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Abstract. This paper examines the performance of active isolation systems for microgravity space experiments as a function of

desired transmissibilities that are chosen to be either much below or close to what can be tolerated. The control system utilizes

two feedback signals: absolute acceleration and relative displacement of the controlled mass. The controller transfer function for

acceleration feedback is chosen to avoid marginally stable pole-zero cancellations. The controller transfer function for relative

displacement feedback is determined to achieve the desired transmissibility function. The issue of stability and properness of

this controller transfer function are discussed. The required input forces and equivalent closed-loop stiffness are examined for

various examples of desired transmissibilities.
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1. Introduction

The acceleration levels required for microgravity sci-
ence experiments are expected to be much smaller than
what will be found on a space station. The microgravity
isolation systems are inherently multivariable with in-
ertia coupling in dynamics, uncertainty and nonlinear-
ities. Grodsinsky and Whorton [7] reported a detailed
survey and related discussions. Therefore, a number
of researchers are working on the development of ac-
tive control systems to ensure a proper acceleration
environment [9,10,17]. Jones et al. have presented
a conservative estimate of the frequency spectrum of
acceleration levels found on a spacecraft (Fig. 1). In
space stations, the frequency spectrum of acceleration
levels required for many experiments is also shown
in Fig. 1. This spectrum was presented by Columbus
Attached Laboratory and Columbus Free-Flying Lab-
oratory in European Space Research and Technology
Centre, Netherlands, under the potential excitation en-
vironment mainly caused by gravity gradient, air drag,

crew motion and machine rotating [16]. On the basis
of these curves, the required acceleration transmissibil-
ity for a vibration isolation system has been obtained
(Fig. 2). This paper deals with the performance of con-
trol systems designed to achieve transmissibility func-
tions that are either much below or close to the desired
transmissibility specified in Fig. 2.

Jones et al. [10] have developed an active micro-
gravity isolation mount using a Lorentz type of elec-
tromagnetic actuator. Their controller is based on the
classical phase lead/lag compensator and utilizes the
displacement of the mass relative to the base as feed-
back signal because the absolute displacement of the
controlled mass cannot be directly measured. Jones
et al. [11] reported the development of a micrograv-
ity isolation mount that will be accommodated within
the standard rack of system at Columbus laboratories.
Stampleman and Von Flotow [12] have established a
semi-active isolation mount using piezoelectric film.
Fenn et al. [3] have developed an active isolation sys-
tem using Lorentz type of electromagnetic actuator and
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Fig. 1. Estimated acceleration levels on space station.

nonlinear control law. At NASA Lewis Research Cen-

ter, an active isolation system has been developed [5,

6]. In addition to using relative displacement signal,

base acceleration is measured and integrated to achieve

the feedback of the absolute velocity.

In all the cited papers, system transmissibility can

be obtained to be close to the desired level by appro-
priately tuning the controller parameters. However, it

is not a straightforward task to achieve the desired per-

formance and resulting transmissibilities do exceed the

desired values in many cases. Consequently, Sinha and

Kao [13] and Tsai and Sinha [15] have developed a

methodology to determine the controller transfer func-

tions that will perform much below or exactly achieve

the desired transmissibility. The formulation has been

developed to incorporate relative displacement and ab-

solute acceleration of the mass as feedback signals.

As an important example, the desired transmissibility

was chosen to be 1/(τs + 1)2 where 1/τ = 0.03 Hz.

The frequency spectrum of this transfer function is ev-

idently below the specified transmissibility. The con-

troller obtained using the new approach has also been

found to require input force which is smaller than that

required by the classical phase lead/lag approach. Tsai

and Sinha [15] also found a marginally stable pole-

zero cancellation for the control system with relative

displacement feedback only. Therefore, an analog in-

ner feedback loop has been added by utilizing the ab-

solute acceleration signal. Meanwhile, a digital al-
gorithms to achieve the desired transmissibility corre-

sponding to 1(τs + 1)2 has been established by Sinha

and Wang [14].

