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Active Contours for Tracking Distributions

Daniel Freedman, Member, IEEE, and Tao Zhang, Student Member, IEEE

Abstract—A new approach to tracking using active contours is
presented. The class of objects to be tracked is assumed to be char-
acterized by a probability distribution over some variable, such as
intensity, color, or texture. The goal of the algorithm is to find the
region within the current image, such that the sample distribution
of the interior of the region most closely matches the model distri-
bution. Two separate criteria for matching distributions are exam-
ined, and the curve evolution equations are derived in each case.
The flows are shown to perform well in experiments.

Index Terms—Active contours, Bhattacharyya measure, Kull-
back-Leibler distance, level set method, partial differential equa-
tions, visual tracking.

1. INTRODUCTION

HIS PAPER deals with the problem of tracking an ob-

ject as it moves through a video-stream, based on pho-
tometric rather than geometric considerations. Throughout, the
term “photometric variable” will be used loosely to mean a
quantity such as intensity, color, or texture; photometric vari-
ables are distinguished from geometric variables, such as edges.
With this in mind, the algorithm may be explained in a straight-
forward fashion. The class of objects to be tracked is assumed to
be characterized by a probability distribution over some photo-
metric variable. In each frame of the video, the algorithm tries to
find a region of the image whose interior generates a sample dis-
tribution over the relevant variable which most closely matches
the model distribution. The goal is to cast this problem into the
framework of active contours, and to derive curve flows which
optimize the relevant matching criteria. The idea behind the
algorithm is illustrated in Fig. 1.

Posing the tracking problem in this way has the advantage
of dealing directly with two difficulties that often confound
such algorithms. First, the tracker does not rely on edges.
Many trackers use edge information exclusively; examples
include [1]-[3]. The problems associated with using edges are
well-known. For instance, edge-detectors may be inaccurate,
leading to the detection of spurious edges; edges may not
be detected when contrast between adjacent surfaces fades
due to illumination changes; and so on. However, even in the
case of ideal edge detection, such algorithms would err in
their approach, simply by failing to take into account the rich
amounts of information which are available in the photometric
variables of the images. For example, much headway may be
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Fig. 1. An illustration of the algorithm. On the left is a schematic
representation of the model distribution, here taken to be a texture of horizontal
lines. On the right is an image. The dashed line indicates the initial position of
the region; within this region, the empirical distribution only partly matches
the model distribution, as some of the background (a texture of vertical lines)
is contained within the region. Thus, the curve which is the region’s boundary
will flow to the solid line; the resulting region maximizes the match between
empirical and model distributions.

made in the design of a lip-tracker by noticing that human lips
tend to come in a small number of colors. Indeed, color-based
methods are often used in special-purpose trackers (e.g., [4], [5]
present color-based face-trackers), mostly to excellent effect.
The second problem which is directly addressed by this tracker
is the difficulty of tracking successfully through cluttered
scenes. By posing the problem as one of matching distributions,
the tracker has robustness built in from the start, which should
allow for a reasonable chance of navigation through clutter.

A reasonable objection may be raised: why not incorporate
both photometric and geometric considerations? This, of course,
is the eventual goal of this research programme, the first step
of which is presented in this paper. However, before attempting
to include geometric concerns, it is instructive to see how well
a pure photometric tracker can do. A recent general-purpose
photometric tracker [6], [7], to be discussed at greater length
shortly, demonstrates the ability of such trackers to succeed.

The remainder of the paper is organized as follows. Section II
gives a brief review of the literature, focusing on active contour
methods and photometric tracking. Section III contains the
bulk of the theoretical contribution: after appropriate notation
is introduced, two separate flows are derived, corresponding
to two density matching measures. These flows are partial
integro-differential equations. Section IV is concerned with
issues of their implementation on computer. Section V shows
the results of using these flows for tracking several sequences,
and compares these results with those obtained using geodesic
active contours [8] and geodesic active regions [9]. Finally,
Section VI concludes.

II. RELATED WORK

The active contour literature is vast, so no attempt will be
made to review it comprehensively. The field originated with
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the snake formulation of Kass, Witkin, and Terzopoulos [1], and
many papers in a similar vein followed [10]-[12]. The recent
trend has been toward geometric curve evolution [13]-[15], [8],
and this paper will follow in that tradition. Many of these recent
papers have focused on the novel level-set approach to imple-
menting geometric curve flows [16], which allows for a stable
numerical scheme, as well as for changes in topology to be han-
dled without difficulty.

