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�is paper deals with the analysis of active constrained layer damping (ACLD) of smart skew laminated composite plates. �e
constraining layer of the ACLD treatment is composed of the vertically/obliquely reinforced 1–3 piezoelectric composites (PZCs).
A �nite element model has been developed for accomplishing the task of the active constrained layer damping of skew laminated
symmetric and antisymmetric cross-ply and antisymmetric angle-ply composite plates integrated with the patches of such ACLD
treatment. Both in-plane and out-of-plane actuations by the constraining layer of the ACLD treatment have been utilized for
deriving the �nite elementmodel.�e analysis revealed that the vertical actuation dominates over the in-plane actuation. Particular
emphasis has been placed on investigating the performance of the patches when the orientation angle of the piezoelectric �bers of
the constraining layer is varied in the two mutually orthogonal vertical planes. Also, the eects of varying the skew angle of the
substrate laminated composite plates and dierent boundary conditions on the performance of the patches have been studied. �e
analysis reveals that the vertically and the obliquely reinforced 1–3 PZC materials should be used for achieving the best control
authority of ACLD treatment, as the boundary conditions of the smart skew laminated composite plates are simply supported and
clamped-clamped, respectively.

1. Introduction

Extensive research on the use of piezoelectric materials for
making distributed actuators and sensors of light weight
�exible smart structures has been carried out during the past
several years [1–16]. �e distributed piezoelectric actuators
and sensors are either mounted on or embedded into the
host �exible light weight structures. When they are activated
with proper control voltage, the resulting structures attain
self-controlling and self-sensing capabilities. Such �exible
structures having built-in mechanism for self-controlling
and self-sensing capabilities are customarily called “smart
structures.” In most of the work on smart structures, the
distributed actuators were considered to be made of the
existing monolithic piezoelectric materials. �e magnitudes
of the piezoelectric coe�cients of the existing monolithic
piezoelectric materials are very small. Hence, the distributed
actuators made of these materials need large control voltage
for satisfactory control of smart structures. �e further

research on the e�cient use of these low-control authority
monolithic piezoelectric materials led to the development of
the active constrained layer damping (ACLD) treatment [17].
�e ACLD treatment consists of a constraining layer made
of the piezoelectric materials and a constrained viscoelastic
layer. �e �exural vibration control by the constrained layer
damping treatment is attributed to the dissipation of energy
in the constrained viscoelastic layer due to its transverse shear
deformations. �e constraining layer of the activated ACLD
treatment increases the transverse shear deformations of the
viscoelastic constrained layer over its passive counterpart
resulting in improved damping of the host structures. �e
control voltage required to cause transverse shear defor-
mations in the low-sti constrained viscoelastic layer of
the ACLD treatment is compatible with the low-control
authority of the monolithic piezoelectric materials. Hence,
the piezoelectric materials perform much better to attenuate
the vibrations of smart structures when they are used for
the constraining layer of the ACLD treatment than when
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they are directly bonded to the �exible host structures. If
the constraining piezoelectric layer of the ACLD treatment
is not activated with the control voltage, the treatment causes
the standard passive constrained layer damping of the smart
structure. �us, the ACLD treatment being under operation
provides the attributes of both passive and active dampings
and acts as an inbuilt fail-safemechanism. Since its inception,
extensive research has been carried out to investigate the
performance of the ACLD treatment for active damping of
smart structures [18–25].

Piezoelectric composite (PZC) materials have been
emerged as the new class of smart materials. Such PZC
materials are composed of piezoelectric �ber reinforcements
and epoxy matrix. �ese PZC materials provide wide range
of eective material properties, good conformability, and
strength integrity [26]. Among the various PZC materials
studied by the researchers, the vertically and the obliquely
reinforced 1–3 PZCmaterials are commercially available [27]
and are being eectively used for underwater transducers,
medical imaging applications, and high frequency ultrasonic
transducers [26].�e constructional feature of a laminamade
of the vertically reinforced 1–3 PZC material is that the
piezoelectric �bers are vertically aligned across the thickness
of the lamina. In case of the obliquely reinforced 1–3 PZC,
the piezoelectric �bers are obliquely aligned in the vertical
plane across the thickness of the lamina. �ese PZCs are
characterized by improvedmechanical performance, electro-
mechanical coupling characteristics, and acoustic impedance
matching over the existingmonolithic piezoelectricmaterials
[26]. Research on PZC materials is mainly concerned with
the micromechanical analysis of these materials [28–34].
Recently, Ray and his coworkers [35–37] investigated the
performance of these 1–3 PZC materials for active damping
of linear and nonlinear vibrations of composite beams, plates
and shells.

Skew laminated composite plates are widely used in
engineering applications such as aircra� wings and marine
industries and are highly prone to undergoing vibrations.
Researchers extensively investigated the free vibrational char-
acteristics of such skew plates. For example, Krishnan and
Deshpande [38] carried out the free vibration analyses of can-
tilevered skew isotropic platesand three-layered symmetric
cross-ply laminates by deriving two �nite element models.
Krishna Reddy and Palaninathan [39] developed a general
high precision triangular plate bending �nite element for the
free vibration analysis of laminated skew plates. Babu and
Kant [40] developed shear deformable �nite element models
for the buckling analysis of skew composite plates and panels.
Garg et al. [41] developed a simple C∘ isoparametric �nite
element model, based on a higher order shear deformation
theory for the free vibration analysis of isotropic, orthotropic,
and layered anisotropic composite and sandwich skew lami-
nates.

�e review of the existing literature on the skew plates
reveals that the attention has not yet been focused on investi-
gating the active control of vibrations of skew laminated com-
posite plates using piezoelectric composites. In this paper,
authors intend to investigate the active constrained layer
damping (ACLD) of skew laminated composite plates. For

such investigation, three-dimensional analysis of ACLD of
skew laminated composite plates integrated with the patches
of ACLD treatment has been carried out by the �nite element
method. �e constraining layer of the ACLD treatment is
considered to be made of the vertically or the obliquely
reinforced 1–3 PZC materials. Particular emphasis has been
placed on investigating the eect of variation of piezoelectric
�ber orientation angle on the performance of the ACLD
patches for controlling the vibrations of the skew laminated
composite plates.

