Active Control of Structures

André Preumont

Université Libre de Bruxelles, Brussels

Kazuto Seto

Nihon University, Japan

A John Wiley & Sons, Ltd, Publication

Contents

About the Authors				
Pı	reface	<u> </u>		xiii
Acknowledgements				xv
1	Acti	tive Damping		
	1.1		duction	1
		1.1.1	Why Suppress Vibrations?	1
		1.1.2	How can Vibrations be Reduced?	2
	1.2	Struc	tural Control	1 2 2 3 4
Pr	1.3 Plant Description		Description	3
		1.3.1	Error Budget	
	1.4	Equa	tions of Structural Dynamics	6
		1.4.1	Equation of Motion Including Seismic Excitation	6
		1.4.2	Modal Coordinates	8
		1.4.3	Support Reaction, Dynamic Mass	10
		1.4.4	Dynamic Flexibility Matrix	12
	1.5	Collo	cated Control System	15
		1.5.1	Transmission Zeros and Constrained System	18
		1.5.2	Nearly Collocated Control System	20
		1.5.3	Non-Collocated Control Systems	21
	1.6	Activ	e Damping with Collocated System	24
			Lead Control	25
		1.6.2	Direct Velocity Feedback	29
		1.6.3	Positive Position Feedback	31
		1.6.4	Integral Force Feedback	35
		1.6.5	Duality between The Lead and IFF Controllers	44
	1.7	Dece	ntralized Control with Collocated Pairs	46
			Cross-Talk	46
		1.7.2	Transmission Zeros (Case 1)	47
		1.7.3	Transmission Zeros (Case 2)	52
		Refer	ences	55

2	Active Isolation				
	2.1 Introduction				
		Relaxation Isolator			
		2.2.1 Electromagnetic Realization	62		
	2.3	Sky-hook Damper			
	2.4	Force Feedback			
	2.5	2.5 Six-Axis Isolator			
		2.5.1 Decentralized Control	73		
		2.5.2 Leg Design	70		
		2.5.3 Model of the Isolator	80		
		2.5.4 Six-Axis Transmissibility	82		
	2.6	2.6 Vehicle Active Suspension			
		2.6.1 Quarter-Car Model	91		
	2.7	Semi-Active Suspension	106		
		2.7.1 Semi-Active Devices	106		
		2.7.2 Narrow-Band Disturbance	107		
		2.7.3 Quarter-Car Semi-Active Suspension	108		
		References	113		
3	A Comparison of Passive, Active and Hybrid Control				
		Introduction	11? 11?		
		System Description	119		
		The Dynamic Vibration Absorber	120		
		3.3.1 Single-d.o.f. Oscillator	120		
		3.3.2 Multiple-d.o.f. System	123		
		3.3.3 Shear Frame Example	124		
	3.4		126		
	3.5	Hybrid Control	133		
	3.6	Shear Control			
	3.7	Force Actuator, Displacement Sensor	135		
		3.7.1 Direct Velocity Feedback	136		
		3.7.2 First-Order Positive Position Feedback	137		
		3.7.3 Comparison of the DVF and the PPF	138		
	3.8	Displacement Actuator, Force Sensor	140		
		3.8.1 Comparison of the IFF and the DVF	142		
		References	144		
4	Vib	ration Control Methods and Devices	147		
	4 .1	Introduction	147		
	4.2	Classification of Vibration Control Methods	148		