The choice of 1(τs + 1)2 as the desired transmissi-

bility does lead to an acceptable performance in terms

of transmissibility. In fact, the resulting transmissibil-

ity is much less than what can be tolerated at high fre-

quencies. The response of the closed-loop system to a

direct force excitation on the mass and required input

levels are also important considerations in the design

of an isolation system. Therefore, the following issue

arises: is there a better choice of desired transmissi-

bility function which will satisfy the transmissibility

requirement and at the same time has a superior per-

formance in terms of required input and the sensitivity
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Fig. 2. Desired transmissibility.

to direct force excitation? To explore this issue, a con-

troller is firstly designed using relative displacement
feedback such that the transmissibility is close to the

specified function over the complete frequency spec-
trum (Fig. 2). It is also found that an absolute acceler-

ation feedback loop has to be used to avoid undesired

pole-zero cancellations. Furthermore, a factor (s+α)2

has to be added to the denominator of the desired trans-

missibility function in order to obtain a proper con-
troller transfer function. If α is properly chosen, the

desired transmissibility will exactly match the specified
transmissibility in the frequency range of interest. On

the other hand, the resulting transmissibility can also
be made very conservative by choosing a smaller value

of α. The equivalent closed-loop stiffnesses of isola-

tion systems for transmissibility function 1/(τs + 1)2

(CASE I) and transmissibility function corresponding

to Fig. 2 with a variable α (CASE II) are examined by
considering the unit step response. Because of the ac-

celeration feedback loop, the steady state responses for
both cases are found to be zero. Therefore, the maxi-

mum displacement of the mass has been taken to be a

measure of the equivalent closed-loop stiffness. That
is, the higher the maximum displacement, the smaller

is the equivalent closed-loop stiffness. Input forces for

Fig. 3. Mass-spring model experiment module.

all designs have been evaluated and compared for both

cases.

2. System model

Consider the single degree of freedom system shown

in Fig. 3 where m and k are the mass of the experi-

ment module and the umbilical stiffness, respectively.

The umbilical stiffness k represents the connections

between the experiment module and the base, which

are necessary for various functions such as the supply
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for electric power, the transport of the cooling fluid, etc.

The base acceleration ẍ(t) represents the acceleration

of the spacecraft or the space station.

The differential equation of motion for the system

shown in Fig. 3 can be described as follows:

mÿ(t) + k[y(t) − x(t)] = u(t) (1)

where u(t) is the control force.

In the absence of any control force, i.e., u(t) = 0,

the transmissibility Gp(s) is defined and obtained as

follows:

Gp(s) =
Y (s)

X(s)
=

k

ms2 + k
(2)

3. Desired transmissibility functions

The objective of this paper is to design a feedback

control system such that the transmissibility of the

closed-loop system is close to or below the desired

function shown in Fig. 1. Two cases of the desired

transmissibility functions are discussed as follows:

3.1. CASE I:

Sinha et al. [13] have taken the following transmis-

sibility function:

G1(s) =
1

(τs+ 1)2
where τ = 5.305 sec (3)

Note that this is based on the Bode’s Plot [2] for

which the break-off frequency is 0.03 Hz. Above

1.5 Hz, the transmissibility is much below the desired

value.

3.2. CASE II

Using the properties of asymptotic nature of Bode’s

magnitude plot [2], the transfer function which will

yield the transmissibility close to the desired function

(Fig. 2) over the complete frequency spectrum can be

shown to be as follows:

G0(s) = (4)

K0

(

s2 + 2ζωn1s+ ω2

n1

) (

s2 + 2ζωn2s+ ω2

n2

)

(s2 + 2ζωn3s+ ω2
n3

) (s2 + 2ζωn4s+ ω2
n4

)

where ωn1 = 1.5 ∗ 2π (rad/sec), ωn2 = 3.0 ∗
2π (rad/sec), ωn3 = 0.03 ∗ 2π (rad/sec), ωn4 =
15.0∗2π (rad/sec), ζ = 0.707 andK0 is obtained such

that

G0(0) ≈ 1 (5)

Therefore,

K0 ≈
ω2

n3
ω2

n4

ω2

n1
ω2

n2

(6)

It is noted that due to numerical calculation error,

G0(0) cannot be exactly identical to 1.0 in practice.

From Fig. 1, the transmissibility effect is not crucial

below 0.03 Hz. That is, the acceleration level of exper-

iment module can be allowed to exceed the estimated

space environmental acceleration to a certain extent.

Nevertheless, K0 will be chosen such that G0(0) is

close to but less than 1.0.

4. Controller design

The control law is developed such that the desired

transmissibility is achieved. Since the displacement

of the experiment module relative to its support, (y −
x), and the absolute acceleration of the experiment

module, (ÿ), can be directly measured in the space

station, they are used as feedback signals. In order to

appreciate the need for acceleration (ÿ) feedback, only

the relative displacement is used at first. The structure

of the control system is shown in Fig. 4 where d(s) is

the extra disturbance which is assumed to be absent,

and Hj(s), j = 1, 2, represent the controller transfer

functions for CASE I and CASE II, respectively.

For convenience, the following definitions are made.