There are several papers in the active contour literature which
bear closer relation to the current paper. An early paper which
uses probabilistic region-based information for segmentation
is that of Zhu and Yuille [17]. More recently, Chan and Vese
[18] solve a restricted form of the Mumford—Shah segmenta-
tion problem [19], assuming only two regions whose segments
are piecewise constant; they have also examined the full-blown
Mumford—Shah segmentation [20]. Yezzi et al. [21], [22] and
Tsai et al. [23] also solve a number of segmentation problems,
including the full Mumford—Shah segmentation. Noteworthy as
well is the paper of Paragios and Deriche [24], which solves a
segmentation problem using both boundary and region informa-
tion. Unlike the approach taken in this paper, the algorithm in
[24] assumes that one has access not only to information about
the object to be tracked, but about the background as well. Para-
gios and Deriche have extended this work to the context of mo-
tion estimation in [9]. All of the above mentioned papers are
similar in spirit to the current paper, in that they use information
contained in the interior of the contours within the geometric
curve evolution framework. However, the types of information
used are quite different, as are the techniques used in deriving
the flows.

Finally, it is worth mentioning the work of Comaniciu et al.
[6], [7], which builds on earlier research of Bradski [25], and
which is in a sense most in keeping with the present work. This
algorithm attempts to follow a distribution by maximizing the
Bhattacharyya measure between a model distribution and an
empirical distribution from the current frame. However, this ap-
proach is not based on active contours, and one of its major
drawbacks is precisely related to this fact: the shape of the object
is assumed to be an ellipse. Of course, many objects are not even
approximately elliptical (cf. the flexing finger in Section V).
The way in which the ellipse translates from frame to frame is
the focus of the papers, and is given by so-called “mean-shift
analysis”; however, the way in which the ellipse shrinks or en-
larges is incorporated in an ad hoc fashion. (This was treated
in a more rigorous fashion in another paper, [26].) Nonetheless,
this tracker performs very well experimentally, and does so in
real time.

III. THEORY
A. Notation

Let z be the photometric variable of interest. For example, 2
could be an intensity, color vector, or texture vector. The variable
z lives in the space Z, which is assumed to be a Euclidean space
of dimension n for some n > 1. Thus, for intensities, n = 1; for
colors n = 3; and for textures n is the dimension of the output of
the relevant filter bank. It is assumed that the class of objects to
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be tracked is characterized by a model probability density over
the variable z, specified by ¢(z).

The goal is to try to match a sample probability density within
a region of the image to the model density. Let z € R? specify
the coordinates in the image plane, and let Z : R? — Z be a
mapping from the image plane to the space of the photometric
variable. Thus, if Z is the space of intensities, then Z(x) is just
a grayscale image; if Z is the space of colors, then Z(z) is a
color image. Denote a region of the image plane by w C R?;
let ¢ = Ow be its boundary. We wish to specify p(z;w), the
sample probability density within the region w. Let 6(z) be the
n-dimensional Heaviside function, i.e.,

6(z) = {(1)

Then we may write the cumulative distribution function defined
inside the region w as

215032 20
otherwise.

], 0(z— Z(x))dx
[, d= '

Thus, the probability density p(z;w) is given by

F(z;w)

L O"F(z;w) B fw 6(z — Z(x))dx
p(zw) = 021 ...02n ., dx

where 6( - ) is the usual n-dimensional delta-function. Note that
A(w) is the area of the region w.

N(z;w)
Aw)

B. Density Matching Criteria

The goal is to find the region w in the image plane such that
the sample density p(z; w) most closely matches the model den-
sity ¢(z). There are a variety of criteria which can be used to
compare the two densities. One obvious candidate is the Kull-

back-Leibler distance
q(2) >
q(z)log ( dz
/ (2)log p(z;w)

This measure plays an important role in information theory [27].
Note that the Kullback—Leibler distance is not truly a metric,
as it is not symmetric in its argument. Nonetheless, it is re-
ferred to as a distance, as the smaller it is, the closer are the
two distributions.

A second criterion for comparing densities is the Bhat-
tacharyya measure [28]

/ p(z;w)q(2) dz.

