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An analytic solution to the magnetostatic inverse problem in the framework of vec-

tor spherical harmonic basis functions is presented. This formalism is used for the

design of a spherical magnetic field compensation system and its performance is

compared with an already existing rectangular coil system. The proposed set of

spherical coils with 15 degrees of freedom achieves a shielding factor of 1000

or better in a large part of the volume enclosed by the coils for a dipolar type

external perturbation. © 2017 Author(s). All article content, except where other-

wise noted, is licensed under a Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4978394]

I. INTRODUCTION

Interesting information about complex physical, biological and environmental systems is commu-

nicated to the external world by weak and low-frequency magnetic signals reflecting the evolution of

the weak magnetization carried by these systems. Similarly, in certain quantum mechanical ensembles

such as spin polarized ultra-cold neutrons or atoms, the interesting physical information is superim-

posed on top of their weak magnetization, which must be strictly controlled in order to observe the

desired signal. There exist well established methods to measure DC magnetic fields down to a few

pT. Traditional methods to create low magnetic field environments are passive shieldings made of

high permeability ferromagnetic alloys or superconducting enclosures. Examples of such systems

can be found e.g. in Refs. 1–4.

Theoretically, there exists another approach to provide a “magnetic vacuum” in a given volume

and frequency range. For a charge- and current-free space, in the quasi-static regime, this is guaranteed

by solutions of the Laplace’s equation arising from Maxwell’s laws of classical electromagnetism.5

Knowing field vectors at sufficiently numerous points in the volume it is possible to judge the field

distribution in a given volume to the required accuracy. This, in turn, allows calculating and applying

electric currents in a system of correction coils generating (in the same volume) a field distribution
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with the same magnitude and sign opposite to the measured field. The correction signal must appear

with a delay negligible for the frequency range in question. Active field compensation utilizing three-

dimensional Helmholtz-like coil systems were applied e.g. in MiniCLEAN,6 LIPSION7 and nEDM8

experiments.

In practical solutions, especially for a large control volume, one is faced with limitations, the

most important being the maximal number of independent correction coils included in the feedback

loop. Each coil needs a precise and quickly reacting current source with control electronics which

dissipates power (heat) which may cause additional problems in the particular application. The main

goal of this study is to estimate the performance of an idealized system with as few degrees of freedom

as possible. Such a case will be used in future as a reference for practical solutions.

In this article we propose a novel design for an active compensation coil system based on the

field decomposition in the Vector Spherical Harmonics (VSH) described by R. Barrera et al. in Ref. 9,

together with a stream function description of currents to obtain an orthogonal system of coils.

We first present the VSH formalism consisting of (i) a description of the field in a given volume

created by an external source, (ii) evaluation of the current density distribution generating such a field

and (iii) a current density discretization procedure leading to spherical coils. Then we characterize

the performance of the spherical coil system in response to various field disturbances and compare it

to the performance of a 6 coil system, used by the nEDM experiment at PSI.

II. MAGNETIC FIELD DECOMPOSITION IN TERMS OF VECTOR SPHERICAL HARMONICS

The general situation is illustrated in Fig. 1. We divide the whole space into three distinct

regions. The central volume called the experimental volume Vexp is assumed to be free of magnetic

field sources (electric currents and magnetic material) and is supposed to be free of magnetic fields

generated by external sources when the compensation system is active. The experimental volume

Vexp is surrounded by a shell VC , to which electrical currents are constrained. Outside of VC , in the

volume VD, magnetic field disturbances can occur. SC is the surface (see section III), on which the

solutions for coil turns will be obtained. We assume that all materials within Vexp and nonmagnetic

(µr = 1) which allows us to define the scalar magnetic potential φ(~r), fulfilling the Laplace’s equation.

Electrical currents in the shell VC generate a magnetic field according to Ampere’s law:

∇ × ∇ × ~A= µ0
~J , (1)

FIG. 1. Definition of geometrical components. Vexp is the volume where the field is supposed to be compensated. VC is the

volume where compensating coils are supposed to be located. SC is the surface (see section III), on which the solutions for

coil turns will be obtained. VD is the volume where the disturbing field originates from.
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where ~A is a vector potential and ~J is a current density.

A. Spherical harmonic decomposition of the scalar potential

In the spherical coordinate system, the scalar potential φ(~r) - the solution of the Laplace equation

- can be expressed as a series of spherical harmonics:

φ(~r)=

∞
∑

l=0

l
∑

m=−l

φlmrlYlm(θ, ϕ), (2)

where the set of {φlm} describes uniquely the scalar potential function.