Desired transmissibility functions

Gj(s) =
KjNj(s)

Dj(s)
(7)

where Kj : D.C. gain of Gj(s),
Nj(s): Numerator polynomial ofGj(s) with leading

coefficient equal to 1.0,

Dj(s): Denominator polynomial ofGj(s) with lead-

ing coefficient equal to 1.0.

Note that j = 1 and j = 2 represent CASE I and

CASE II, respectively.

Controller transfer function

Hj(s) =
KHjNHj(s)

DHj(s)
(8)
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Fig. 4. Control system with relative displacement feedback.

where KHj , NHj , and DHj are defined in a man-

ner similar to definitions of Kj , Nj(s), and Dj(s) in

Eq. (7).

The controller transfer function that yields the de-

sired transmissibility function is hence obtained as fol-

lows:

Hj(s) =
Kj [ms

2 + k]Nj(s) − kDj(s)

Dj(s) −KjNj(s)
(9)

where j = 1, 2. In order to get a proper controller trans-

fer function, the degree of [Nj(s)(ms
2 + k)] should

not be greater than that of Dj(s).
From Fig. 4, the relation between Yj(s) and X(s)

can be easily obtained. When the controller Hj(s) in

Eq. (9) is implemented via control structure of Fig. 4,

the output response of the closed-loop system is found

as follow:

Yj(s) =

[

ms2KjNj(s)

ms2Dj(s)

]

X(s) (10)

Since s2 is a common factor between numerator and

denominator, an undesired pole-zero cancellation does

exist. Therefore, an inner-loop controller is added as

shown in Fig. 5. The absolute acceleration of the ex-

periment module is used as the feedback signal for the

inner-loop controllerHI(s) that is designed as follows:

HI(s) =
c1
s

+
c2
s2

(11)

where c1 and c2 are positive numbers. It is noted that

the implementation of transfer function HI(s) would

require double integration of the acceleration signal.

WhenHI(s) is included to achieve the desired trans-

missibility function, the response of the modified con-

trol system becomes as follows:

Yj(s) =
[ms2 + c1s+ c2]

[ms2 + c1s+ c2]
Gj(s)X(s) (12)

Equation (12) implies a stable pole-zero cancella-

tion. In the presence of the inner-loop, the outer-loop

controller is synthesized in terms of desired transmis-

sibility function and system parameters.

Hj(s) (13)

=
KjNj(s)

[

ms2 + c1s+ (c2 + k)
]

− kDj(s)

Dj(s) −KjNj(s)

where j = 1, 2.

4.1. CASE I

The desired transmissibility is defined by Eq. (3).

From Eq. (13),

H1(s) =
(m− kτ2)s2 + (c1 − 2kτ)s+ c2

τs(τs + 2)
(14)

Note that if c2 = 0,

H1(s) =
(m− kτ2)s+ (c1 − 2kτ)

τ(τs + 2)
(15)

and

Y1(s) =
(ms+ c1)

(ms+ c1)
G1(s)X(s) (16)

Therefore, the common factor between numerator

and denominator is ms + c1, which is assured stable

for any c1 > 0.

4.2. CASE II

The desired transmissibility is defined by Eq. (4). In

order to get a properH2(s), a stable second-order factor

is added in the denominator of Eq. (4). Hence, the

desired transmissibility function is modified as follows:

G2(s) = [K2(s
2 + 13.33s+ 88.83)

(s2 + 26.66s+ 355.31)]/
(17)

[(s+ α)2(s2 + 0.267s+ 0.036)

(s2 + 133.3s+ 8883.00)]
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where K2 is chosen as 0.01013α2 to assure G2(0) ≈
1.0. From Eqs (13) and (17), (D2(s) − K2N2(s)),
which is the denominator of transfer function H2(s),
can be expressed in terms of α.

D2(s) −K2N2(s)

= s6 + (2α+ 133.567)s5 (18)

+(0.98987α2 + 267.134α+ 8918.627)s4

+(133.16α2 + 17837.254α+ 2376.56)s3

+(8910.528α2 + 4753.12α+ 319.79)s2

+(2304.592α2 + 639.58α)s+ 0.063α2

Applying Routh-Hurwitz method [2], the condition

on α for the stability of the controller transfer function

H2(s) is ensured as long as α is positive. It is noted
that in order to avoid numerical error that might cause

instability of the designed controller if α is selected to

be too close to zero, α should be conservatively chosen

such as α � 0.5.

