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Abstract: In this paper, a fractional order economic system is studied. An active control
technique is applied to control chaos in this system. The stabilization of equilibria is obtained
by both theoretical analysis and the simulation result. The numerical simulations, via the
improved Adams–Bashforth algorithm, show the effectiveness of the proposed controller.
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1. Introduction

Fractional calculus has 300-year history. However, applications of fractional calculus in physics
and engineering have just begun. Many systems are known to display fractional order dynamics, such
as viscoelastic systems, dielectric polarization and electromagnetic waves [1–6]. In recent years, the
emergence of effective methods in differentiation and integration of non-integer order equations makes
fractional order systems more and more attractive for the systems control community [7–10].
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More recently, there has been a new trend to investigate the control and the dynamic behavior of
fractional order chaotic systems. It has been shown that nonlinear chaotic systems may keep their chaotic
behavior when their models become fractional [11–13].

In this paper, the aim is to control a chaotic fractional-order economic system, using a nonlinear active
control method.

This paper is organized as follows: Some preliminaries about fractional calculus, the stability criterion
and the numerical algorithm are given in Section 2. The fractional order economic system and its
dynamical behavior are described in Section 3. The active control method and the numerical simulations
are presented in Section 4. Concluding remarks are drawn in Section 5.

2. Preliminary Tools

2.1. Fractional Calculus

Historical introductions on fractional-order differential equations (FDEs) can be found in [3–6,14].
Commonly-used definitions for fractional derivatives are due to Riemann–Liouville and Caputo [15].
In what follows, Caputo derivatives are considered, taking the advantage that this allows for traditional
initial and boundary conditions to be included in the formulation of the considered problem.

Definition 1. A real function f(x), x > 0, is said to be in the space Cµ, µ ∈ R if there exits a real
number λ > µ, such that f(x) = xλg(x), where g(x) ∈ C[0,∞), and it is said to be in the space Cm

µ if
and only if f (m) ∈ Cµ for m ∈ IN .

Definition 2. The Riemann–Liouville fractional integral operator of order α of a real function f(x) ∈
Cµ, µ ≥ −1, is defined as:

Jαf(x) =
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt, α > 0, x > 0, (1)

and J0f(x) = f(x). The operators Jα have some properties, for α, β ≥ 0 and ξ ≥ −1:

• JαJβf(x) = Jα+βf(x),

• JαJβf(x) = JβJαf(x),

• Jαxξ = Γ(ξ+1)
Γ(α+ξ+1)

xα+ξ.

Definition 3. The Caputo fractional derivative Dα of a function f(x) of any real number α, such that
m− 1 < α ≤ m, m ∈ IN , for x > 0 and f ∈ Cm

−1 in terms of Jα, is:

Dαf(x) =
1

Γ(m− α)

∫ x

0

(x− t)m−α−1f (m)(t)dt (2)

and has the following properties for m− 1 < α ≤ m, m ∈ IN , µ ≥ −1 and f ∈ Cm
µ :

• DαJαf(x) = f(x),

• JαDαf(x) = f(x)−
∑m−1

k=0 f
(k)(0+)x

k

k!
, for x > 0.
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2.2. Stability Criterion

In order to investigate the dynamics and to control the chaotic behavior of a fractional order
dynamic system:

Dα
t X(t) = F (X(t)), (3)

where X(t) = (x1, x2, ..., xn)T ∈ Rn, t > t0, t ∈ [0, T ], α ∈ (0, 1) and F : T × Rn → Rn is continuous
in X . We will need the following indispensable stability theorem ( see Figure 1).

Theorem 1 (See [16]). For a given commensurate fractional order system (3), the equilibria can be
obtained by calculating F (X) = 0. These equilibrium points are locally-asymptotically stable if all of

the eigenvalues λ of the Jacobian matrix J =
∂F

∂X
at the equilibrium points satisfy:

|arg(λ)| > π

2
α. (4)

Figure 1. Stability region of the fractional order system (3).

2.3. The Adams–Bashforth–Moulton Algorithm

We recall here the improved version of Adams–Bashforth–Moulton algorithm [17] for the
fractional-order systems. Consider the fractional order initial value problem: Dα

t x = f(x(t)) 0 ≤ t ≤ T,

x(k)(0) = x
(k)
0 , k = 0, 1, ...,m− 1.