For small field disturbances from external sources one expects a fast convergence of expression

(2) near the origin. Only the first few terms with small l values will contribute to the field description.

An additional advantage of this form results from the orthogonality of spherical harmonics. If the

external field changes only a limited number of the terms in Eq. (2) are affected. The reacting

compensation system will have to drive currents only to the required corresponding coils without

affecting others.

B. Current density distribution

In order to compensate a field disturbance in the controlled volume Vexp one has to drive currents

in the shell VC such that the resulting magnetic field distribution in Vexp has the same amplitude as the

disturbance with opposing sign. This problem is often referenced as the “Inverse source problem”10

and has been subject of many studies. Here we present an analytical solution for a system exhibiting

spherical symmetry. To accomplish this we begin with a synopsis of Vector Spherical Harmonics

(VSH) essentials. A more detailed discussion can be found in Ref. 9. Vector Spherical Harmonics

are related to the scalar spherical harmonics in the following way:

~Ψlm(θ, ϕ)≡ r∇Ylm(θ, ϕ) (3)

~Ylm(θ, ϕ)≡ r̂ Ylm(θ, ϕ) (4)

~Φlm(θ, ϕ)≡ r̂ × ~Ψlm(θ, ϕ), (5)

where: r̂ is a versor in radial direction, (r, ϑ, ϕ) are spherical coordinates. These equations offer is a

complete and orthogonal basis set, meaning that any vector function can be expressed as a series of

VSH:

~f (r, θ, ϕ)=

∞
∑

l=1

l
∑

m=−l

f Y
lm(r)~Ylm(θ, ϕ) + f Φlm(r)~Φlm(θ, ϕ) +

+ f Ψlm(r)~Ψlm(θ, ϕ), (6)

where {f Y
lm

, f Φ
lm

, f Ψ
lm
} is a set of expansion factors.

A significant advantage of VSH is their well known and simple behavior under action of

differential operators.9 Any vector potential ~A(r, θ, ϕ) can be expressed as a series of VSH:

~A(r, θ, ϕ)=

∞
∑

l=0

l
∑

m=−l

(

AY
lm
~Ylm + AΨlm

~Ψlm + AΦlm
~Φlm

)

. (7)

Making use of the relations for the divergence and gradient of the ~Y part of VSH expansion9 we

express the magnetic field in the current free experimental volume Vexp using scalar potential (Eq.

(2)):

~B=−∇φ=−

∞
∑

l=0

l
∑

m=−l

(

d

dr
φlm

)

~Ylm +
φlm

r
~Ψlm, (8)
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and in the current shell VC :

~B=∇ × ~A=

∞
∑

l=0

l
∑

m=−l

*
,

(

−
AY

lm

r
+

1

r

d

dr

(

rAΨlm

)

)

~Φlm+

−
l(l + 1)

r
AΦlm

~Ylm −
1

r

d

dr

(

rAΦlm

)

~Ψlm

)

(9)

The current density ~J depends only on Φlm (components JY
lm

and JΨ
lm

of the current density

expansion into VSH series vanish for all l and m meaning that currents flow only in directions ~̂θ

and ~̂ϕ). The expression for the magnetic field generated by currents in the shell VC will simplify

significantly, similarly for the equations for currents. This problem was already solved in Ref. 9

φlm(r)= rl 4π

c

l + 1

2l + 1

∫ ∞
0

(r ′)
−l+1

JΦlm(r ′)dr ′. (10)

This means that a current~J ∝ ~Φlm flowing on a sphere generates a field described by a scalar potential

φ ∝ rlYlm. Hence, the fields generated by different ~J ∝ ~Φlm will be orthogonal inside the sphere.