This measure varies between 0 and 1, where O indicates
complete mismatch, and 1 indicates a complete match. In other
words, it is an affinity measure, rather than a distance. This is
the matching measure used in [6] and [7].

C. A Proposition Concerning Variational Derivatives

The goal of this section is to state the following proposition,
which will be useful in later computations. The proposition is
given for simply-connected regions, but can be generalized.
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Proposition: Let w be an elementary region of R?, let ¢ =
Ow be its boundary, and let I'(w) = [ u(x) dz, where p is C*.
Additionally, let 6I'/éc be a 2-vector whose ith component is
the variational derivative 6T"/6c;, assuming a particular param-
eterization for c. Then there exists a parameterization of c for
which

oT
50 & p(c)n

where n is the normal to c.

This result relies on Green’s Theorem, and was demonstrated
in the work of Zhu and Yuille [17], as well as that of Chakraborty
et al. [29].

In the next two sections, we will use this proposition. In the
first case case, we will use a gradient descent approach to find
an optimum of T" in terms of c, i.e., a curve for which 6T"/éc is
0. In the second case, we will use gradient ascent in a precisely
analogous manner. As a result, we can safely ignore the positive
constant of proportionality.

D. The Kullback-Leibler Flow

Here we wish to minimize K (w), so that gradient descent is
appropriate

oc _ oK
ot bc
Now
q(2)
K(w :/ z)lo dz
W= e

=n- /Zq(Z)logp(Z;w) dz

where 7 is the negative differential entropy of the model dis-
tribution, and can be ignored as it does not depend of w. Now,
since p(z;w) = N(z;w)/A(w), we may write

K(w) = 10g(A@)) = [ a(e)log(N(z5)) d:

so that
SK  16A 1 6N(z)
bc Adc —/Zq(z) [N(z;w) oc } dz.
Now, using the proposition
A(w):'/dazﬁ%:n.
Similarly
N(zw) = / (2 — Z(x)) dw = MZ(EZ) = 8(z — Z(c))n.
Thus
0K n 6(z— Z(c))n
Sc A /Z (=) [fw 8(z — Z(x)) dm] 4
=2 a(z) z—2Z7(c))dz| n
-5~ L [xeyee-zone
n )
A N(Z(c))
_ p(Z(c)) —alZ(c)) |
N(Z(c)) '
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Finally, the Kullback-Leibler flow is given by

de _ a(Z(e) = p(4(c))
ot N(Z(c))

There is one point to note in the forgoing derivation. The
proposition of Section III-C cannot be used directly to find
6N (z)/6c. The reason is that the proposition requires that the
integrand ; be C'; this condition is obviously not satisfied
in the case of §(z — Z(x)). To get around this problem, the
following procedure may be used. For §( -), substitute a C'>°
approximation é( - ), such that lim._g 6. = 4. For example,
one could use a unit-normalized Gaussian with variance
el, where I is the n-dimensional identity matrix. After the
calculation is completed, the limit may be taken. Under these
assumptions, the results to be derived will not change.

The intuitive meaning of (1) is clear. If the sample density,
evaluated at a particular pixel on the boundary, is smaller than
the model density, then the curve expands to take in this pixel.
This makes sense: by taking in the pixel, the sample density
for that value of z will increase, which leads to a better match
between the sample density and the model density. Put another
way: a lip-tracker based on the Kullback flow will expand to
include a reddish pixel, and will contract away from nonreddish
pixels.

Finally, it is worth noting that the flow represented by equa-
tion (1) is an integro-differential equation. This is due to the fact
that the quantities p(z) and N(z) can only be computed by per-
foming integrals over the region w.

ey

E. The Bhattacharyya Flow

As in the case of the simple flow, we wish to maximize the
Bhattacharyya measure, and thus we use gradient ascent

dc 6B

ot sc
The Bhattacharyya measure is given by

B(w) = /z Vo(z;w)q(z) dz

1/2 Nl/z('z%w)
:/Zq/ O e

so that

6B [ ¢"*(2)
_./z Aw)
1 §5A

oc
—NY2(z; w)gA_l/z(w)—] dz

[Al/Z(w)lN_lﬂ(z;

)
> W)%se

bc

= 530 :A1/2<w> /Z a2 ()NT2(z5w)8(z - Z(e)) dz

~an120) [ PN ) ]

