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TECHNICAL NOTE

Active control of beam structures with
piezoelectric actuators and sensors:
modeling and simulation

I Bruant, G Coffignal, F Léné and M Vergé

Laboratoire de Modélisation et Mécanique des Structures, CNRS UPRES A 8007, 8 rue du

Capitaine Scott, 75015 Paris, France

Abstract
The active damping of structures is an important emerging field. In this
context, it is necessary to be able to develop new control methods for
flexible structures and simulate their effects. In order to be able to deal with
the optimization of active device locations, spillover and any other general
problems linked to control and model reduction, a simple but sufficiently
rich model is very useful. This is the reason why this technical note deals
with the modeling and simulation of the active vibration control of beam
structures using piezoelectric actuators and sensors.

In order to model beam structures equipped with piezoelectric devices,
we develop a simple finite composite beam element, taking into account the
properties of piezoelectric elements. This model uses six mechanical
degrees of freedom and four electric degrees of freedom. Then, a linear
quadratic regulator method is used to compute the control, including the
implementation of a state observer. Several simulations are presented.

1. Introduction

This technical note deals with the modeling of beam structures

equipped with piezoelectric devices (actuators and sensors).

In the case of a simple beam equipped with one piezoelectric

actuator and one sensor an analytical study can easily be

developed; but, in cases of structures made with several

beams equipped with actuators and sensors, a discrete model

is necessary in order to take into account the piezoelectric

effect. Moreover, most of piezoelectric finite elements are

three dimensional or two dimensional [1–4]. The use of these

finite models in the case of beam structures is not optimal,

in particular to solve structural optimization problems which

are computationally expensive. Finally, the active damping of

structures is an important emerging field. In this context, it is

necessary to be able to develop new control methods for flexible

structures and simulate their effects. In order to be able to

deal with the optimization of active device locations, spillover

and any other general problems linked to control and model

reduction, a simple but sufficiently rich model is very useful.

For this purpose, a simple finite beam element is described.

It corresponds to a composite beam made up of three layers:

one elastic and two piezoelectric. In this study, to simplify

the presentation, we consider a 2D beam finite element, but all

developments can be generalized to a 3D beam finite element.

Six mechanical degrees of freedom and four electric degrees of

freedom are used. From variational principles, the generalized

discrete equations are obtained. In order to set up the active

control the second differential equations are transformed into

a state space model. Then, principles of control theory can

be used: a linear quadratic control method, including a state

observer, is considered. Several simulations are presented.

The first one shows active damping of a simple cantilever beam

using one piezoelectric actuator and one sensor. It gives a

first validation of the finite element beam. Others simulations

consider a flexible three-beam structure.

2. Finite element formulation

Consider a flexible elastic beam structure, as shown in figure 1,

controlled by several piezoelectric actuators and sensors. Each

device is made up of a pair of piezoelectric materials, polarized

in the thickness direction and attached symmetrically. The

top and bottom sides of each piezoelectric are covered by



Figure 1. A three-beam structure.

electrodes to ensure the connection with the electric circuit. At

the device locations, the structure is a composite in its thickness

direction: it is made up of two piezoelectric layers bonded

onto an elastic layer. Consequently, we consider a composite

beam [A,B] composed by two piezoelectric materials and one

elastic.

Assuming that the structure is composed by long beams,

Euler’s beam theory is used. The displacement in a cross

section of each beam of the structure is written as

�U(x, y, z, t) = (u(x, t) + θ(x, t)z)�x + v(x, t)�z

where θ(x, t) = (∂v/∂x)(x, t), �x is the local axis of the beam

and �z the local axis in the beam thickness direction. The

element nodal displacement variable {U e} is then defined as

(figure 2)

{U e(t)} = { uA vA θA uB vB θB }T

where (uA, vA, θA) and (uB , vB , θB) are the longitudinal

displacements, the normal displacements and the rotations

about the y-axis at nodes A and B. The generalized

displacements in the element can be expressed in nodal

variables by finite element interpolation functions as follows:

{Uh}(x, t) = { uh(x, t) vh(x, t) θh
y (x, t) }T

= [N e(x)]{U e(t)}

where [N e] is the displacement shape functions matrix given

by






1 − x 0 0

0 1 − 3x2 + 2x3 Le(x − 2x2 + x3)

0
1

Le
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0
1
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





Le is the length of the finite element. The strain–displacement

is obtained using the strain differential operator:

{∂Uh}(x, t) =
(

∂uh

∂x

∂vh

∂x

∂θh
y

∂x

)T

(x, t)

= [Be
U ]{U e(t)}.

For electric variables, as the thickness of piezoelectric

parts is small, we assume that the electric potential � is

constant on each electrode and that the electric field is constant

in the piezoelectric; then they are directly associated with the

element and the element nodal electric potential variable {�e}
is defined as (figure 2)

{�e} = {�1 �2 �3 �4 }T

where �1, �2, �3, �4 represent the electric potentials on

each electrode of the element. These four element potential

variables allow us to consider many possible connections (in

order to excite bending or longitudinal motions) by coupling

in several ways the actuators or sensors. As the electric field

is constant, it is given by

{Eh} =

(

E(1)

E(2)

)

=


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−
1
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1
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{�e}

= [Be
�]{�e}

where E(1), h1 and E(2), h2 are the electric fields in and the

thicknesses of piezoelectric parts 1 and 2.