C. General current densities

If we relax the constraints of an infinitely thin current density (coefficients JY
lm

and JΨ
lm

do not

vanish anymore) we obtain the general expression:

µ0
~J(r, θ, ϕ)=

∞
∑

l=0

l
∑

m=−l

(

l(l + 1)

r2

(

AY
lm −

d

dr
rAΨlm

)

~Ylm+

+

1

r

d

dr

(

AY
lm −

d

dr
rAΨlm

)

~Ψlm+

+

1

r

(

l(l + 1)

r
AΦlm −

d2

dr2
rAΦlm

)

~Φlm

)

. (11)

Making use of the continuity relation for current ∇ · ~J = 0, and Gauss’s law for magnetism ∇ · ~B= 0

as well as exploiting the relations for the divergence of VSH, we arrive at:

JΨlm(r)=
1

l(l + 1)

1

r

d

dr

(

r2JY
lm(r)

)

(12)

AΨlm(r)=
1

l(l + 1)

1

r

d

dr

(

r2AY
lm(r)

)

. (13)

This means, that the Y and Ψ parts of the series expansion of ~A and ~J (see Eqns. (6) and (7)) are

dependent and only one of them needs to be considered, e.g. Y. From the curl of VSH (see Ref. 9)

we get:

µ0JY
lm(r)=−

l(l + 1)

r
BΦlm(r), (14)

where BΦ
lm

(r) is the function describing the expansion of the magnetic field into the ~Φ component of

VSH. This means that for ~x ∈ Vexp, (~J = 0) also

~BΦlm(r(~x))= 0. (15)

In conclusion to the current density expansion in VC , the terms proportional to ~Ylm(θ, ϕ) and ~Ψlm(θ, ϕ)

do not contribute to the field generated in the controlled volume Vexp. This means that only currents

flowing on the surface of the sphere generate field inside that sphere.

III. COILS - DISCRETIZATION OF THE CURRENT DENSITY DISTRIBUTION

In a practical application the required current density distribution ~J(x, y, z), where (x, y, z) ∈ VC ,

will be obtained using a coil system. We assume that the coils consist of thin wire turns distributed
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FIG. 2. Accuracy of the current density discretization calculated with the stream function approach. Average relative error of

the field reproduced by a coil with a given number of turns is shown for two coils: (l = 1, m = 0) - solid lines and (l = 3, m = 2)

- dashed lines. The average is taken over the sphere with radius of 0.3R - grey lines and 0.9R - black lines. R is the radius of

the coil.

on a sphere, so that volume VC reduces to a surface. Since all wire turns in a coil are connected in

series, the only way to construct a given current density is by proper shaping and distribution of wire

turns. To perform this we use the stream function approach from Ref. 11. It is based on the fact that

for a static current density function ~J(x, y, z) the divergence vanishes

∇ · ~J(x, y, z)= 0. (16)

If currents are constrained to a surface defined by a normal vector ~̂n, then the current density can be

written as:

~J(x, y, z)=∇ψ(x, y, z) × ~̂n, (17)

where ψ(x, y, z) is the so called stream function defined on the surface containing the currents. This

function must be differentiable on that surface. In order to fulfill the relation (16) the stream function

must be constant on the boundary of the surface. The currents are allowed to flow along the isolines

of the stream function. We can identify the isolines with the coil wire turns.

Comparing Eqn. (17) with the ~Φ part of the VSH series in Eqn. (5) we realize that wire turns of

the spherical coils follow the isolines of spherical harmonics.

ψ(x, y, z) ∝ Ylm(θ, ϕ) (x, y, z)= (r, θ, ϕ), r = const (18)

The necessary number of the coil windings depends on the required field reproduction accuracy.

Fig. 2 shows the dependence of the average relative reproduction accuracy |Breproduced |/|Btheoretical | as

a function of the number of wire turns. The more turns a coil has, the more accurate the field created

by it reproduces the field of a continous current distribution.

Three l = 1 coils (Fig. 3), the so called cos-theta coils,12 identical to those obtained by J. E.

Everett and J. E. Osemeikhian,13 produce a uniform magnetic field. Field components of higher

order are produced with coils with l > 1. Figures 4 and 5 present the wire distributions for l = 2 and

l = 3, respectively.

FIG. 3. Coils for l = 1 wound on a sphere, creating uniform magnetic fields. For clarity, the number of turns is set to be n = 9.
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FIG. 4. Coils for l = 2 wound on a sphere, creating quadrupolar field components.

FIG. 5. Coils for l = 3 wound on a sphere, creating octupolar field components.

