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Active Control of Flow Separation Over An Airfoil

S. S. Ravindran *t

NASA Langley Research Center

Hampton, Virginia

Abstract

Designing an aircraft without conventional control

surfaces is of interest to aerospace community. In

this direction, smart actuator devices such as syn-
thetic jets have been proposed to provide aircraft

maneuverability instead of control surfaces. In this

article, a numerical study is performed to inves-

tigate the effects of unsteady suction and blow-
ing oil airfoils. The unsteady suction and blow-

ing is introduced at the leading edge of tile airfoil
in the form of tangential jet.. Numerical solutions

are obtained using Reynolds-averaged viscous com-

pressible Navier-Stokes equations. Unsteady suc-
tion and blowing is investigated as a means of sep-
aration control to obtain lift on airfoils. The ef-

fect of blowing coefficients oil lift. and drag is in-
vestigated. The numerical simulations are com-

pared with experiments from tile Tel-Aviv Univer-

sity (TAU). These results indicate that unsteady

suction and blowing can be used as a means of sep-

aration control to generate lift. on airfoils.
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drag coefficient
pressure coefficient

fluxes of mass, momentum and energy
viscous terms of the Navier-Stokes
fornullation

non-diluensional actuator frequency, fc/U_

width of the orifice, m

identity matrix
free-streanl Math number

transformation matrix from conserved

variables to primitive variables OQ/Oq
conservation variables

Prandtl nuinber

Reynolds mlmber, P_"_
D

actuator Strouhal number, fH/Vo
temperature, °C
contravariant velocities

spatial mean jet. velocity from actuator

free-stream velocity, m/s

speed of sound, m/s
chord length, m

total energy

actuator forcing frequency, Hz
pressure, nondimensionalized by 7P_

primitive variables

distance outward from body

time, nondimensionalized by c/ao¢

Cartesian velocities in x and y direction,

respectively, nondimensioimlized by ao¢
RMS velocity of the actuator jet oscillations

Cartesian coordinates

time step (nondimensional)

angle of attack (degrees)

difference operator

ratio of specific heats

coefficient of bulk viscosity

viscosity

density
viscous stress tensor

curvilinear coordinate directions



Subscripts

max maximum
min nfininmm
x, y denotesdifferentiationinx andy directions,

respectively
J],_ denotesdifferentiationin 7/and

( directions, respectively

() _. free-stream condition

Superscripts

n denotes time level

0 denotes quantities in generalized coordinates
+
- denotes positive and negative flux

conditions

I. Introduction

The experimental and computational investiga-

tions of active control of flow past airfoils at high

angles of attack is an area of active research as ex-

tending the usable angles of attack has many im-

portant applications. There are a number of arti-

cles showing the effectiveness of flow control for air-

foils. For example, in [10] leading edge suction was

investigated for transition delay, in [23] jet flaps
were employed for lift increase and in [6] surface

suction/blowing was used to rapidly change lift and

drag on rotary wing aircraft. However, most of the

control techniques considered in the past required

relatively more power input or involved weight and

comt)lexity penalties.

In [11, [2] and [18], an innovative method for ac-
tive control has been experimentally demonstrated

using the so-called synthetic jet. The synthetic jet

actuator produces a high-frequency jet from the

surrounding fluid with zero net mass input. A

novel feature of this actuator is that it requires

only electrical power. In [1] azld [18], a synthetic jet

was used to produce a larger jet and in [2] a pair

of actuators were used to show significant lift on

cylinders. In another experimental work, Seifert

et al [15] have investigated unsteady suction and
blowing on a syinmetric airfoil to increase post-

stall lift. They show by introducing an unsteady

jet near the leading edge tangential to the surface

of a NACA0015 airfoil significant increase in lift

can be obtained with relatively low momentum in-

put. They also observed re-at, tachment of the flow

and elimination of large wake region above the at-

tached region. Later Seifert et. al. [16] and Seifert

and Pack [17], investigated the dependence of ac-

tuator location, momentum coefficient of the jet

and frequency of the oscillation, and performance

in higher Reynolds number.