2. Finite Element Model of Smart Skew
Laminated Composite Plate

Figure 1(a) illustrates the schematic diagram of a smart
skew laminated composite plate composed of � number
of orthotropic layers. �e length and the skew width of
the plate are denoted by � and �, respectively. �e top
surface of the plate is integrated with the skewed patches of
the ACLD treatment. �e constraining layer of the ACLD
treatment is made of the vertically/obliquely reinforced 1–
3 piezoelectric composite (PZC) material. �e notations ℎ,ℎ�, and ℎ

V
represent the thicknesses of the substrate skew

laminated plate, the piezoelectric composite layer, and the
viscoelastic layer, respectively. �e skew angle of the plate is
denoted by �. �e middle plane of the substrate composite
plate is considered as the reference plane. �e origin of the
laminate coordinate system (��	) is located at one corner
of the reference plane such that the lines � = 0 and � =� cos� represent the two opposite boundaries of the substrate
skew composite plates, while the lines � = � tan� and� = � + � tan� describe the two opposite skewed edges
of the plate. Denoting by 
 (= 1, 2, 3, . . . , � + 2) the layer
number of any layer of the overall plate, the thickness
coordinates 	 of the top and the bottom surfaces of any
(
th) layer are represented by ℎ�+1 and ℎ�, respectively. �e
�ber orientation angle in any layer of the substrate plate in
the plane (��) of the lamina with respect to the laminate
coordinate system is denoted by �. �e piezoelectric �bers in
the constraining layer made of the obliquely reinforced 1–3
PZC material are coplanar with the vertical �	- or �	-plane
making an angle � with respect to the 	-axis as shown in
Figure 1(b). If the value of� is 0∘, the layer becomes vertically
reinforced 1–3 PZC layer. �e overall skew composite plate
being studied here is thin, and consequently, the �rst order
shear deformation theory (FSDT) can be used to model the
axial displacements in all the layers of the overall plate. In
Figure 2, the kinematics of axial deformations of the overall
plate based on the FSDT has been illustrated. Displayed in
this �gure, the variables 0 and V0 represent the generalized
translational displacement of a point (�, �) on the reference
plane (	 = 0) along �- and �-directions, respectively; ��,��, and �� denote the generalized rotations of the normal to
the middle planes of the substrate plate, the viscoelastic layer
and the 1–3 PZC layer, respectively, about the �-axis, while��, �� and �� represent the generalized rotations of the same
about the �-axis, respectively. According to the kinematics of
deformations illustrated in Figure 2, the axial displacements
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Figure 1: (a) Schematic representation of a skew laminated composite plate integrated with the patches of ACLD treatment composed of
vertically/obliquely reinforced 1–3 piezoelectric composite constraining layer. (b) Schematic diagram of layers of obliquely reinforced 1–3
piezoelectric composite.
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Figure 2: Kinematics of deformations.

 and V at any point in any layer of the overall plate along �-
and �-directions, respectively, can be expressed as

 (�, �, 	, �) = 0 (�, �, �) + (	 − ⟨	 − ℎ2⟩)�� (�, �, �)

+ (⟨	 − ℎ2⟩ − ⟨	 − ℎ�+2⟩) �� (�, �, �)

+ ⟨	 − ℎ�+2⟩ �� (�, �, �) ,

(1)

V (�, �, 	, �) = V0 (�, �, �) + (	 − ⟨	 − ℎ2⟩)�� (�, �, �)

+ (⟨	 − ℎ2⟩ − ⟨	 − ℎ�+2⟩) �� (�, �, �)
+ ⟨	 − ℎ�+2⟩ �� (�, �, �) ,

(2)

in which a function within the bracket ⟨⋅⟩ represents an
appropriate singularity function, which satis�es the continu-
ity of displacements between two adjacent continua. Since the
transverse actuation of the constraining layer of the ACLD
treatment will be used for the �exural vibration control
of the plate, the transverse normal strain in the overall
plate must be considered in the model. Hence, as the plate
considered here is thin, the transverse displacements (�) at
any point in the substrate plate, the viscoelastic layer, and
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the 1–3 PZC layer are assumed to be linearly varying across
their thicknesses. �us, similar to the axial displacement, the
transverse displacements at any point in the overall plate can
be expressed as

� (�, �, 	, �) = �0 (�, �, �) + (	 − ⟨	 − ℎ2⟩)�� (�, �, �)
+ (⟨	 − ℎ2⟩ − ⟨	 − ℎ�+2⟩) �� (�, �, �)
+ ⟨	 − ℎ�+2⟩ �� (�, �, �) ,

(3)

in which�0 refers to the transverse displacement at any point
on the reference plane, and ��, ��, and �� are the generalized
displacements representing the gradients of the transverse
displacement in the substrate plate, the viscoelastic layer, and
the 1–3 PZC layer, respectively, with respect to the thickness
coordinate (	).

For the ease of analysis, the generalized displacement
variables are grouped into the following two vectors:

{�	} = [0 V0 �0]
,
{��} = [�� �� �� �� �� �� �� �� ��]
. (4)

In order to implement the selective integration rule for
computing the element stiness matrices corresponding to
the transverse shear deformations, the state of strain at any

point in the overall plate is divided into the following two
strain vectors {"�} and {"}:

{"�} = ["� "� "�� "�]
, {"} = ["�� "��]
 (5)

in which "�, "�, and "� are the normal strains along �-,�-, and 	-directions, respectively; "�� is the in-plane shear
strain; "�� and "�� are the transverse shear strains. Using the
displacement �elds given by (1)–(3) and the linear strain-
displacement relations, the vectors {"�}�, {"�}V, and {"�}�
de�ning the state of in-plane and transverse normal strains
at any point in the substrate skew composite plate, the vis-
coelastic layer, and the active constraining layer, respectively,
can be expressed as

{"�}� = {"�	} + [#1] {"��} , {"�}V = {"�	} + [#2] {"��} ,
{"�}� = {"�	} + [#3] {"��} .

(6)

Similarly, the vectors {"}�, {"}V, and {"}� de�ning the state

of transverse shear strains at any point in the substrate com-
posite plate, the viscoelastic layer, and the active constraining
layer, respectively, can be expressed as

{"}� = {"	} + [#4] {"�} , {"}V = {"	} + [#5] {"�} ,
{"}� = {"	} + [#6] {"�} .

(7)

�e various matrices appearing in (6) and (7) have been
de�ned in the Appendix while the generalized strain vectors
are given by

{"�	} = [%0%� %V0%� %0%� + %V0%� 0]
, {"	} = [%�0%� %�0%� ]
,

{"��} = [%��%�
%��%� %��%� + %��%� �� %��%�

%��%� %��%� + %��%� �� %��%�
%��%� %��%� + %��%� ��]


,

{"�} = [�� �� �� �� �� �� %��%� %��%� %��%� %��%� %��%� %��%� ]
.