For a special case,

k = 0, m = 8.640935 kg,

c1 = 12.2183 N-sec/meter

c2 = 8.640935 N/meter,

α = 1, 000 rad/sec,

Equation (14) yields

H2(s) =
KH2NH2(s)

DH2(s)
(19)

where

KH2 = 87532.67155 (20a)

NH2(s)

= s6 + 41.40400209s5 + 857.0637431s4

(20b)
+8274.99928s3 + 42407.46884s4

+51733.4838s+ 31562.1873

DH2(s)

= s6 + 2133.567s5 + 1265922.627s4

(20c)
+151001532.1s2 + 8915281425s2

+2305230891s+ 63042.7

The implementation of a high-order filter has been

discussed by Blackburn [1] in the context of micrograv-

ity isolation technology.

5. Performance of the control sysrem

The performance of the control systems designed on

the basis of transmissibility functions G1(s) in Eq. (3)

andG2(s) in Eq. (17) are compared with respect to fol-

lowing criteria: transmissibility, required control force

and the stiffness of the closed-loop system. The inner

loop controller transfer function HI(s) is taken to be
identical for both cases such that the comparison of

performance is persuasible. Constant parameters are

m = 8.640935 kg, c2 = 8.640935 N/meter. c1 is cho-

sen as c1 = 2ζ′
√

c2/m, where ζ ′ is the damping ratio

for the inner loop structure and will be assigned to be

as 0.1 or 0.707.

Transmissibility

The controller of CASE I obviously leads to a much
better isolation than what is required above 1.5 Hz.

On the other hand, the controller of CASE II leads

to the most tolerant transmissibility function and also

has more flexibility for designers. For instance, if the

design parameter α is chosen to be 1,000 rad/sec, the

transmissibility almost exactly matches the required

function. If α is chosen to be 1.0 rad/sec, the resulting
isolation system is even more conservative than that in

CASE I.

Required control forces

From Fig. 5, the control force from inner-loop con-

troller, denoted by U I
j (s), can be straightforward cal-

culated as follows:

U I
J(s) = −HI(s)[s

2Yj(s)] (21)

Similarly, the control force from the outer-loop con-

troller, UO
j (s), is expressed in terms of HI(s).

UO
J = −Hj(s)[Yj(s) −X(s)] (22)

The total control force is nothing but the sum of U I
j (s)

and UO
j (s) and becomes

Uj(s) = −[s2HI(s) +Hj(s)]Yj(s)
(23)

+Hj(s)X(s)

If all initial conditions are zeros, Yj(s) can be simply
described as

Yj(s) = Gj(s)X(s) (24)

Substituting Eqs (12), (14) and (24) into Eq. (23),

Uj(s) = [(ms2 + k)Gj(s) − k]X(s) (25)

Equation (25) implies that the net control force is

only a function of the input X(s), system parameters,
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Fig. 5. Modified control system for microgravity isolation.

Fig. 6. Control force (k = 0).

m and k, and transfer function Gj(s), i.e., Uj(s) is

independent of the inner-loop controller H I(s) or cl

and c2. However, if initial conditions on yi(t) are

not zeros, the control input will be a function of c1

and c2. In fact, the inner-loop has been designed to

counteract the effects of marginally stable pole-zero

cancellations that exist only in the presence of non-zero

initial conditions. When the system settles down in

steady state in response to a sinusoidal displacement

input x(t), the amplitude and phase of yj(t) can be

predicted by substituting s = ωi where i =
√
−1 into

Eq. (24). Therefore, Eq. (25) is valid to evaluate the

magnitude of the control input in steady state. In other

words, the input force is independent of c1 and c2 in

steady state. The required net control inputs for both

cases with k = 0 have been plotted in Fig. 6. Even if

the stiffness k is increased to be 0.1 (N/m), the required

control force of CASE II is usually less than that of

CASE I by appropriately selecting the value of design

parameter α (Fig. 7). That implies that the controller

of CASE II leads to a relatively economical design and

consumes less input energy.
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Fig. 7. Control force (k = 0.1).

Equivalent stiffness of the closed-loop system

The experimental module may be excited by a direct

force along with the base excitation. The effect of this

disturbance will be smaller if the effective stiffness of

the closed-loop system is higher. In order to examine

the effective stiffness of the closed-loop system,, the

response of the system is determined when the direct

excitation on the mass is a unit step function and there

is no base excitation. The equation of motion in this

case is as follows:

mÿi(t) + kyj(t) = u0

j(t) + uI
j t) + us(t) (26)

where u0

j(t) and uI
j(t) are the control forces from the

outer-loop and inner-loop controllers respectively and

us(t) is a unit step force applied at t = . Note that

y1(t) and y2(t) represent the system responses in time

for CASE I and CASE II, respectively. The steady-

state values of yj(t) for both desired transmissibility

functions (CASE I and CASE II) are obviously zeros

by applying final value theorem. As a result, the max-

imum value of yj(t) is used as a measure of equiva-

lent stiffness of the closed-loop system. The output

yj(t) is now examined for both aforementioned cases

of desired transfer functions, i.e., CASE I and CASE II.