Some of the recent numerical simulations re-

ported in [21, 6, 5] also support these findings.

In [21], a periodic blowing and suction normal to
the surface was used at 2.5% chord from the lead-

ing edge of a NACA0012 airfoil. They showed

that lift was increased for angles of attack be-

tween 18°-35 o . They used tile Reynolds average

Navier-Stokes (RANS) approach with the Baldwin-

Lomax algebraic turbulence model. Hassan et. al.

[6] have also used RANS approach with Baldwin-
Lomax turbulence model. In their work zero net

mass suction/blowing was placed at 13% chord and

they found out that for certain oscillation frequency

and peak amplitude, the lift can be increased albeit

with high momentum input. The comparison with

experiments were not given in both of these works.

Finally, Donovan et. al. [5] reported numerical in-

vestigations of both steady and unsteady jet oil air-

foils. They used an unsteady RANS incompressible

flow solver with Spalart-Allmaras [19] turbulence
model and compared their results with the experi-

ments of [15]. Performance improvements were ob-
tained by placing the actuator near the airfoil lead-

ing edge. A significant lift increase of about 297c

was obtained using synthetic jet actuators in the

post-stall regime. However, their sinmlations as-

sumed incomt)ressibility which is not not strictly

valid as the Mach number in tim experiments of

Seifert [15] was M = 0.15.

In this article, we present a numerical investiga-

tion of unsteady suction and blowing on an airfoil

using a compressible flow solver CFL3D [9]. We

build upon the previous work of Donovan et al [5]

to validate CFL3D for active flow control applica-
tions and to address some of the anomalies in the

previous reports.

The plan of the paper is as follows. In §II, we will

present the governing equations. In §III, we will

present the computational methods used to solve

them. In §IV, we will present numerical results for

the baseline case. In §V, we will present numeri-

cal results for the active control case. In §VI, we

conclude the paper with a summary.



II. The Governing Equations

Tile governing equations considered are the time-

dependent, viscous compressible Navier-Stokes
equations. The nonodimensional form of these

equations in Cartesian coordinates for an ideal gas
are

O__G_x_G_0_0__Q+ OF 0G 1 (_, + (1)Ot _ q- Oy -- Re Oy ]

where Q, F and G are the flux vectors given by
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The viscous flux vectors F,, and G,, are defined as
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Here the Prandtl number, Pr, is

Pr = IRcp
I_oc

where cp is the specific heat at constant pressure,

and _ is the coefficient of thermal conductivity.

The pressure is defined by the equation of state

for an ideal gas:

P(_ + v'_)], (2)p= ('y-1)[e-

where 7 = _ and has a value of 1.4 for air. The
Cv _

speed of sound, a, is defined as a 2 = "y_. The

Reynolds number is defined as Re = p__e__, where

c refers to a chord length and the subscript, oc,

refers to free stream quantities. The dynamic vis-

cosity, p, is approxinmted by Sutherland formula

and equation (1) is closed by Stokes hypothesis for

bulk viscosity (,_ + 2p/3).

A. The Coordinate Transformations

In order to apply the numerical algorithm and

boundary conditions easily, the governing equa-
tions which are derived in the Cartesian coordi-

nates, (x,y), must be transformed to the compu-

tational domain or generalized coordinates, (_, q).
The transformation from Cartesian coordinates to

general curvilinear coordinates for two-dimensions
are

_-= t, _ = _(z,._, t), ,j = ,j(x, y, t).

These coordinates conform to the surface of the

body and maps the original Cartesian space (x,y)
or physical domain onto a computational doinain

(_, _1), which is rectangular with a uniform mesh. In
terms of these curvilinear coordinates the Navier-

Stokes equations t)ecome

0,,- e,, + ), (3)

where

t

pv
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(e + p)U - &p
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pu V + WI:_

pvV + 1hi._

v(e + p) - 71fp

with

U = & + Gu + Gv, I" = _lt + 7j_u + rl_v,

where U and V are the contravariant velocities. In

curvilinear coordinates the viscous flux terms are

given by

Fv = g-'(_F,,+_uav) and G,, = J-a(rlxF,,+,luG,,),

where J = o(_.,s) Similarly, the stress terms inO(x,y,t) •
Fv and G,, are also transformed.