(8)

Similar to the strain vectors given by (5), the state of stresses
at any point in the overall plat is described by the following
stress vectors:

{-�} = [-� -� -�� -�]
, {-} = [-�� -��]
, (9)

where -�, -�, and -� are the normal stresses along �-, �-
and 	-directions, respectively; -�� is the in-plane shear stress;-�� and -�� are the transverse shear stresses. �e constitutive

relations for the material of any orthotropic layer of the
substrate plate are given by

{-��} = [6�
�] {"��} , {-� } = [6�

 ] {"� }
(
 = 1, 2, 3, . . . , �) , (10)
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where the elastic coe�cient matrices are

[6�
�] =

[[[[[[[[[[[[[[
[

6�
11 6�

12 6�
16 6�

13

6�
12 6�

22 6�
26 6�

23

6�
16 6�

26 6�
66 6�

36

6�
13 6�

23 6�
36 6�

33

]]]]]]]]]]]]]]
]

,

[6�
 ] = [[

[
6�
55 6�

45

6�
45 6�

44

]]
]

,

(11)

and 6�
�� (?, @ = 1, 2, 3, . . . , 6) are the transformed elastic

coe�cients with respect to the reference coordinate system.
�ematerial of the viscoelastic layer is assumed to be linearly
viscoelastic and homogenous isotropic and is modeled by
using the complex modulus approach. �us, the shear mod-
ulusB and Young’s modulus C of the viscoelastic material are
given by

B = B� (1 + ?D) , C = 2B (1 + ]) , (12)

in which B� is the storage modulus, ] is Poisson’s ratio, andD is the loss factor at a particular operating temperature and
frequency. Employing the complex modulus approach, the
constitutive relations for the material of the viscoelastic layer

(
 = � + 1) can also be represented by (10) with 6�
�� (?, @ =1, 2, 3, . . . , 6) being the complex elastic constants [29, 30].

�e constraining PZC layer will be subjected to the applied
electric �eld (C�) acting across its thickness (i.e., along the	-direction) only. Accordingly, the constitutive relations for
the 1–3 PZC material with respect to the laminate coordinate
system (��	) can be expressed as

{-��} = [6�
�] {"��} + [6�

�] {"� } − {G�} C�,
{-� } = [6�

�] {"��} + [6�
 ] {"� } − {G} C�

H� = {G�}
 {"��} + {G}
 {"� } + "33C�

 = � + 2.

(13)

Here, H� represents the electric displacement along the 	-
direction and "33 is the dielectric constant. It may be noted
from the previous form of the constitutive relations that the
transverse shear strains are coupled with the in-plane normal
strains due to the orientation of piezoelectric �bers in the

vertical �	- or �	-plane, and the corresponding coupling

elastic constant matrices [6�+2
� ] are given by

[6�+2
� ] =

[[[[[[[[[[
[

6�+2
15 0

6�+2
25 0
0 6�+2

46

6�+2
35 0

]]]]]]]]]]
]

or

[6�+2
� ] =

[[[[[[[[[[
[

0 6�+2
14

0 6�+2
24

6�+2
56 0
0 6�+2

34

]]]]]]]]]]
]

(14)

as the piezoelectric �bers are coplanar with the vertical �	-
or �	-plane, respectively. Note that if the �bers are coplanar
with both �	- and �	-planes (i.e., � = 0∘), this coupling
matrix becomes a nullmatrix. Also, the piezoelectric constant
matrices {G�} and {G} appearing in (13) contain the following
transformed eective piezoelectric coe�cients of the 1–3
PZC:

{G�} = [G31 G32 G36 G33]
, {G} = [G35 G34]
. (15)

�e total potential energy I� and the kinetic energy I� of the
overall plate/ACLD system are given by [35]

I� = 12 [�+2∑
�=1

∫
Ω

({"��}
 {-��} + {"�}
 {-� }) �Ω

−∫
Ω

H�C��Ω] − ∫
�
{�}
 {Q} �R,

I� = 12
�+2∑
�=1

∫
Ω

S� (̇2 + V̇
2 + �̇2) �Ω,

(16)

in which S� is the mass density of the 
th layer, {Q} is the
externally applied surface traction acting over a surface areaR, andΩ represents the volume of the concerned layer. Since
the plates under study are considered to be thin, the rotary
inertia of the overall plate has been neglected in estimating
the kinetic energy. �e overall plate is discretized by eight-
noded isoparametric quadrilateral elements. Following (4),
the generalized displacement vectors, associated with the ?th(? = 1, 2, 3, . . . , 8) node of the element, can be written as

{�	�} = [0� V0� �0�]
,
{���} = [��� ��� ��� ��� ��� ��� ��� ��� ���]
. (17)
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�us, the generalized displacement vectors at any point
within the element can be expressed in terms of the nodal
generalized displacement vectors {��	 } and {���} as follows:

{��	} = [�	] {��	} , {���} = [��] {���} , (18)

in which

{��	} = [{��	1}
 {��	2}
 ⋅ ⋅ ⋅ {��	8}
]
,
{���} = [{���1}
 {���2}
 ⋅ ⋅ ⋅ {���8}
]
,

[�	] = [�	1 �	2 ⋅ ⋅ ⋅ �	8]
,
[��] = [��1 ��2 ⋅ ⋅ ⋅ ��8]
,
�	� = X�Y	, ��� = X�Y�,

(19)

while Y	 and Y� are (3×3) and (9× 9) identitymatrices, respec-
tively, and X� is the shape function of natural coordinates
associatedwith the ?th node.Making use of the relations given
by (6)–(8) and (18), the strain vectors at any point within the
element can be expressed in terms of the nodal generalized
displacement vectors as follows:

{"�}� = [Z	�] {��	} + [#1] [Z��] {���} ,
{"�}V = [Z	�] {��	} + [#2] [Z��] {���} ,
{"�}� = [Z	�] {��	} + [#3] [Z��] {���} ,
{"}� = [Z	] {��	} + [#4] [Z�] {���} ,
{"}V = [Z	] {��	} + [#5] [Z�] {���} ,
{"}� = [Z	] {��	} + [#6] [Z�] {���} ,

(20)

in which the nodal strain-displacement matrices [Z	�], [Z��],[Z	], and [Z�] are given by

[Z	�] = [Z	�1 Z	�2 ⋅ ⋅ ⋅ Z	�8] ,
[Z��] = [Z��1 Z��2 ⋅ ⋅ ⋅ Z��8] ,
[Z	] = [Z	1 Z	2 ⋅ ⋅ ⋅ Z	8] ,
[Z�] = [Z�1 Z�2 ⋅ ⋅ ⋅ Z�8] .