Then, assuming that no electric charge is applied to

the piezoelectrics, variational principles give the following

element equations [5]:

[Ke
UU ]{U e} + [Ke

U�]{�e} + [Me
UU ]{Ü e} = {F e

U } (1)

[Ke
�U ]{U e} + [Ke

��]{�e} = {0} (2)

where [Ke
UU ], [Me

UU ] and {F e
U } are the element stiffness

matrix, the element mass matrix and the applied load vector.

These matrices contain homogenized mechanical coefficients

according to the beam section. Dots indicate a derivative with

respect to time. [Ke
U�] and [Ke

�U ] couple the mechanical

properties to the electric properties and [Ke
��] is the electric

stiffness matrix. For the piezoelectric layer i we define the

following constants:
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where d
(i)

31 , e
(i)

311, ǫ
(i)

33 , E(i), h(i) and A(i) are the piezoelectric

constants, Young’s modulus, the thickness and the section of

the piezoelectric layer, the expressions of [Ke
U�], [Ke

�U ] and

[Ke
��] are:
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Figure 2. Modeling of a composite beam.

The analytical expressions of [Me
UU ] and [Ke

UU ] are detailed

in [6, 7].

Then, the assembled form of (1) and (2), for a beam

structure equipped with Na actuators and Nc sensors can be

written as

[KUU ]{qU } + [KU�]a{q�}a + [MUU ]{q̈U } = {FU } (3)

[K�U ]s{qU } + [K��]s{q�}s = {0} (4)

where {qU } (sizeNddl), {q�}s (size N̄s) and {q�}a (size N̄a) are

the generalized displacements and the generalized potentials

of the sensors and the actuators. N̄s and N̄a are the number of

the unknown potentials of the sensors and actuators. They are

such that N̄s � 4Ns and N̄a � 4Na . [KUU ], [KU�]a , [MUU ],

[K�U ]s , [K��] and {FU } are the generalized discrete matrices.

In addition to these two equations, initial conditions have to be

added.

In order to set up a control law damping the vibrations

caused by external disturbances {FU } or by the initial

conditions, a state space model is developed in the next section

and a linear quadratic regulator (LQR) method, including a

state observer, is used.

3. The control system

The application of the active control methods in a dynamic

structural problem requires the use of a state space model. To

obtain this kind of equation, the solution {qU } is decomposed

into the normalized orthogonal modal basis {&n}. Assuming

that the contribution of the highest modes is negligible, we

keep only the first N eigenfunctions:

{qU } =
N

∑

r=1

{&r}αr(t) = [&](Nddl,N){α}(N,1). (5)

Substituting this equation into (3) and (4), and using the

orthogonality properties of modes leads to the state equations:

d{x}

dt
= [A]{x} + [B]{q�}a + {g} (6)

{x}(t = 0) = {x0} (7)

and

{y} = [C]{x} (8)

where the normalized state vector (size 2N ) is

{x} = {ωnαn α̇n }T (9)

[A], [B], [C] and {g} are the state, control output and load

matrices, given by:

[A] =

(

[0] [ω]

[−ω] −2[δ][ω]

)

[B] =

(

[0]

[&]T [KU�]a

)

[C] =
(

−[K��]−1
s [K�U ]s{&r}

ωr

[0]

)

{g} =

(

{0}
[&]T {F }

)

{x0} is the initial conditions vector. As usual, a term of modal

viscous damping has been added to take into account a small

amount of damping. [δ] is the diagonal matrix of the damping

ratio and [ω] is the diagonal matrix containing the natural

angular frequencies.

In order to obtain a controlled system having good

stability and robustness, we chose the LQR control method [8].

Assuming that the state equation is controllable, it led us to use

the control law

{q�}a = −[K]{x} (10)

which minimizes a cost function given by

J� =
1

2

∫ ∞

0

[{x}T [Q]{x} + {q�}Ta [R]{q�}a] dt (11)

where [R] is a positive matrix and [Q] is a positive semidefinite

matrix. The choice of [Q] and [R] is not easy. In the following

applications, [Q] is chosen so that {x}T [Q]{x} represents the

mechanical energy. [R] is a diagonal matrix, the components

of which are chosen such that the maximal values of {q�}a are

less than the maximal admissible values for the piezoelectric

materials under consideration. In order to be implemented,

the optimal state control law obviously needs knowledge of the

state vector {x}. This knowledge is not complete since only the

output voltages in {y} are observed. Assuming that the state

system verifies the observability criteria, an estimation {x̂} is

computed using a Luenberger observer [8, 9]. Consequently,

the control law applied to the actuators becomes

{q�}a = −[K]{x̂}.