= g [N )

_/Zq /Q(Z)pl/Q(z;w)dz]

P(2(e)
(7)) P Q)} |

2A(w)
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In the foregoing, many of the arguments used in deriving the
Kullback-Leibler flow have been recycled. We finally have that
the Bhattacharyya flow is given by

de 1 [4d'*(Z(e)
ot ~ 2A(w) | p/2(Z(c))

This equation has a similar intuitive understanding as the
Kullback flow, except insofar as it is somewhat more aggressive
in expanding (since B(p, q) is less than 1, as long as p and ¢ are
not equal). Like the Kullback flow, the Bhattacharyya flow is
also an integro-differential equation. In this case, the quantities
p, A, and B (which depends on p) are computed via integration
over w.

B(p,q)| n. )

IV. IMPLEMENTATION

There are a variety of issues which arise in the implementa-
tion of the Kullback—Leibler and Bhattacharyya flows. It is nat-
ural to do this implementation using the level-set method [16].
This framework has gained favor over the last decade within the
computer vision community, due to its many advantages over
competing approaches (such as marker particles). These include
the ability to handle changes in the topology of the curve (splits
and merges), the ability to deal with the formation of cusps and
corners, which are extremely common in curve evolution, and
numerical stability.

In order to convert a curve evolution to the level-set frame-
work, it is necessary for the evolution to be “purely geometric,”
i.e., for the flow to be entirely in the normal direction. Fortu-
nately, this is already the case in (1) and (2). The level-set func-
tion ¢ : R2 — R is chosen so that its 0 level-set corresponds to
the curve in question

c={z eR?: ¢(z) = 0}.

In general, we will assume that the points z inside the curve sat-
isfy ¢(x) < 0. Given this definition, a curve evolution equation
of the form

dc
—~_p
ot =
can be shown to be equivalent [16] to an equation of the form
¢
— + 0|Vl = 0.
4 BV
Thus, the Kullback—Leibler flow of (1) becomes
9¢(z,t)  q(Z(z)) — p(Z(z))
: Vo(x,t)|| =0
o Ny vl

while the Bhattacharyya flow of (2) is rendered

O(z,t) & 1 [q”?(z(w))
ot 24 | p/2(Z(x))

Note that the integral quanities in the above equations can be
computed using our knowledge of ¢; for example

A= / dz.
z€R2:¢(2)<0

There are two obvious issues which arise when such flows
are implemented in the level-set framework. The first pertains

—B@ﬂﬂnvaawn:o

to initialization of the level-set function ¢. A common choice,
which we follow here, is to use the signed distance to the intial
curve c. A second issue pertains to the size of the time-step
allowed. This is dictated by the CFL condition [16], which states
that

Az
<

At ————
~ max,erz f(2)

where (3 is the speed of the flow. We typically choose At to be
about 0.5 times the right side of the above inequality.

Another implementation issue arises from the fact that im-
ages are actually discrete-valued, rather than continuous-valued;
there is therefore the question of how to best approximate the
densities. As in [6], [7], we use histograms. In particular, we can
learn the model density q in a straightforward way by taking an
image (or multiple images) with an object (objects) drawn from
the class of interest, and then finding the histogram within the
object. Empirically, ¢ tends to have small support, and is O in
most (~99%) of bins.

V. EXPERIMENTS

Three experiments were performed; their results are sum-
marized in Table 1. In all cases, the experiments were run on
a Pentium III machine operating at 933 MHz, and using an
uncompiled MATLAB implementation. With these parameters,
one frame of tracking using either the Kullback—Leibler or
Bhattacharyya flow requires approximately 3 min of compu-
tation. In the case of the latter two experiments, the results are
compared with those obtained by running the geodesic active
contour algorithm [8] and the geodesic active region algorithm
[9]. These algorithms have been chosen for purposes of com-
parison for several reasons. The geodesic active contour method
is a more rigourous version of a classic technique for tracking
and segmentation, namely the elastic snakes. This algorithm
only relies on high contrast (edge-based) information, and
therefore demonstrates the power of the photometric methods
introduced in this paper over pure contour-based methods. By
contrast, the geodesic active region method uses information
from both the contour and its interior in order to track. Thus,
the comparison in this case shows the benefits of using the
Kullback-Leibler or Bhattacharyya flows over an important
existing photometric method. (Note: no direct speed compar-
ison is presented between the current approach and either the
geodesic active contour method or the geodesic active region
method; the reason is that our implementations of the latter
two trackers have not been optimized for speed, and therefore
any comparison would be unfair.)