(21)

�e submatrices of [Z	�], [Z��], [Z	], and [Z�] have been
explicitly presented in the Appendix. On substitution of (9)–
(13) and (20) into (16), the total potential energy I�� and the

kinetic energy I�� of a typical element augmented with the
ACLD treatment can be expressed as

I�� = 12 [{��	}
 [\�
		] {��	} + {��	}
 [\�

	�] {���} + {���}
[\�
	�]


× {��	} + {���}
 [\�
��] {���} − 2{��	}
 {^�	�}_

− 2{���}
 {^���}_ − 2{��	}
 {^�} − "33 _2

ℎ� ] ,
(22)

I�� = 12{ ̇��	}
 [`�] { ̇��	} . (23)

In (22),_ represents the voltage dierence applied across the
thickness of the PZC layer. �e elemental stiness matrices[\�

		], [\�
	�] and [\�

��], the elemental electroelastic coupling
vectors {^�	�} and {^���}, the elemental load vector {^�}, and
the elemental mass matrix [`�] appearing in (22) and (23)
are given by

[\�
		] = [\�

	�] + [\�
	] + [\�

	�]�� + [\�
	�]�,

[\�
	�] = [\�

	��] + [\�
	�]

+ 12 ([\�
	��]�� + [\�

�	�]
�� + [\�
	��]� + [\�

�	�]
�) ,
[\�

�	] = [\�
	�]
,

[\�
��] = [\�

���] + [\�
��] + [\�

���]�� + [\�
���]�,

{^�	�} = {^�	�}� + {^�	}�, {^���} = {^���}� + {^��}�,
{^�} = ∫��

0
∫��

0
[�	]
 {Q} �� ��,

[`�] = ∫��

0
∫��

0
a[�]
 [�] �� ��, a = �+2∑

�=1
S� (ℎ�+1 − ℎ�) ,

(24)

where

[\�
	�] = ∫

�
[Z	�]
 ([H	�] + [H	�]V + [H	�]�) [Z	�] �� ��,

[\�
	] = ∫

�
[Z	]
 ([H	] + [H	]V + [H	]�) [Z	] �� ��,

[\�
	�]�� = ∫

�
[Z	�]
[H	�]� [Z	] �� ��,

[\�
	�]� = ∫

�
[Z	]
[H	�]� [Z	�] �� ��,

[\�
	��] = ∫

�
[Z	��]
 ([H	��] + [H	��]V + [H	��]�)
× [Z	��] �� ��,
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[\�
	��]�� = ∫

�
[Z	�]
[H	��]� [Z�] �� ��,

[\�
�	�]�� = ∫

�
[Z��]
[H�	�]� [Z	] �� ��,

[\�
	��]� = ∫

�
[Z	]
[H�	�]� [Z��] �� ��,

[\�
�	�]� = ∫

�
[Z�]
[H	��]� [Z	�] �� ��,

[\�
	�] = ∫

�
[Z	�]
 ([H	�] + [H	�]V + [H	�]�)
× [Z	�] �� ��,

[\�
���] = ∫

�
[Z���]
 ([H���] + [H���]V + [H���]�)
× [Z���] �� ��,

[\�
��] = ∫

�
[Z��]
 ([H��] + [H��]V + [H��]�)
× [Z��] �� ��,

[\�
���]�� = ∫

�
[Z��]
[H���]� [Z�] �� ��,

[\�
���]� = ∫

�
[Z�]
[H���]� [Z��] �� ��,

{^�	�}� = ∫
�
[Z	�]
{H	�}��� ��,

{^�	}� = ∫
�
[Z	]
{H	}��� ��,

{^��}� = ∫
�
[Z�]
{H�}��� ��.

(25)

�e various rigidity matrices and the rigidity vectors for
electro-elastic coupling appearing in the previous elemental
matrices are given by

[H	�] = �∑
�=1

∫ℎ�+1

ℎ�
[6�

�] �	,

[H	��] = �∑
�=1

∫ℎ�+1

ℎ�
[6�

�] [#1] �	,

[H���] = �∑
�=1

∫ℎ�+1

ℎ�
[#1]
 [6�

�] [#1] �	,

[H	] = �∑
�=1

∫ℎ�+1

ℎ�
[6�

 ] �	,

[H	�] = �∑
�=1

∫ℎ�+1

ℎ�
[6�

�] [#4] �	,

[H��] = �∑
�=1

∫ℎ�+1

ℎ�
[#4]
 [6�

�] [#4] �	,
[H	�]V = ℎ

V
[6�+1

� ] ,
[H	��]V = ∫ℎ�+2

ℎ�+1
[6�+1

� ] [#2] �	,
[H���]V = ∫ℎ�+2

ℎ�+1
[#2]
 [6�+1

� ] [#2] �	,
[H	]V = ℎ

V
[6�+1

 ] ,
[H	�]V = ∫ℎ�+2

ℎ�+1
[6�+1

 ] [#5] �	,
[H��]V = ∫ℎ�+2

ℎ�+1
[#5]
 [6�+1

� ] [#5] �	,
[H	�]� = ℎ� [6�+2

� ] ,
[H	��]� = ∫ℎ�+3

ℎ�+2
[6�+2

� ] [#3] �	,
[H���]� = ∫ℎ�+3

ℎ�+2
[#3]
 [6�+2

� ] [#3] �	,
[H	]� = ℎ� [6�+2

 ] ,
[H	�]� = ∫ℎ�+3

ℎ�+2
[6�+2

 ] [#6] �	,
[H��]� = ∫ℎ�+3

ℎ�+2
[#6]
 [6�+2

� ] [#6] �	,
[H	�]� = ∫ℎ�+3

ℎ�+2
[6�+2

� ] �	,
[H	��]� = ∫ℎ�+3

ℎ�+2
[6�+2

� ] [#6] �	,
[H�	�]� = ∫ℎ�+3

ℎ�+2
[#3]
 [6�+2

� ] �	,
[H���]� = ∫ℎ�+3

ℎ�+2
[#3]
 [6�+3

� ] [#6] �	,
{H	�}� = ∫ℎ�+3

ℎ�+2
−{G�}ℎ� �	,

{H��}� = ∫ℎ�+3

ℎ�+2
−[#3]
 {G�}ℎ� �	,

{H	}� = ∫ℎ�+3

ℎ�+2
−{G}ℎ� �	,

{H�}� = ∫ℎ�+3

ℎ�+2
−[#6]
 {G}ℎ� �	.

(26)
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Applying the dynamic version of the virtual work principle
[32], the following open-loop equations of motion for an
element of the overall plate integrated with the ACLD
treatment are obtained:

[`�] { ̈��	} + [\�
		] {��	} + [\�

	�] {���} = {^�	�}_ + {^�} ,
[\�

	�]
 {��	} + [\�
��] {���} = {^���}_. (27)

Since the elastic constant matrix of the viscoelastic layer is
complex, the stiness matrices of an element integrated with
the ACLD treatment are complex. In case of an element
not integrated with the ACLD treatment, the electro-elastic
coupling matrices become null vectors and the elemental
stinessmatrices are to be computed without considering the
piezoelectric and viscoelastic layers. It should also be noted
that as the stiness matrices associated with the transverse
shear strains are derived separately, one can employ the
selective integration rule in a straight forward manner to
avoid shear locking problem in case of thin plates. �e
restrained boundary conditions at the skew edges of the
plate are such that the displacements of the points located
at the skew edges are to be restrained along ��-, ��-, and	�-directions (Figure 1(a)). Hence, in order to impose the
boundary conditions in a straight forward manner, the
generalized displacement vectors of a point lying on the skew
edge are to be transformed as follows:

{�	} = [c 	] {��	} , {��} = [c�] {���} , (28)

where {��	} and {���} are the generalized displacement vectors

of the point with respect to ����	� coordinate system and are
given by

{��	} = [�� V
�
� ��

�]
,
{���} = [��� ��� ��� ��� ��� ��� ��� ��� ���]
.