III. Computational Algorithm

In this study tile algorithnl used to solve the

Navier-Stokes equations is the CFL3D code re-

ported ill [9]. CFL3D solves the time-dependent
conservation law form of the Reynolds-averaged

Navier-Stokes equations. The spatial diseretization

involves a semi-discrete finite-volume approach.

Upwind-biasing is used for the convective and pres-
sure terms, while central differencing is used for
the shear stress and heat transfer terms. Time

advancenIent is implicit with the ability to solve

steady or unsteady flows [13], [14], [20], [12]. Multi-

grid and mesh sequencing are available for conver-

gence acceleration.

A. Time Differencing

The Navier-Stokes equations (3) are discritized

in time using the backward Euler implicit scheme

and then the resultin}_ nonlinear system is lin-
earized in tilne about Q" to obtain

I
[_ + 6_A" + 6,y%xO" = R(O"), (4)

where

0_ _ 0 1R = -[ (Y - F,) + -

0 _ _e _5Q" = (_"+' - O", A = _--_(F - F,,)Q

alia

o(G_ 1
B =

Approximate factorization

The central difference discretization to Equa-

tion (3) results in a large banded square matrix

which is sparse but would be computationally ex-

pensive. To overcome this problem an approximate
factorization is introduced which converts the two-

dimensional operator into one-dimensional opera-
tors:

M

[._7 + _A*]Aq'

M

= R(q n)

51/ ,
= 7At&q

and

qn+l = qn + ,.._qn,

where q = (p, u, v, p),

oOQ A* = (F - _ ,,),M = 0--_-' q

and

(5)

B'= 1G

This factorization yields two block tridiagonal in-

versions for each sweep. Prior to the execution

of Equation (5), the corrections are constrained in

order to maintain tim positivity of tile therlnody-

naniic scalars p and p. For examt)le, the update to

pressure is taken as

pn+l = pn + A[1 + ¢_(ac + I A---_P])]-1
pn

whenever _ _< ac, where a = -0.2 and 0_ = 2.0.

B. Spatial Differencing

The spatial differencing is done using a second-
order-accurate upwind-t)iased scheme. The fluxes

F, G representing pressure and convective terms

are differenced using up-winding and a flux-vector-

splitting method. For example, the flux difference

in the _ direction is

0j = + +

The flux vector splitting is due to Van Leer. The
flux F, for example, is split according to the con-

travariant Math mimber in the ( direction, see [9].

The split-flux differences are implemented as a flux
balance across the ith cell holding spatial indices j

and k constant as

= [F+(Q -) + F-(Q+)]i+I/2
-[?+(Q-) + ?-(Q+)]i-1/2,

where F+(Q-)i+I/2 denotes a forward flux evalu-

ated using the metric terms at the cell interface

(i + 1/2), and state variables are obtained by fully

upwind second-order interpolation of cell-centered
variables

Qi-+1/2 = (3/2)Qi - (1/2)Qi_l,

Q++l/2 = (3/2)Qi+l - (1/2)Qi+_.



Thediffusiontermsaredifferencedusingasecond
ordercentraldifferencing:

C. Convergence Acceleration

A sequence of grids Go, Gl, G2,. ...... ,G_ is

defined, where GN denotes tile finest grid and

coarser grids are formed by successively deleting ev-
ery other line in all coordinate directions. The fine

grid serves to damp the high-frequency errors while

the coarser grids damp the low-frequency errors.

The coarse grids are solved with a forcing function

on the right-hand side, arising from restricting the

residual from the finer grids. The forcing function

is the relative truncation error between the grids,
such that the solution on the coarser meshes are

driven by the fine grid residual. A fixed cycling
strategy (W-cycle) is used for the results presented.