(5)

It is equivalent to the Volterra integral equation:

x(t) =

[α]−1∑
k=0

x
(k)
0

tk

k!
+

1

Γ(α)

∫ t

0

(t− s)α−1f(s, x(s))ds. (6)

Diethelm et al. have given a predictor-corrector scheme (see [17]), based on the
Adams–Bashforth–Moulton algorithm, to integrate Equation (6). By applying this scheme to the
fractional order system (5), and setting:

h =
T

N
, tn = nh, n = 0, 1, ..., N,
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Equation (6) can be discretized as follows:

xh(tn+1) =

[α]−1∑
k=0

x
(k)
0

tk

k!
+

hα

Γ(α + 2)
f(tn+1, x

p
h(tn+1)) +

hα

Γ(α + 2)

n∑
j=0

aj,n+1f(tj, xh(tj)), (7)

where:

aj,n+1 =


nα+1 − (n− α)(n+ 1)α, j = 0,

(n− j + 2)α+1 + (n− j)α+1 − 2(n− j + 1)α+1, 1 ≤ j ≤ n,

1, j = n+ 1,

(8)

and the predictor is given by:

xph(tn+1) =

[α]−1∑
k=0

x
(k)
0

tk

k!
+

1

Γ(α)

n∑
j=0

bj,n+1f(tj, xh(tj)), (9)

where bj,n+1 =
hα

α
((n+ 1)− j)α − (n− j)α. The error estimate of the above scheme is:

maxj=0,1,..,N {|x(tj)− xh(tj)|} = O(hp),

in which p = min(2, 1 + α).

3. A Fractional Order Economic System

We consider a 3D system of fractional order autonomous differential equations; this system can
be interpreted as an idealized macroeconomic model with foreign capital investments [18]. It can be
described by: 

Dαx = my + px(d− y2),

Dαy = −x+ cz,

Dαz = sx− ry.

(10)

where α ∈ (0, 1] and the state variables, x, y and z, are the savings of households, the gross domestic
product (GDP) and the foreign capital inflow, respectively. Furthermore, the fractional derivation is
considered with respect to time. Positive parameters represent corresponding ratios: m is the marginal
propensity to saving, p is the ratio of capitalized profit, d is the value of the potential GDP, c is the
output/capital ratio, s is the capital inflow/savings ratio and r is the debt refund/output ratio.

3.1. Dynamical Behavior

When m = 0.02, p = 0.4, c = 50, d = 1, r = 0.1 and s = 10. The system (10) has three real
equilibria E0(0, 0, 0), E1(0.024, 2.4, 4.8× 10−4) and E2(−0.024,−2.4,−4.8× 10−4).

At the equilibrium point E0, the Jacobian matrix of System (10) is given by:

J
∣∣
E0

=

 pd m 0

−1 0 c

s −r 0

 ,
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The eigenvalues of above matrix are given by:

λ1 = 1.6761839, λ2 = −0.6380920 + 2.5984529i and λ3 = −0.6380920− 2.5984529i.

Hence, the equilibrium point E0 is unstable. At the equilibrium point E1 and E2, the Jacobian matrix of
System (10) is given by:

J
∣∣
E1,2

=

 pd− 5.76p m− 0.115p 0

−1 0 c

s −r 0

 ,

The eigenvalues of the above matrix are given by:

λ1 = −2.8852598, λ2 = 0.4906299 + 2.7503585i and λ3 = 0.4906299− 2.7503585i.

Here, λ1 is a negative real number and λ2 and λ3 are a pair of complex conjugate eigenvalues with
positive real parts. Therefore, the equilibrium points E1 and E2 are unstable. According to Theorem (4),
System (10) exhibits chaotic behavior for α ≥ αmin = 0.8876170531. We stress here that the case α = 1

was studied in [18].

3.2. Numerical Simulations

In order to confirm the chaotic behavior of System (10), numerical simulations were conducted for
α = 0.9 and the selected initial conditions (x0, y0, z0) = (0.05, 0.1, 0.02). The time histories of the state
variables, x, y and z, are graphically presented in Figure 2, and the phase diagrams are shown is Figure 3,
while the chaotic attractor is plotted in Figure 4.

(a) (b) (c)

Figure 2. The time histories of variables (a) x(t), (b) y(t) and (c) z(t) for α = 0.9.
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(a) (b)

(c)

Figure 3. Phase portraits: (a) x− y, (b) x− z and (c) y − z for System (10) when α = 0.9.