4. Applications

In this section, we present two applications. In each case

the structure is equipped with devices made with the same

piezoelectric material (figure 2). In order to limit the study

to bending motions, for each actuator and sensor we set

�2 = �3 = 0, and �1 = −�4 (phase opposition between the



Table 1. Characteristics of the simple cantilever beam.

Length of the beam (m) 1
Length of the actuator 0.06

and the sensor (m)
Width (m) 0.02
Thickness (m) 0.002

Mass density (kg m−3) 2700

Young’s modulus (Pa) 7 × 1010

Natural frequencies (Hz) 1.64, 10.29, 28.81, 56.46
Damping ratio ≃0.1%

Table 2. Characteristics of piezoelectric PZT.

Width (m) 0.01
Thickness (m) 0.001

Mass density (kg m−3) 7440

Young’s modulus (Pa) 4 × 1010

Piezoelectric constant ǫ33 1.72 × 10−8

Piezoelectric constant d31 (m V−1) 230 × 10−12

Maximal admissible voltage (V) 250

Figure 3. A simple cantilever beam.

Figure 4. Comparison of the analytical calculus (black line) and
discrete model (grey line) for the sensor output.

two piezoelectric parts of each element). Consequently, here

we only consider one electric variable for each device. The

finite element was implemented in DYNADID2D [10]. The

construction of the control and the observer was done using

SCILAB [11].

First, we study the active control of a simple cantilever

beam in the case of a release test, equipped with one

piezoelectric actuator and one sensor located near the

fixed edge (figure 3). The geometrical and mechanical

characteristics of the system are detailed in tables 1 and 2. The

initial conditions are derived from an initial load �F(t = 0)

= 0.003�z applied to the free end of the beam.

Because of the nature of the excitation, we take into

account only the first four eigenmodes. The study of this

simple structure can give us a first validation of the finite beam

element. The idea is to compare the results obtained using the

finite element discretization with analytical results [5]. For

this purpose the mechanical characteristics of piezoelectric

Table 3. Characteristics of the three-beam structure.

B1 (m) (0, 0)
Length B1B2 (m) 0.5
Length B2B3 (m) 0.4
Length B3B4 (m) 0.5
Location of actuator 1 (m) (0, 0.02)
Location of actuator 2 (m) (0.04, 0.5)
Location of sensor 1 (m) (0, 0.42)
Location of sensor 2 (m) (0.4, 0.46)
Length of each actuator (m) 0.06
Length of each sensor (m) 0.01
Natural frequencies (Hz) 1.48, 2.89, 7.99, 29.64
Width of elastic beams (m) 0.025
Thickness of elastic beams (m) 0.002

Mass density of elastic beams (kg m−3) 2700

Young’s modulus of elastic beams (Pa) 7.3 × 1010

Damping ratio ≃0.025%

Figure 5. Comparison of the analytical calculus (black line) and
discrete model (grey line) for the actuator output.

Figure 6. Mechanical energy: release test under closed loop (black
line) and open loop (grey line) conditions.

are assumed to be negligible (in order to simplify analytical

developments). The output of the sensor and the required

input voltage obtained using the two methods (analytical and

discrete) are plotted in figures 4 and 5. For each figure, the

difference between the results cannot be seen as they are almost

identical: the finite element method, using the simple finite

beam element, gives the same results as the analytical calculus:

it is a first validation of the element.

We also studied the active control of the three-beam

structure shown figure 1, equipped with two actuators



Figure 7. Mechanical energy: sinusoidal test under closed
loop (black line) and open loop (grey line) conditions.

and sensors. The geometrical and mechanical properties of

the system are detailed in tables 2 and 3. The structure is first

subjected to a release test derived from the load �F(t) = 0.05�x
applied to B4. Because of the nature of the excitation we take

into account the four first eigenmodes. The mechanical energy

of the system for the open and the closed loops is plotted in

figure 6. Using active control, the mechanical energy vanishes

in less than 4 s.

In the same way, the structure is studied when subjected

to a persistent external force applied to B4 and equal to �F(t) =
0.6 cos(40t)�x. From figure 7, the active control stabilizes the

mechanical energy in less than 8 s whereas for the open loop

it requires more than 15 s.

These simulations show the efficiency of the active control

system used to attenuate vibrations of beam structures, and the

interest of a finite element model in this context.

5. Conclusion

In order to simulate the active control of beam structures, we

have developed here a finite beam element to model actuators

and sensors, taking into account the piezoelectric effect. Using

a usual control strategy, but starting from discrete finite element

equations, a linear quadratic control method including a state

observer has been used to compute the control. Simulation

of the active control of a simple cantilever beam validates the

developed finite element.

Simulations for a three-beam structure show that active

control can be very efficient. However, we can show that this

efficiency depends strongly on the location of the sensors and

actuators [5, 9]. The simple finite beam element presented here

can easily be used to solve this kind of structural optimization

problem, minimizing the computation cost and allowing one

to investigate many generic problems on rather simple models

without loss of generality. The first applications are presented

in [12]. With this aim, we are now working to develop a

methodology for the determination of the optimal geometries

of piezoelectric devices.
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