The solution were smoothed oil each grid through

five steps before switching to the next mesh.

D. Turbulence Models

In order to predict turbulent flows by solving the

Reynolds averaged Navier-Stokes equations, clo-

sure assumptions must be made about the turbu-

lent stress and heat-flux quantities. For separated

unsteady flow computations using Reynolds aver-

aged Navier-Stokes equations, choosing the appro-

priate turbulence models is not trivial. Among the

available models, the Spalart-Alhnaras (SA) model

has been shown to be effective for a variety of flows

including 2-D separated airfoil flows, see [5] and
[8]. The Spalart-Allmaras model is a one equation

model which solves a single transport equations for

a modified turbulent viscosity.

VI. Baseline Simulations

The airfoil configuration used here is the one used

at Tel-Aviv University (TAU) for low-speed wind

tunnel test. This airfoil, we call it TAU0015, has

a 0.4% chord notch at the leading edge and a 3%

chord thick trailing edge, otherwise is a NACA0015

airfoil. In order to lay a single-block structured grid

around the airfoil, the original airfoil was modified

to smooth out the square corners at the leading

edge actuator. Figure 1 shows this modification in

comparison with the original TAU0015 airfoil with
the leading edge actuator. The baseline simulations

given in this section uses no actuation. The follow-

ing parameters were used in the simulations which

are the same as in the experimental conditions: the

Math number of 0.15 and a chord Reynolds num-

ber of 1.2 × 106. The computations were performed

using a 417X129 C-grid shown in Figure 2 with a
minimum normal spacing of 0.0000015c.

The boundary conditions applied are no-slip with

no normal velocity at the body surface. Along the

far-field upstream and the circumferential bound-

aries, a quasi-one-dimensional characteristic analy-

sis is used to determine the boundary data, assum-

ing free-stream conditions exterior to the boundary.

Along the downstream boundary, first-order ex-
trapolation of the conserved variables is used. The

outer boundary is sufficiently flu' away, rmax =

12c, from the airfoil, thereby minimizing the effects

of the outer boundary on the flow over the airfoil.

Figure 3 shows tile enlarged view around leading-
edge showing the grid near the actuator. Figure 4

shows the computed lift coefficients versus angle
of attack computed with experimental data. The

results show very good agreement before stall, but

deviate fi'om the experimental data at stall, similar

to the results of [5]. A drag polar is shown in Figure

4 for the baseline case which also shows good agree-

ment with experiment at lower angles of attack but

deviate from the experimental values for post-stall

angles of attack. Similar observations were made

in [5] and [7] using the same airfoil and turbulence
model but with different numerical methods and

models.

In [7] an unstructured grid was employed to

study the effects of smoothing the square corners

at the leading-edge actuator. Both the original

TAU0015 and the modified TAU0015; see Fig-

ure 1, were studied for the baseline case. They
found remarkable agreement between modified and

original TAU0015 airfoil computations but origi-
nal TAU0015 model stalled before the modified

TAU0015 model resulting in some disagreement in

the post-stall region. They concluded that the dis-

crepancies between computed and experimental re-

sults was due to the way aerodynamic properties

were computed and thus a proper interpretation

of the experimental results is important. For ex-
ample, experimental measurements used discrete



pressuretapsandhencethelift coefficientconsists
of thepressurecontributiononlyandleadingedge
actuatorregionwasnot includedin thecomputa-
tion. Thiswasverifiedin [7]byrecomputingthe
lift withoutincludingtheactuatorportionat the
leadingedge.

Wenoteherethat wedidnotgobackandrecom-
putelift anddrag;ratherbecausethecomparisons
inFigures4 5aresufficientlygoodttlat theremain-
derof tilepaperwill focusonthisconditions.

V. Control Simulations

In this section, we present some numerical simu-

lations of synthetic jet control and compare them

with experiments. The experiments that we se-

lected here for conlparison used a leading-edge un-

steady jet tangential to the surface.