Figure 4. Chaotic attractor xyz for System (10) when α = 0.9.
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4. Active Control of the Fractional Order Chaotic System

In this section, we investigate the problem of chaos control of the fractional chaotic System (10). In
order to control it towards equilibrium points E0, E1 and E2, as in [19], we assume that the controlled
fractional order autonomous system is given by:

Dαx = my + px(d− y2) + U1,

Dαy = −x+ cz + U2,

Dαz = sx− ry + U3.

(11)

where Uj(t) (j = 1, 2, 3) are external active control inputs, which will be suitably-determined later. We
prove the following result:

Theorem 2. Starting from any initial condition, an equilibrium point Ei of system (11) is asymptotically
stable when the controller Uj , j = 1, 2, 3, is active, for α ≥ αmin.

Proof. As a Lyapunov candidate function associated with System (11), we consider the quadratic
function defined by:

V (t, (X(t)− Ei)) = (x− xi)2 + (y − yi)2 + (z − zi)2, (12)

where X = (x, y, z)T and Ei = (xi, yi, zi)
T is an equilibrium point. Note that V is a positive-definite

function on R3. From system (11), we have:

DαV (t, (X(t)− Ei)) = −2V (t, (X(t)− Ei)) < 0. (13)

According to the Lyapunov theory, the equilibrium point Ei is asymptotically stable.

To stabilize the chaotic orbits in (10) to its equilibrium E0 (respectively, E1 or E2), we need to add
the following active controllers:

• For E0: 
U1 := −1.4x+ 0.98y + 0.4xy2,

U2 := −y − 49.9z,

U3 := −10x− z.

(14)

• For E1: 
U1 = 0.904x+ 1.02608 y − 0.002304 + 0.4xy2 + 1.92xy + 0.0096 y2,

U2 = −y − 49.9z,

U3 = −10x− z.

(15)

• For E2: 
U1 = 0.904x+ 1.02608y + 0.002304 + 0.4xy2 − 1.92xy − 0.0096 y2,

U2 = −y − 49.9z,

U3 = −10x− z.

(16)
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Taking into account the above-described controllers, the equilibria E0, E1 and E2 are stabilized, and
then, the chaos is controlled in system (10).

Now, we implement the improved Adams–Bashforth algorithm for numerical simulations (for t ∈
[0, 100] and t ∈ [0, 300]). The unstable point E0 has been stabilized, as shown in Figures 5–7. We
remark that the behaviors of x(t), y(t) and z(t) start as chaotic; then, when the control is activated
at t = 40, the equilibrium point is rapidly stabilized. The equilibria E1 and E2 are stabilized in an
analogous way (see Figures 8–13).

(a) (b)

Figure 5. Time histories of System (11) for x signal at the equilibrium E0 with α = 0.9:
(a) tmax = 100, (b) tmax = 300.

(a) (b)

Figure 6. Time histories of system (11) for y signal at the equilibrium E0 with α = 0.9:
(a) tmax = 100, (b) tmax = 300.
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(a) (b)

Figure 7. Time histories of System (11) for z signal at the equilibrium E0 with α = 0.9:
(a) tmax = 100, (b) tmax = 300.

(a) (b)

Figure 8. Time histories of System (11) for x signal at the equilibrium E1 with α = 0.9:
(a) tmax = 100, (b) tmax = 300.

(a) (b)

Figure 9. Time histories of System (11) for y signal at the equilibrium E1 with α = 0.9:
(a) tmax = 100, (b) tmax = 300.
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(a) (b)

Figure 10. Time histories of System (11) for z signal at the equilibrium E1 with α = 0.9:
(a) tmax = 100, (b) tmax = 100.

(a) (b)

Figure 11. Time histories of System (11) for x signal at the equilibrium E2 with α = 0.9:
(a) tmax = 100, (b) tmax = 300.

(a) (b)

Figure 12. Time histories of System (11) for y signal at the equilibrium E2 with α = 0.9:
(a) tmax = 100, (b) tmax = 300.



Entropy 2015, 17 5781

(a) (b)

Figure 13. Time histories of System (11) for z signal at the equilibrium E2 with α = 0.9:
(a) tmax = 100, (b) tmax = 300.

5. Conclusion

In this paper, chaos control of a fractional-order chaotic economic system is studied. Furthermore,
we have studied the local stability of the equilibria using the Matignon stability condition. Analytical
conditions for nonlinear active control have been implemented. Simulation results have illustrated the
effectiveness of the proposed control method.
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