With regard to comparison with other algorithms, it is also
worth commenting on the performance comparison between the
proposed flows and two popular methods: the condensation al-
gorithm [2] and mean-shift technique [6], [26]. The condensa-
tion algorithm has been shown to have difficulty in following the
motion of the finger in the third experiment without a great deal
of explicit modeling (e.g., modeling the finger as a robotic arm);
for images, see [3]. The mean-shift tracker also cannot track the
finger, per se, as it is not designed to deal with flexible shapes;
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TABLE 1
SUMMARY OF EXPERIMENTAL RESULTS
Experiment | Length (frames) | Flow Used # Frames Before Tracker Lost Lock
Synthetic 10 Kullback-Leibler | 10
Walker 160 Kullback-Leibler | 160
Finger 270 Bhattacharyya 270

(a)

()

il

il i
it

()

(e) ®

Fig. 2. Tracking a synthetic sequence using the Kullback-Leibler flow. Left to right, and then down: (a) frame 1; (b) frame 3; (c) frame 4; (d) frame 5; (e) frame 6;

and (f) frame 7.

rather, the tracking area is always forced to be an ellipse. It could
possibly track an elliptical subsection of the finger; however, the
goal of tracking is generally to follow an entire object as closely
as possible.

The first experiment is shown in Fig. 2, and involves a syn-
thetic sequence. The sequence has been designed to demonstrate
the ability of the algorithm to track textured regions. The back-
ground is composed of horizontal stripes, while the object is
composed of diagonal stripes. In this case, it is critical that the
photometric variable z be a texture vector, as using intensity or
color for the photometric variable would yield the same distribu-
tion for the object and the background. A simple texture vector
may be chosen based on the directions of (nonzero) intensity
gradients in the neighborhood of a pixel; clearly, such a mea-
sure will help discriminate between the object and background.
The Kullback-Leibler flow is indeed successful in tracking, as
is shown in Fig. 2.

The second experiment involves tracking an individual
walking; this scene was chosen to illustrate the ability of the
algorithm to track through a cluttered scene. In this case,
the photometric variable z was taken to be color, specified
in HSV coordinates, normalized to run from O to 255. The

model density ¢ was built as a histogram out of the walker’s
face taken from a single image (which was not part of the
running sequence). The bins were taken to be 8 X 8 x §, leading
to (256/8)% = 32 768 bins. The results of using the Kull-
back-Leibler flow are shown in Fig. 3; as can be seen, the flow
is successful in tracking through the entire 160-frame sequence
(=5.3 seconds at 30 Hz). The sequence was also tracked using
the method of geodesic active contours [8] and that of geodesic
active regions [9]; the results of these experiment are shown in
Figs. 5 and 4. Geodesic active contours fail completely in this
case; this is due to the poor contrast in the walker’s face. As a
result, the contour shrinks down to a point by the sixth frame.
The geodesic active regions fare better, but completely lose
lock by frame 26.

The third experiment involves tracking a finger which both
flexes and translates; this scene was chosen to illustrate the
ability of the algorithm to track the motion of a nonrigid ob-
ject. In this case, the photometric variable z was taken to be
color, specified in RGB coordinates, normalized to run from 0
to 255. While the HSV color coordinates are generally preferred
(and were used in the walker experiment), the tracker does not
encounter difficulties through the use of RGB. As in the case



FREEDMAN AND ZHANG: ACTIVE CONTOURS FOR TRACKING DISTRIBUTIONS

523

Fig. 3.
and (f) frame 157.