(29)

Also, the transformation matrices [c 	] and [c�] are given by

[c 	] = [
[

d e 0−e d 00 0 1]]
,

[c�] =
[[[[[[[[[[[[
[

d e 0 0 0 0 0 0 0−e d 0 0 0 0 0 0 00 0 1 0 0 0 0 0 00 0 0 d e 0 0 0 00 0 0 −e d 0 0 0 00 0 0 0 0 1 0 0 00 0 0 0 0 0 d e 00 0 0 0 0 0 −e d 00 0 0 0 0 0 0 0 1

]]]]]]]]]]]]
]

,
(30)

in which d = cos� and e = sin�.�us, the elementalmatrices
of the element containing the nodes lying on the skew edge
are to be augmented as follows:

[\�
		] = [I1]
 [\�

		] [I1] , [\�
	�] = [I1]
 [\�

	�] [I2] ,
[\�

��] = [I2]
 [\�
��] [I2] , [`�] = [I1]
 [`�] [I1] .

(31)

�e forms of the transformation matrices [I1] and [I2] are
given by

[I1] =
[[[[[[[[[[[
[

[c 	] ĝ ĝ ĝ ĝ ĝ ĝ ĝĝ [c 	] ĝ ĝ ĝ ĝ ĝ ĝĝ ĝ [c 	] ĝ ĝ ĝ ĝ ĝĝ ĝ ĝ [c 	] ĝ ĝ ĝ ĝĝ ĝ ĝ ĝ [c 	] ĝ ĝ ĝĝ ĝ ĝ ĝ ĝ [c 	] ĝ ĝĝ ĝ ĝ ĝ ĝ ĝ [c 	] ĝĝ ĝ ĝ ĝ ĝ ĝ ĝ [c 	]

]]]]]]]]]]]
]

,

[I2] =
[[[[[[[[[[[
[

[c�] g g g g g g gg [c�] g g g g g gg g [c�] g g g g gg g g [c�] g g g gg g g g [c�] g g gg g g g g [c�] g gg g g g g g [c�] gg g g g g g g [c�]

]]]]]]]]]]]
]

,

(32)

in which ĝ and g are (3 × 3) and (9 × 9) null matrices,
respectively. It may be noted that in case of a node of
such element which does not lie on the skew edge, the
generalized displacement vectors of this node with respect to��	 coordinate system are not required to be transformed.
Hence, thematrices [c 	] and [c�] corresponding to suchnode
turn out to be (3×3) and (9×9) identitymatrices, respectively.

�e elemental equations of motion are now assembled
to obtain the open-loop global equations of motion of the
overall skew plate as follows:

[`] {ï} + [\		] {i} + [\	�] {i�} = �∑
�=1

{^�	�}_� + {^} ,

[\	�]
 {i} + [\��] {i�} = �∑
�=1

{^���}_�,
(33)

where [\		], [\	�], and [\��] are the global stiness matrices
of the overall skew laminated composite plate, [`] is the
global mass matrix, { 	̂�} and { �̂�} are the global electro-
elastic coupling vectors, {i} and {i�} are the global nodal
generalized displacement vectors, {^} is the global nodal

force vector, j is the number of patches, and _� is the
voltage applied to the @th patch. Since the elemental stiness
matrices of an element augmented with the ACLD treatment
are complex, the global stiness matrices become complex
and the energy dissipation characteristics of the overall
plate are attributed to the imaginary part of these matrices.
Hence, the global equations of motion as derived previously
also represent the modeling of the passive (uncontrolled)
constrained layer damping of the substrate plate when the
constraining layer is not subjected to any control voltage
following a derivative control law.
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3. Closed-Loop Model

In the active control approach, the active constraining layer
of each patch is activated with a control voltage negatively
proportional to the transverse velocity of a point. �us, the
control voltage for each patch can be expressed in terms of the
derivatives of the global nodal degrees of freedom as follows:

_� = −
���̇ = −
�� [k�
	 ] {i̇} − 
�� (ℎ2) [k�

�] {i̇�} , (34)

where [k�
	 ] and [k�

� ] are the unit vectors describing the

location of the velocity sensor for the @th patch and 
�� is
the control gain for the @th patch. Substituting (34) into
(33), the �nal equations of motion governing the closed-
loop dynamics of the overall skew laminated composite
plate/ACLD system can be obtained as follows:

[`] {ï} + [\		] {i} + [\	�] {i�} + �∑
�=1


�� {^�	�} [k�
	 ] {i̇}

+ �∑
�=1


�� (ℎ2) {^�	�} [k�
�] {i̇�} = {^} ,

[\	�]
 {i} + [\��] {i�} + �∑
�=1


�� {^�	�} [k�
	 ] {i̇}

+ �∑
�=1


�� (ℎ2) {^�	�} [k�
�] {i̇�} = 0.

(35)

4. Results and Discussion

In this section, the numerical results obtained by the �nite
element model derived in the previous section have been
presented. Symmetric as well as antisymmetric cross-ply
and antisymmetric angle-ply laminated skew substrate plates
integrated with the two patches of ACLD treatment are
considered for presenting the numerical results. As shown in
Figure 1, the locations of the patches have been selected in
such a way that the energy dissipation corresponding to the
�rst fewmodes becomesmaximum. PZT-5H/spur composite
with 60% �ber volume fraction has been considered for the
material of the constraining layer of the ACLD treatment.
Using themicromechanicsmodel and thematerial properties
of the constituent phases [35], the eective elastic and
piezoelectric material properties of the 1–3 PZC with respect
to the principle material coordinate system are computed as
follows:

611 = 9.29GPa, 612 = 6.18GPa, 613 = 6.05GPa,
633 = 35.44GPa, 623 = 613, 644 = 1.58GPa,

666 = 1.54GPa, 655 = 644,

G31 = −0.1902C/m2, G32 = G31,
G33 = 18.4107C/m2, G24 = 0.004C/m2,

G15 = G24.
(36)

�e material of the orthotropic layers of the substrate plates
is a graphite/epoxy composite and its material properties are
[42]

C� = 172GPa, C�C
 = 25, B�
 = 0.5C
,
B

 = 0.2C
, ]�
 = ]