IV. SPHERICAL AND RECTANGULAR COIL SYSTEMS FOR A COMPARISON

In order to compare the expected performance of the spherical coil system with more ’standard’

solutions we describe first two rectangular coil systems. The first one is used in the neutron Electric

Dipole Moment spectrometer installed at the Paul Scherrer Institute, Villigen, Switzerland1,8). The

system consists of three pairs of rectangular coils as shown in blue in Figure 6. The coils (dimensions

- see Table I) have independent power supplies providing 6 degrees of freedom for the compensation

system. The second ’standard’ used for comparison is based on the Merritt 4-coil system14 – a

candidate for the second generation of nEDM experiment at PSI shown in Fig. 7. It consists of 12

coils, providing 12 degrees of freedom. The dimensions of the coils are given in Table II.

The necessary reaction currents corresponding to the external field changes are calculated using

the readouts from a number of vector fluxgate sensors. The algorithm utilizes the fact that the magnetic

field strength generated by a coil is proportional to the current driven through it. This leads to a system

of linear equations relating the measured field components with the coil currents

*.........
,

B1
x

B1
y

B1
z

· · ·

Bn
z

+/////////
-

=

*.........
,

Gx1
1

Gx1
2

Gx1
3
· · · Gx1

m

G
y1

1
G

y1

2
G

y1

3
· · · G

y1
m

Gz1
1

Gz1
2

Gz1
3
· · · Gz1

m

· · · · · · · · · · · · · · ·

Gzn
1

Gzn
2

Gzn
3
· · · Gzn

m

+/////////
-

*.........
,

I1

I2

I3

· · ·

Im

+/////////
-

(19)
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FIG. 6. Two compensation systems used in the performance comparison - 6 rectangular coils system drawn in blue and one

example coil from spherical system drawn in red.

~B=G~I (20)

The G
ij

k
coefficients are determined by recording the fluxgate magnetometer measurement values

while changing the current in one coil at a time. The minimum number of 3-dimensional fluxgate

sensors necessary to uniquely establish the coil currents depends on the number of coils in the system.

Only two sensors are required in the case of the 6-coil rectangular system. However, such a system

would compensate the field changes only in two points (location of fluxgate sensors) ignoring the

field changes in other parts of the controlled volume. Moreover, the uncertainties of the measured

fields propagate to the calculated correction currents. In order to reduce these drawbacks the system

utilizes more fluxgate sensors (12 in the example below) leading to an overdetermined set of equations.

The pseudoinverse matrix G
☞1 is calculated using the Singular Value Decomposition method15 to

calculate the optimal currents.

TABLE I. Dimensions of the coils of the rectangular active magnetic field compensation system of the present nEDM

experiment at PSI.

coil long side [m] short side [m] distance [m]

X- 7.88 6.08 4.22

X+ 7.87 6.07

Y- 8.16 5.94 5.12

Y+ 8.43 5.95

Z- 8.02 5.84 4.23

Z+ 7.97 5.84
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FIG. 7. Third compensation system used in performance comparison - 12 coils based on the Merritt et al. 4 coil system.

Different colors distinguish between X, Y and Z sets of coils.

TABLE II. Dimensions of the coils of the Merritt based 12 coil compensation system.

coils long side [m] short side [m] distance [m]

X1 & X4
5.36 5.38

5.12

X2 & X3 1.28

Y1 & Y4
6.00 5.92

5.76

Y2 & Y3 1.48

Z1 & Z4
6.08 5.76

5.44

Z2 & Z3 1.36

To calculate the coil currents in all systems we adopted corresponding algorithms from the GNU

Scientific Library.16 Magnetic field perturbations generated by a given current loop were calculated

by integrating Biot-Savart’s law.

FIG. 8. Average ∆1 as a function of the radius of the spherical control volume with feedback sensors located on that surface

for spherical and rectangular coil systems. # and △ mark results for spherical coil systems - 8 coil and 15 coil, respectively. �

denote 6 coil rectangular system, ♦ - 12 coil one. Full symbols denote the disturbance current loop located at (10, 15, 20) m,

while open symbols correspond to disturbance located at (50, 70, 60) m.
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FIG. 9. Same as Fig. 8 but for average ∆2 (See Eq. (22) and discussion in text).

FIG. 10. Average ∆1 as a function of the distance of disturbance field for spherical coil systems. # and △ mark spherical coil

systems - 8 coil and 15 coil, respectively. Empty symbols denote the less dense coils with 100 windings, while full correspond

to 400 windings. Solid line marks theoretical relation for 15 coil system: ∆1 ∝ r−3.

In order to compare the performance of coil systems we assume that the field measurement

sensors are located at randomly chosen positions on a sphere with 2 m long radius (centered in the

coil system center). The chosen radius for the spherical coils is r = 2.93 m and the number of wire

turns in each spherical coil is equal to 100; we assume that the thickness of the wires has negligible

influence on the magnetic fields.