Tracking a walker using the Kullback-Leibler flow. Left to right, and then down: (a) frame 20; (b) frame 44; (c) frame 91; (d) frame 110; (e) frame 120;

APR 17 20005

(d

APR T 20005

Fig. 4. Tracking a walker using geodesic active regions. Left to right, and then down: (a) frame 3; (b) frame 4; (c) frame 6; (d) frame 7; (e) frame 10; and

(f) frame 26.

of the walker sequence, the model density ¢ was built as a his-
togram out of the finger taken from a single image (which was
not part of the running sequence). Also, as in the case of the
walker sequence, the bins were taken to be 8 x 8 x 8, leading to
(256/8)% = 32 768 bins. The results of using the Bhattacharyya
flow are shown in Fig. 6; as can be seen, the flow is successful
in tracking through the entire 270-frame sequence (=9.0 sec-
onds at 30 Hz). The results of the geodesic active contour and
geodesic active region experiments are shown in Figs. 8 and

7; once again, these trackers fail where the Bhattacharyya flow
succeeds.

There are two interesting artifacts of the flows, which are seen
more clearly in the walker sequence than in either of the other
two. The first artifact, more easily seen in a video than in still
frames, is jitter: despite finding the walker’s head correctly in all
all frames, there is tendency for the precise shape of the contour
to change on a frame by frame basis. This is due to the fact
that there are no dynamical considerations incorporated into this
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ARRIIT:2000,

ARRIMIE 2000

Fig. 5. Tracking a walker using geodesic active contours. Left to right: (a) frame 2; (b) frame 3; and (c) frame 5.
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Fig. 6. Tracking a finger using the Bhattacharyya flow. Left to right, and then down: (a) frame 8; (b) frame 14; (c) frame 19; (d) frame 98; (e) frame 118; and

(f) frame 143.

algorithm. A second artifact may be labeled “density spill-over,”
and is illustrated in Fig. 9. Certain colors outside of the object
of interest may match those inside the object of interest. This
occurs in the case of the walker, as he walks by light colored
bookshelves and books, which match the colors of his face. This
occurs in five frames of the sequence (frames 96—100), and has
no long-term effect, as is illustrated in the final frame of Fig. 9.

VI. CONCLUSIONS AND FUTURE WORK

A new tracking paradigm, based on combining den-
sity-matching with active contours, has been presented. Two
particular flows were derived, one based on minimizing
the Kullback-Leibler distance, the other on maximizing the
Bhattacharyya coefficient. The flows have been shown to be
effective in practice, in tracking several sequences, and have
succeeded where existing methods have failed.

There are several directions for future research. First, more
complex measures of z, the photometric variable, will be used.
Possibilities include texture vectors (as given by the output of
a filter bank), or possibly a neighborhood of texture vectors,

in order to effectively capture a Markov random field type of
structure. Second, and more importantly, attempts will be made
to incorporate geometric considerations into the algorithm. The
experiments presented in this paper demonstrate the fact that
photometric variables, by themselves, can sometimes be enough
to guide a tracker; however, in order to increase both robust-
ness and speed, the use of geometric variables are vital. The
challenge is to find a way of incorporating geometry within the
framework presented in this paper.

In particular, there are two important shortcomings of the cur-
rent tracker, which should be addressed. First is the issue of the
local nature of the computation: the only bins of the density
function which are involved in computing the flow are those
bins which contain pixels on the evolving curve. As a result, it
is possible to design scenarios in which the flow will certainly
fail. For example, imagine the case of an image containing a
black disc surrounding by a red annulus of equal areas, and a
model density which is half red and half white; if the curve is
initially placed inside the red annulus, the curve will converge
to the outside of the red annulus, even though the model density
ought to contain no black. (On the other hand, it is not clear what
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Fig. 7. Tracking a finger using geodesic active regions. Left to right, and then down: (a) frame 1; (b) frame 5; (c) frame 10; (d) frame 30; (e) frame 32; and

(f) frame 34.
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Fig. 8. Tracking a finger using geodesic active contours. In this case, the tracker has been initialized at frame 199.
and (c) frame 203.
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Left to right: (a) frame 199; (b) frame 201;

the tracker should converge to in this case, since an object with
a sample density matching the model density is not to be found

(a)

(b)
Fig. 9. The density spills over. Left to right: (a) frame 96; (b) frame 100; and (c) frame 101, in which the density has ceased to spill over.

the flows.

in the image, at least not in the neighborhood of the evolving
curve.) Addressing this problem is an important avenue for fu-

ture research. The second shortcoming relates to the issue of
scale. Due to normalization, any two subregions of a homoge-
neous region will have the same distribution. This problem can

June 1987.

be treated by incorporating some prior knowledge of shape into
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