unexplored and offers exciting challenges to both theorists

as well as experimentalists. We anticipate that these studies

will provide a foundation for bridging the gap between inor-

ganic complex fluids and organic active matter. After all, as

Rinne wrote even as early as 1930, “this gap does not exist,

since the sperms, which are undoubtedly living, are at the same

time liquid crystals [139].”
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