FIG. 11. Maps of the simulated average ∆1 (according to Eq. (21)) for the 6-coil rectangular magnetic field compensation

system for disturbance sources located randomly 20 m away from the center of system – left panel and 200 m – right panel.

The map plane is at x = 0.01 m. The coil positions are marked with black dots and the positions of three of the feedback sensors

are marked with black stars.
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FIG. 12. Maps of the simulated average ∆1 (according to Eq. (21)) for the 12-coil rectangular magnetic field compensation

system for disturbance sources located randomly 20 m away from the center of system – left panel and 200 m – right panel.

The map plane is at x = 0.01 m. The coil positions are marked with black dots and the positions of three of the feedback sensors

are marked with black stars.

In this work we use two functions of (x, y, z) describing the performance of the coil systems

called ∆1 and ∆2 and defined in Eqns. 21 and 22.

∆1 =

���~Bper − ~Bcor
���

���~Bper
���

, (21)

∆2 =

���~Bper − ~Bcor
���

���~Bper
���max

, (22)

where~Bper denotes the field generated by an external perturbation source,~Bcor the correction calculated

by the compensation system, and
���~Bper

���max
is the maximum value of the magnetic field perturbation

inside the experimental volume.

∆1 reflects the absolute value of the (uncompensated) field remnant relative to the local value

of the perturbation |Bper |, while ∆2 relates this remnant to the maximum value of perturbation in the

experimental volume. Thus ∆1 reflects the distribution of the inverse of the shielding factor in the

experimental volume while ∆2 describes the size and distribution of the remnant (uncompensated)

field in that volume. Both figures-of-merit, ∆1 and ∆2, are equivalent once Bper is known.

Since the expected external field disturbances at the nEDM experiment in PSI are of dipolar

type, we model them with a current loop at a fixed distance, orientation current and diameter. This

FIG. 13. Maps of the simulated average∆1 (according to Eq. (21)) for the 8-coil spherical magnetic field compensation system

for disturbance sources located randomly 20 m away from the center of system – left panel and 200 m – right panel. The map

plane is at x = 0.01 m. The coil positions are marked with black dots and the positions of three of the feedback sensors are

marked with black stars.
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FIG. 14. Maps of the simulated average ∆1 (according to Eq. (21)) for the 15-coil spherical magnetic field compensation

system for disturbance sources located randomly 20 m away from the center of system – left panel and 200 m – right panel.

The map plane is at x = 0.01 m. The coil positions are marked with black dots and the positions of three of the feedback sensors

are marked with black stars.

kind of perturbation generates a magnetic field inside the experimental volume with
���~Bper

���> 0. This

assures that the denominator in Eq. (21) is always non 0.

To account for different perturbation source positions and orientations with respect to the coils

we average∆1 and∆2 over 10000 calculations at a given distance. For illustration of the performance,

the resulting maps are drawn for selected plane cross sections through the experimental volume V exp

and presented in Figs. 11–14 for 6 rectangular coils, 12 rectangular coils, 8 spherical coils and 15

spherical coils, respectively

Similarly, in Figs. 15–18, corresponding maps of average ∆2 are shown.

These maps allow to conclude that, for the spherical system, the magnetic field is fairly well

compensated in almost the entire experimental volume, whereas in the case of rectangular coils, the

compensation performance expressed in terms of ∆1 and ∆2 is at least an order of magnitude worse.

Regions with compensation errors ∆1 less than a given value are much bigger in the case of the

spherical coils than for rectangular coils. Adding the third order coils (l = 3) in the spherical systems

still improves the shielding factor by almost an order of magnitude.

In order to draw a more detailed conclusion the radius of the spherical experimental volume V exp

was varied. The 10 sensors were located at random points on the surface of V exp. The averaged (over

the controlled volume) relative differences ∆1 and ∆2 are presented in Figs. 8 and 9, respectively.

FIG. 15. Maps of the simulated average ∆2 (according to Eq. (22)) for the 6-coil rectangular magnetic field compensation

system for disturbance sources located randomly 20 m away from the center of system – left panel and 200 m – right panel.