 = 0.25,

(37)

in which the symbols have the usual meaning. Unless oth-
erwise mentioned, the aspect ratio (�/ℎ) and the thickness
of the skew substrate plates are considered as 100 and
0.003m, respectively, while the orthotropic layers of the
skew substrate plates are of equal thickness. Also, the length
and the skew sides of the substrate are equal (i.e., � =�). �e loss factor of the viscoelastic layer considered for
numerical results remains invariant [20] within a broad
band (0–400Hz) of frequency range, and the values of the
complex shear modulus, Poisson ratio, and the density of

the viscoelastic layer are considered as 20(1 + ?)MNm−2,
0.49, and 1140 kg/m−3, respectively [20]. �e thicknesses of
the viscoelastic layer and the 1–3 PZC layer are considered
as 50.8pm and 250 pm, respectively. �e value of the shear
correction factor is used as 5/6. �ree points of Gaussian
integration rule are considered for computing the element
matrices corresponding to the bending deformations while
two points of that are used for computing the element
matrices corresponding to transverse shear deformations.
�e simply supported boundary conditions at the edges of the
overall plate are invoked as follows:

at � = � tan�, � = � + � tan�:
V
�
� = ��

� = ��� = ��� = ��� = ��� = ��� = 0
at � = 0, � = � cos�:

� = �� = �� = �� = �� = �� = �� = 0.
(38)

To verify the validity of the present �nite element
model (FEM), the natural frequencies of the skew laminated
composite plates integrated with the inactivated patches of
negligible thickness are �rst computed and subsequently
compared with the existing analytical results [41] of the
identical plates without being integrated with the patches.
Such comparisons for the simply supported and clamped-
clamped skew laminated plates are presented in Tables 1 and
2, respectively. It may be observed from these tables that the
results are in excellent agreement, validating the model of the
plate derived here.

In order to assess the performance of the verti-
cally/obliquely reinforced 1–3 PZC as the material of the
distributed actuators of smart skew laminated composite
plates, frequency responses for ACLD of the substrate skew
laminated composite plates are investigated. To compute the
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Table 1: Comparison of fundamental natural frequencies (q) of simply supported skew laminated composite plates integratedwith the patches
of negligible thickness.

Skew angle Source

Symmetric cross-ply Antisymmetric cross-ply Antisymmetric angle-ply

(90∘/0∘/90∘/0∘/90∘) (0∘/90∘/0∘/90∘) (45∘/−45∘/45∘/−45∘)
Modes Modes Modes

1 2 3 1 2 3 1 2 3

0∘
Reference [41] 1.5699 2.8917 3.7325 1.4829 2.4656 3.2522 1.7974 3.3351 3.3351

Present FEM 1.5635 2.4383 3.5033 1.5076 2.4380 3.2254 1.8493 3.3359 3.3370

15∘
Reference [41] 1.6874 3.0458 3.9600 1.5741 2.5351 3.0270 1.8313 3.2490 3.6724

Present FEM 1.6571 2.9840 3.6505 1.5796 2.5775 2.9892 1.8675 3.2075 3.5810

30∘
Reference [41] 2.0840 3.4023 4.6997 1.8871 2.9372 3.4489 2.0270 3.4431 4.2361

Present FEM 1.9596 3.1690 4.6796 1.8226 2.9585 3.2357 1.9894 3.2365 4.3208

45∘
Reference [41] 2.8925 4.1906 5.4149 2.5609 3.3126 4.0617 2.5609 3.3131 4.2772

Present FEM 2.4811 4.4875 5.3289 2.2996 3.4773 4.4889 2.3194 3.4870 4.5009
∗
� = (��2/�2ℎ)√�/ 
; � is the circular natural frequency.

Table 2: Comparison of fundamental natural frequencies (q) of clamped-clamped skew laminated composite plates integrated with the
patches of negligible thickness.

Skew angle Source

Symmetric cross-ply Antisymmetric cross-ply Antisymmetric angle-ply

(90∘/0∘/90∘/0∘/90∘) (0∘/90∘/0∘/90∘) (45∘/−45∘/45∘/−45∘)
Modes Modes Modes

1 2 3 1 2 3 1 2 3

0∘
Reference [41] 2.3687 3.5399 4.1122 2.2990 3.7880 3.7880 2.2119 3.7339 3.7339

Present FEM 2.3201 3.4769 4.4102 2.3315 3.6531 3.6545 2.2433 3.6000 3.6012

15∘
Reference [41] 2.4663 3.6255 4.3418 2.3809 3.7516 4.0785 2.3099 3.6997 4.0438

Present FEM 2.3699 3.4821 4.4049 2.3741 3.5856 3.8401 2.3049 3.5346 3.8092

30∘
Reference [41] 2.7921 3.9557 5.0220 2.6666 3.9851 4.7227 2.6325 3.9549 5.2107

Present FEM 2.5366 3.5696 4.4734 2.5240 4.1943 4.5373 2.4945 3.6113 5.0932

45∘
Reference [41] 3.4739 4.7129 5.8789 3.3015 4.6290 5.8423 3.3015 4.6290 5.8423

Present FEM 2.8665 4.7074 5.4562 2.8377 4.7614 5.6620 2.8377 4.7614 5.5162

frequency response functions, the skew laminated composite
plates are harmonically excited by a force of amplitude 1
Newton applied to a point (�/2, (�/4) cos�, ℎ/2) on the skew
substrate plates.�e control voltage supplied to the constrain-
ing layer of the �rst patch is negatively proportional to the
velocity of the point (�/2, (�/4) cos�, ℎ/2) and that applied to
the constraining layer of the second patch is negatively pro-
portional to the velocity of the point (�/2, (3�/4) cos�, ℎ/2).

Figures 3, 4, and 5 illustrate the frequency response
functions for the transverse displacement of a point of a
simply supported symmetric cross-ply (0∘/90∘/0∘) plate with
15∘, 30∘, and 45∘ skew angles, respectively, while the �ber
orientation angle (�) in the constraining layer is 0∘. �ese
�gures display both uncontrolled and controlled responses
and clearly show that the active constraining layer made of
the vertically reinforced 1–3 PZC material being studied here
signi�cantly attenuates the amplitude of vibrations, enhanc-
ing the damping characteristics of the overall laminated
skew composite plates over the passive damping (uncon-
trolled). Similar responses are also obtained for antisym-
metric cross-ply (0∘/90∘/0∘/90∘) and antisymmetric angle-
ply (45∘/−45∘/45∘/−45∘) skew laminated composite plates.