A. Actuator Boundary Conditions

In all the calculations the synthetic jet actuator

is modified using suction and blowing type bound-

ary condition by prescribing velocity at the surface.

The velocity boundary condition is given by

u(x, 0, t) = A sin(a_t)f(x),

where the amplitude A = ._2_U_v/2 < C u >,
the prescribed frequency of oscillation w =

(F+U_c/27re), the spatial distribution f(x) = 1,

F + is the non-dimensional frequency and the os-

cillatory momentum blowing coefficient < C_, > is
defined as

< C. >= 2(H/c)(< Uje t >/U_) 2.

Tile saine C-grid used in tile baseline simulations

was used here. The jet at the slot was resolved

using a fine grid consisting of twenty grid points.

B. Numerical Results

The parameters Mach number and Reynolds
number were taken to be the same as in the base-

line case. The experiments included various blow-

ing coefficients < C o >, with F + = 0.58. To
assess the effectiveness of synthetic jets, various

blowing coefficients were tested at fixed post-stall

angle-of-attacks a = 22 °, a = 240 and a range of

< C, > were used in the simulations. The turbu-
lence model used was again Spalart-Allmaras with

tile time step At = 0.00005. In order to reduce the

computational time required to converge to a so-

lution with blowing, the baseline case solution was

used as the initial flow conditions for the blowing

computations.

The variation of ACt with blowing coefficients

< C_, > for _ = 22o is shown in Figure 6. The
incremental lift increases as the momentum blow-

ing coefficient increase for both the experimental

and computational data in much better agreement

than reported in [5]. Tile computational results
over/under-predict lift. This may be due to in-

ability of the turbulence model's to predict sepa,

rated flows, inconsistency in the actuator geome-

try or the lack of grid resolution. Figure 7 shows

the analogous variation in ACI with blowing coef-

ficients < G, > for (_ = 24 °. The computed ACI

increase smoothly with increasing < C, > unlike

tile (_ = 22 o case. For the uncontrolled flow, a large

region of separated flow wa_ seen with two coherent

structures on the suction surface. The application
of control makes the flow more attached which is

consistent with the works of [4] and [5].

Figure 8 shows surface pressure distribution for

tile baseline and controlled cases. Figure 9 and

Figure 10 show tile lift coefficient time histories

with synthetic jet control as a function of non-

dimensional time (L_) for a= 220 and a = 24°,

respectively. Note that approximately 40 nondi-
mentional times were necessary to obtain a statis-

tically stationary solution.

VII. Summary

A computational investigation of tangential un-

steady suction and blowing for separation control

on an airfoil has been performed. The effects of

zero net mass suction and blowing on lift increase
were studied. The computed results were compared
with available wind tunnel test results to determine

tile accuracy of the computational results. The

numerical solutions were obtained by solving the

Reynolds averaged Navier-Stokes equations. A grid

resolution study was conducted using baseline (un-

controlled) case to determine the appropriate grid

density. The computed baseline results agreed rea-

sonably with experimental results. For the active



controlcase,variousblowingcoefficientswerein-
vestigatedat twoanglesof attack,a = 220 and

a = 24°. The computed results were compared
with the experiments from TAU. The results show

reasonable agreement with tile trends observed in

the experiment.

In general, the computations showed that the lift

increased as tile blowing coefficient increased. In

all the control simulations, tile grid resolution in

general and time step-size in particular was found
to be critical.

Computational simulations shows that tangen-

tial unsteady suction and blowing on airfoil can be

used as a means of separation control to generate
lift.
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FIG. 1 Leading edge regions of TAU0015
and modified TAUO015 airfoils.

FIG. 2 TAU0015 airfoil 417 x 129 C-grid,

Armi n = 0 0000015c, rmax = 12c.



FIG. 3 Blowup of the TAU0015 airfoil near

the leading edge.
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FIG. 9 Lift and Drag history of time accurate
calculations of TAU0015 airfoil for M=0.15,

Re = 1.2 × 106 , o = 220 , f+ = 0.58 and < C, >=

0.0003.
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