The map plane is at x = 0.01 m. The coil positions are marked with black dots and the positions of three of the feedback sensors

are marked with black stars.
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FIG. 16. Maps of the simulated average ∆2 (according to Eq. (22)) for the 12-coil rectangular magnetic field compensation

system for disturbance sources located randomly 20 m away from the center of system – left panel and 200 m – right panel.

The map plane is at x = 0.01 m. The coil positions are marked with black dots and the positions of three of the feedback sensors

are marked with black stars.

This calculation shows that the spherical coil system performs on average 1 to 5 orders of

magnitude better than the rectangular version, depending on the size of the experimental volume

V exp, independently of the figure-of-merit choice.

Figure 10 shows the compensation performance dependence, as a function of the distance of the

disturbance field source. For each of the points on this plot, 100 random positions and orientations

of the sources at a given distance were averaged to obtain the most universal picture.

The performance of the rectangular coil system is almost independent on the distance from the

disturbance source. For spherical systems, the average ∆1 decays with the distance to the source as

r−(lmax). The only deviation from this law can be observed for the 15 coil system. For big distances,

the average ∆1 flattens. This effect can be attributed to errors introduced by using the discrete approx-

imation instead of perfect continuous current distribution. By increasing the coil wire density (from

100 to 400 wires per coil), the lowest value of ∆1 gets 10 times smaller than before. For the eight coil

system we do not see this effect because the error resulting from the cut-off of the Vector Spherical

Harmonic expansion is bigger than the one from the current discretization.

The spherical coil system with 15 coils performs 2 to 5 orders of magnitude better than the

rectangular system with six coils, depending of the size of the experimental volume relative to the

size of the coil system and distance from the disturbance source.

This gain in performance is not caused just by the larger number of degrees of freedom. Adding

6 rectangular coils, resulting in a 12 coil system, does not improve the performance significantly, as

FIG. 17. Maps of the simulated average∆2 (according to Eq. (22)) for the 8-coil spherical magnetic field compensation system

for disturbance sources located randomly 20 m away from the center of system – left panel and 200 m – right panel. The map

plane is at x = 0.01 m. The coil positions are marked with black dots and the positions of three of the feedback sensors are

marked with black stars.
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FIG. 18. Maps of the simulated average ∆2 (according to Eq. (22)) for the 15-coil spherical magnetic field compensation

system for disturbance sources located randomly 20 m away from the center of system – left panel and 200 m – right panel.

The map plane is at x = 0.01 m. The coil positions are marked with black dots and the positions of three of the feedback sensors

are marked with black stars.

can be seen by comparing plots in Figs. 11 and 12. The only noticeable improvement is visible in the

larger sizes of controlled volume, where the improved uniformity of the field created by the 12-coil

system matters.

V. CONCLUDING REMARKS

In this paper, we described a method for designing active field compensation coil systems by

solving the inverse source problem of magnetostatics using vector spherical harmonics (VSH). The

perturbation field to be compensated is decomposed in the volume inside the coils in the spherical

harmonics and the correction currents are calculated for the individual coils producing the orthogonal

correcting field components. We show that only the Φ part of the VSH expansion of currents on the

current shell generates fields inside the sphere. Based on the above result, two systems consisting of

8 and later of 15 spherical coils were selected for further evaluation.

The operation of such a system was simulated using disturbances created by a current loop, and

was compared to the already working system consisting of 6 coils and a proposed system with 12

rectangular coils. We conclude that a 8-coil spherical system with only two additional degrees of

freedom (8 instead of 6) would be a significant improvement compared to the currently used system.

Our simulations show that the performance of the proposed magnetic field compensation system

expressed as an effective shielding factor and as the (uncompensated) field remnant, might be orders

of magnitude better than that for the rectangular coils systems.

Our calculation shows that the optimization of the wire density (current discretization) should

be performed only after the range of expected positions of dipolar disturbances and the required

compensation accuracy are defined.

In a further study we plan to apply the VSH formalism for different shapes (e.g. cuboid, cylinder,

truncated cuboid), which are suitable for a practical realization of a compensation systems to be

applied in the neutron Electric Dipole Moment experiment.
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035216-14 Wyszyński et al. AIP Advances 7, 035216 (2017)

1 C. Baker et al., “The search for the neutron electric dipole moment at the Paul Scherrer Institute,” Physics Procedia 17(0),

159–167 (2011), URL: http://www.sciencedirect.com/science/article/pii/S1875389211003634, 2nd International Workshop

on the Physics of fundamental Symmetries and Interactions - PSI2010.
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