However, for brevity these results are not presented here.�e
maximum values of the control voltages required to compute
the controlled responses presented in Figures 3–5 have been
found to be quite low and are illustrated in Figure 6 in case
of the symmetric cross-ply (0∘/90∘/0∘) plate with skew angle
15∘ only. In order to examine the contribution of the vertical
actuation in improving the damping characteristics of the
skew laminated composite plates as demonstrated in Figures
3–5, active control responses of the symmetric cross-ply
laminated composite plate with 15∘ skew angle are plotted in
Figure 7with andwithout considering the value of G33 and G31.
It may be noted that when the values of G31 is zero and that ofG33 is nonzero, the vertical actuation of the active constraining
layer of the ACLD treatment is responsible for increasing the
transverse shear deformations of the viscoelastic constrained
layer over the passive counterpart resulting in improved
damping of the smart plate over its passive damping. On
the other hand, if G33 is zero and G31 is nonzero, the in-
plane actuation of the active constraining layer causes the
transverse shear deformation of the viscoelastic core of the
ACLD treatment leading to the active damping of the smart
plate. It is evident from Figure 7 that the contribution of the



Journal of Composites 11

1.2

0 100 200 300 400 500 600

Frequency (Hz)

×10−4

0

0.2

0.4

0.6

0.8

1

Uncontrolled
�� = 600

�� = 1200

w
(a
/2
,(
b
/4
)c

o
s�
,h
/2

) 
(m

)

Figure 3: Frequency response functions for the transverse displace-
ment� (�/2, (�/4) cos�, ℎ/2) of a simply supported skew symmetric
cross-ply (0∘/90∘/0∘) plate (�/ℎ = 100, � = 0∘, � = 15∘).
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Figure 4: Frequency response functions for the transverse displace-
ment� (�/2, (�/4) cos�, ℎ/2) of a simply supported skew symmetric
cross-ply (0∘/90∘/0∘) plate (�/ℎ = 100, � = 0∘, � = 30∘).

vertical actuation by the constraining vertically reinforced 1–
3 PZC layer is signi�cantly larger than that of the in-plane
actuation by the same for controlling the modes displayed
in Figure 7. �ough not shown here, similar results are also
obtained for antisymmetric cross-ply and angle-ply skew
plates.

Figures 8, 9, and 10 demonstrate the eect of variation
of piezoelectric �ber orientation angle on the performance
of the patches for improving the damping characteristics
of simply supported symmetric cross-ply (0∘/90∘/0∘),
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Figure 5: Frequency response functions for the transverse displace-
ment� (�/2, (�/4) cos�, ℎ/2) of a simply supported skew symmetric
cross-ply (0∘/90∘/0∘) plate (�/ℎ = 100, � = 0∘, � = 45∘).
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Figure 6: Frequency response functions for the control voltages for
active damping of the simply supported skew symmetric cross-ply
(0∘/90∘/0∘) plate (�/ℎ = 100, � = 0∘, � = 15∘).

antisymmetric cross-ply (0∘/90∘/0∘/90∘), and angle-ply
(45∘/−45∘/45∘/−45∘) substrate skew composite plates with
30∘ skew angle, respectively, while the orientation angle (�)
of the piezoelectric �bers is varied in the vertical �	-plane.
�ese �gures illustrate that the attenuating capability of the
patches becomesmaximumwhen the value of the orientation
angle (�) of the �bers in the �	-plane is 0∘. Similar eect
is also obtained when the �ber orientation angle (�) in the
constraining layer of the ACLD treatment is varied in the
vertical �	-plane as illustrated in Figures 11, 12, and 13 for
the symmetric cross-ply (0∘/90∘/0∘), antisymmetric cross-ply
(0∘/90∘/0∘/90∘), and angle-ply (45∘/−45∘/45∘/−45∘) substrate
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Figure 7: Frequency response functions demonstrating the con-
tribution of vertical actuation on the controlled responses for
the transverse displacement � (�/2, (�/4) cos�, ℎ/2) of the skew
symmetric cross-ply (0∘/90∘/0∘) plate (\� = 600, �/ℎ = 100, � = 0∘,� = 15∘).
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Figure 8: Eect of variation of piezoelectric �ber orientation angle
(�) on the controlled responses of a simply supported symmetric
skew cross-ply (0∘/90∘/0∘) plate when the piezoelectric �bers of the
constraining layer are coplanar with the �	-plane (\� = 600, �/ℎ =100, � = 30∘).

skew composite plates with 30∘ skew angle, respectively.
In this regard, it should be noted that for investigating the
eect of variation of piezoelectric �ber orientation angle(�) on the performance of the ACLD patches, the value
of � has been smoothly varied to compute the controlled
responses. However, for the sake of clarity in the plots, the
responses corresponding to the four speci�c values of �
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Figure 9: Eect of variation of piezoelectric �ber orientation
angle (�) on the controlled responses of a simply supported skew
antisymmetric cross-ply (0∘/90∘/0∘/90∘) plate when the piezoelectric
�bers are coplanar with the �	-plane (\� = 600, �/ℎ = 100,� = 30∘).
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Figure 10: Eect of variation of piezoelectric �ber orientation
angle (�) on the controlled responses of a simply supported
skew antisymmetric angle-ply (45∘/−45∘/45∘/−45∘) plate when the
piezoelectric �bers are coplanar with the �	-plane (\� = 600, �/ℎ =100, � = 30∘).

have been presented such that the optimum performance
of the patches can be evaluated. �e signi�cant eect of the
variation of the piezoelectric �ber orientation angle in the
vertical �	- and �	-planes has been noticed when all the
boundaries of the overall plates are clamped as shown in
Figures 14–19. When the piezoelectric �bers are coplanar
with the vertical �	-plane, the frequency response functions
plotted in Figures 14, 15, and 16 reveal that the control
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Figure 11: Eect of variation of piezoelectric �ber orientation
angle (�) on the controlled responses of a simply supported skew
symmetric cross-ply (0∘/90∘/0∘), plate when the piezoelectric �bers
of the constraining layer are coplanar with the �	-plane (\� = 600,�/ℎ = 100, � = 30∘).
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Figure 12: Eect of variation of piezoelectric �ber orientation
angle (�) on the controlled responses of a simply supported skew
antisymmetric cross-ply (0∘/90∘/0∘/90∘) plate when the piezoelectric
�bers of the constraining layer are coplanar with the �	-plane (\� =
600, �/ℎ = 100, � = 30∘).

authority of the patches becomes maximum for improving
the damping characteristics of the clamped-clamped skew
cross-ply and angle-ply substrate plates if the value of the
piezoelectric �ber orientation angle (�) is 30∘. �e same is
also found to be true if the piezoelectric �bers are coplanar
with the vertical �	-plane as shown in Figures 17, 18, and 19
for the previously mentioned skew plates. Similar responses
are also found for the eect of piezoelectric �ber orientation
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Figure 13: Eect of variation of piezoelectric �ber orientation
angle (�) on the controlled responses of a simply supported
skew antisymmetric angle-ply (45∘/−45∘/45∘/−45∘) plate when the
piezoelectric �bers of the constraining layer are coplanar with the�	-plane (\� = 600, �/ℎ = 100, � = 30∘).
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Figure 14: Eect of variation of piezoelectric �ber orientation
angle (�) on the controlled responses of a clamped-clamped skew
symmetric cross-ply (0∘/90∘/0∘) plate when the piezoelectric �bers
of the constraining layer are coplanar with the �	-plane (\� = 600,�/ℎ = 100,� = 30∘).

angle on the active damping of other skew laminated plates
with dierent skew angles. However, for the sake of brevity,
they are not presented here.