			(Contents	Vii
	4.2	Como	turnation of Antire Drumanaia Absorban		151
	4.3 4.4	J			131
	4.4	in Civil Structures			154
	4.5			1	156
	4.6	<u> </u>		ı	150
	7.0		rolling Vibration of Single-d.o.f. Systems		158
		461	Equations of Motion and State Equation		159
		4.6.2	Representation of a Non-Dimensional		107
		1.0.2	State Equation		160
		4.6.3			162
			Similarity Law between Dimensional and		102
			Non-dimensional System		163
		4.6.5	Analysis of Vibration Control Effect		165
		4.6.6	Experiment		173
	4.7	Rema	•		175
		Refer			176
5	Red	Reduced-Order Model for Structural Control			
	5.1				179
	5.2	Modeling of Distributed Structures			180
		5.2.1	Equation of Motion for Distributed Structures		180
		5.2.2	Conventional Modeling of Structures		181
	5.3	Spillover			183
	5.4	The Lumped Modeling Method			185
		5.4.1	A Key Idea for Deriving a Reduced-Order		
			Model		185
		5.4.2	Relationship Between Physical and Modal		
			Coordinate Systems		187
		5.4.3	Modification of Normalized Modal Matrix		188
	5.5		od of Equivalent Mass Estimation		190
			Meaning of Equivalent Mass		190
			Eigenvector Method		191
			Mass Response Method		193
	5.6		eling of Tower-like Structure		197
		5.6.1	Two-d.o.f. Model		197
		5.6.2	Dimension and Dynamic Characteristics of the		
		F 6 0	Tower-Like Structure		198
		5.6.3	Calculation of Parameters of Two-d.o.f. Model	1	201
		5.6.4	Comparison between the Distributed Parameter	r and	000
			Two-d.o.f. Systems		203

	5.7	Mode	eling of Plate Structures	203	
	5.7		Dimensions of a Plate Structure	203	
			Three-d.o.f. Model	200	
			Calculation of Parameters of the Three-d.o.f. Model	207	
			Comparison between Real System	207	
		0.7.1	and Three-d.o.f. Systems	208	
	5.8	Mode	eling of a Bridge Tower	209	
	0.0		Dimensions of a Scaled Bridge Tower	209	
			Construction of a Four-d.o.f. Model	210	
			Calculation of Parameters of the Four-d.o.f. Model	212	
			Comparison between Real System		
			and Four-d.o.f. Systems	213	
	5.9	Robu	st Vibration Control for Neglected Higher Modes	217	
			lusions	217	
		Refer	ences	219	
6	Acti	ve Co	ntrol of Civil Structures	221	
	6.1		duction	223	
	6.2	Class	ification of Structural Control for Buildings	222	
	6.3		eling and Vibration Control for Tower Structures	222	
		6.3.1	One-d.o.f. Model	222	
		6.3.2	Two-d.o.f. Model for Tower-Like Structures and Its		
			LQ Control	225	
		6.3.3	Three-d.o.f. Model for Broad Structures and Its H_{∞}		
			Robust Control	228	
		6.3.4	Four-d.o.f. Model for Bridge Tower and Spillover		
			Suppression Using Filtered LQ Control	239	
	6.4	6.4 Active Vibration Control of Multiple Buildings			
		Connected with Active Control Bridges in Response to			
			Earthquakes	249	
			Construction of Four Model Buildings	249	
			Characteristics of the Tower Structures	251	
		6.4.3	Reduced-order Model of the Four Tower Structures		
			Connected by Four Actuators	252	
		6.4.4	y G	254	
			Simulated Results of Seismic Response Control	257	
	<i>-</i> -		Experiment	259	
	6.5		tion Control for Real Triple Towers Using CCM	264	
			Outline of the Triple Towers	264	
		652	Modeling of Towers	265	

		Contents	IX
	6.5.3	Control System Design	266
		Simulation of the Triple Towers Using CCM	269
	6.5.5	Realization of the CCM	270
6.6	6 Vibration Control of Bridge Towers Using a Lumped		
	Mode	eling Approach	274
	6.6.1	Vibration Problem of Bridge Towers Under Construction	274
	6.6.2	Controlled Object and Its Dynamic Characteristics	277
	6.6.3	Five-d.o.f. Modeling of a Scaled Bridge Tower	
		Structure with a Crane Tower	278
	6.6.4	LQ Control System Design	278
	6.6.5	Simulations	283
	6.6.6	Experiments	283
		H_{∞} Robust Control	286
6.7	Conclusion		290
	References		291
Index			293