5. Conclusions

In this paper, a study has been carried out to investi-
gate the performance of the ACLD treatment for active
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Figure 15: Eect of variation of piezoelectric �ber orientation
angle (�) on the controlled responses of a clamped-clamped skew
antisymmetric cross-ply (0∘/90∘/0∘/90∘) plate when the piezoelectric
�bers of the constraining layer are coplanar with the �	-plane (\� =600, �/ℎ = 100, � = 30∘).
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Figure 16: Eect of variation of piezoelectric �ber orientation
angle (�) on the controlled responses of a clamped-clamped skew
antisymmetric angle-ply (45∘/−45∘/45∘/−45∘) plate when the piezo-
electric �bers of the constraining layer are coplanar with the �	-
plane (\� = 600, �/ℎ = 100, � = 30∘).

damping of smart skew laminated composite plates when
vertically/obliquely reinforced 1–3 PZC materials are used
as the materials for the constraining layer of the ACLD
treatment. A layerwise FSDT-based �nite element model
has been developed to describe the dynamics of the skew
laminated composite plates integrated with the patches of
ACLD treatment. Unlike the existing �nite element models
of smart structures integrated with ACLD treatment, the
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Figure 17: Eect of variation of piezoelectric �ber orientation
angle (�) on the controlled responses of a clamped-clamped skew
symmetric cross-ply (0∘/90∘/0∘) plate when the piezoelectric �bers
of the constraining layer are coplanar with the �	-plane (\� = 600,�/ℎ = 100, � = 30∘).
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Figure 18: Eect of variation of piezoelectric �ber orientation
angle (�) on the controlled responses of a clamped-clamped skew
antisymmetric cross-ply (0∘/90∘/0∘/90∘) plate when the piezoelectric
�bers of the constraining layer are coplanar with the �	-plane (\� =600, �/ℎ = 100, � = 30∘).

derivation of the present �nite element model includes the
transverse deformations of the substrate skew laminated
composite plate, the constrained viscoelastic layer, and the
constraining 1–3 PZC layer of the ACLD treatment along the
thickness (i.e., 	) direction such that both vertical and in-
plane actuations by the constraining layer of the patches can
be utilized for active damping of the plates. �e frequency
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Figure 19: Eect of variation of piezoelectric �ber orientation
angle (�) on the controlled responses of a clamped-clamped skew
antisymmetric angle-ply (45∘/−45∘/45∘/−45∘) plate when the piezo-
electric �bers of the constraining layer are coplanar with the �	-
plane (\� = 600, �/ℎ = 100, � = 30∘).
responses of the symmetric cross-ply, antisymmetric cross-
ply, and angle-ply skew composite plates indicate that the
active constraining layer of the ACLD treatment being made
of the vertically reinforced 1–3 PZC material signi�cantly
enhances the damping characteristics of the plates over the
passive damping. �e analysis revealed that if the vertically
reinforced 1–3 PZCmaterial is used for the constraining layer
of the ACLD treatment, then the contribution of the vertical
actuation by the constraining layer alone for improving the
active damping characteristics of the smart skew laminated
composite plate is signi�cantly larger than that due to the
in-plane actuation by the constraining layer alone. It is
important to note from the present investigation that the
variation of the orientation angle of the piezoelectric �bers
of the constraining layer in the vertical �	- and �	-planes
as well as the skew angle and boundary conditions of the
overall plates signi�cantly aects the performance of the
patches. For the simply supported laminated substrate plates,
the performance of the patches becomes maximumwhen the
piezoelectric �ber orientation angle (�) is 0∘, while in case
of the clamped-clamped laminated skew substrate plates, the
maximum control authority of the patches is achieved when
the value of � is 30∘ irrespective of the cases in which the
�bers are oriented in �	- and �	-planes.
Appendix

In (6) and (7), the matrices [#1], [#2], [#3], [#4], [#5], and[#6] are given by

[#1] = [[#1] 0̃ 0̃] ,
[#2] = [(ℎ2) Y [#2] 0̃] ,

[#3] = [(ℎ2) Y ℎ
V
Y [#3]] ,

[#4] = [Y 0 0 	Y 0 0] ,
[#5] = [0 Y 0 (ℎ2) Y (	 − ℎ2) Y 0] ,

[#6] = [0 0 Y (ℎ2) Y ℎ
V
Y (	 − ℎ�+2) Y] ,

(A.1)

in which

[#1] = [[[
[

	 0 0 00 	 0 00 0 	 00 0 0 1
]]]
]

,

[#2] =
[[[[[[[[
[

(	 − ℎ2) 0 0 0
0 (	 − ℎ2) 0 0
0 0 (	 − ℎ2) 0
0 0 0 1

]]]]]]]]
]

,

[#3] = [[[
[

(	 − ℎ�+2) 0 0 00 (	 − ℎ�+2) 0 00 0 (	 − ℎ�+2) 00 0 0 1
]]]
]

,

[Y] = [[[
[

1 0 0 00 1 0 00 0 1 00 0 0 0
]]]
]

, [Y] = [1 00 1] ,

[0] = [0 00 0] , [0̃] = [0̃ 0̃0̃ 0̃] .
(A.2)

�e various submatrices Z	��, Z���, and Z��, appearing in (21),
are given by

Z	�� =
[[[[[[[[[[[
[

%D�%� 0 0
0 %D�%� 0

%D�%� %D�%� 0
0 0 0

]]]]]]]]]]]
]

, Z	� = [[[[
[

0 0 %D�%�
0 0 %D�%�

]]]]
]

,
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Z��� =
[[[[[[[[[[[
[

%D�%� 0 0
0 %D�%� 0

%D�%� %D�%� 0
0 0 1

]]]]]]]]]]]
]

, Z��� =
[[[[[[
[

Z��� ⌣0 ⌣0
⌣0 Z��� ⌣0
⌣0 ⌣0 Z���

]]]]]]
]

,

Z�� =

[[[[[[[[[[[[[[[[[[
[

⌣Y 0̆ 0̆
0̆ ⌣Y 0̆
0̆ 0̆ ⌣Y

Z�� 0̆ 0̆
0̆ Z�� 0̆
0̆ 0̆ Z��

]]]]]]]]]]]]]]]]]]
]

, ⌣Y= [1 0 00 1 0] ,

(A.3)

wherein
⌣0 and 0̆ are the (3 × 3) and (2 × 3) null matrices,

respectively.
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