5.1. CASE I

The expression of yI(t) is easily found by Inverse

Laplace Transform and Partial Fraction Method as fol-

lows:

myI(t) = AIe
−t/τ +A2te

−t/τ

(27)
+A3e

−c1t/2 sin(βt+ φ)

where β =
√

c2 − (c1/2)2, c1 = c1/m, and c2 =
c3/m. The expressionsA1, A2, A3 and φ are available

in Tsai and Sinha [15].

For numerical evaluation on the closed-loop system

stiffness, in Figs 8 and 9, the value of c1 in each case has

been chosen such that the damping ratio of the system

with inner loop, ζ ′, is 0.707, i.e., c1 = 1.414
√

c2/m

and 0.1, i.e., c1 = 0.2
√

c2/m for a tenth unit-step ex-

citation. It is found [15] that A1 and A3 are the dom-

inating terms in the step response. Hence the max-

imum value of yj(t), used as a measure of effective
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Fig. 8. Step response (ζ = 0.707).

closed-loop system stiffness, is primarily governed by

A1 and A3 which are due to factors (τs + 1)2 and

(ms2 + c1s+ c2).

5.2. CASE II

The desired transmissibility is defined by Eq. (18).

The unit step response is hence obtained as follows:

my2(t) = B0 +B1e
−αt +B2te

−αt

+B3e
−0.1335t sin(βt

3 + ϕ1)
(28)

+B4e
−66.65t sin(β4t+ ϕ2)

+B5e
−c1t/2 sin(β5t+ ϕ3)

where

β3 = 0.1348 (rad/sec)

β4 = 94.0727 (rad/sec)

β5 =
√
c2 − 0.25c1 (rad/sec)

The expressions of (B0 −B5) and (ϕ1 −ϕ3) can be

found in Tsai and Sinha [15]. Similarly,B3 andB5 are

the dominating terms which are due to the factors (s2 +
0.267s+ 0.036) and (ms2 + c1s+ c2), respectively.

In summary, dominating factors (5.305s+ 1)2 and

(s2 + 5.305s + 0.036) represent terms with the low-

est break-off frequency at 0.03 Hz in desired transfer

functions for CASE I and CASE II, respectively. And

the contribution of the inner loop (ms2 + c1s+ c2) re-

mains significant in both cases. Therefore, the equiva-

lent closed-loop system stiffnesses (maximum of yj(t))
are almost identical for both cases. Nevertheless, by se-

lecting design parameter, α, the settle time of CASE II

can be always shorter than that of CASE I (Figs 8 and

9).

6. Conclusions and future works

The control system has been developed to achieve

the desired transmissibility represented by Eq. (18).

This transfer function corresponds to the transmissibil-

ity shown in Fig. 2. The structure of the control system

is shown in Fig. 5. The inner-loop controller transfer

function HI(s) for the acceleration feedback loop is
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Fig. 9. Step response (ζ = 0.1).

chosen to avoid undesired pole-zero cancellations. The

controller transfer functionHI(s) for relative displace-

ment feedback is determined such that the resulting

transmissibility equals to that given by Eq. (18). The

factor (s + α)2 has been introduced in the denomina-

tor of Eq. (18) to ensure that Hj(s) is proper. Ap-

plying Routh-Hurwitz method, a condition on α has

been determined for stability assurance of inner-loop

controller, Hj(s). The transmissibility represented by

Eq. (18) matches exactly with the specified transmissi-

bility given in Fig. 2 by selecting large positive values

of design parameter,α. As α decreases, the transmissi-

bility becomes more and more conservative and even-

tually even less than that of CASE I. Meanwhile, the

control cost of CASE II is always much less than that

of CASE I as long as α remains below a certain positive

value. It has been found that the equivalent closed-loop

stiffness is primarily governed by HI(s) and the low-

est break-off frequency in the desired transmissibility

function. Although the control system of CASE II does

not have evident superior equivalent closed-loop stiff-

ness, its settle time is shorter than that of CASE I by

proper choice of α.

Vibration isolation for microgravity experiments is

indeed a challenging control problem. Although the

modern optimal and robust control methodologies, to

ensure stability and performance of the inherently mul-

tivariable system with uncertainties and nonlinearities,

are beyond the scope of this report, they will definitely

be the most interesting and important research issues

in future works. In fact, several reports for the inves-

tigations and studies of these areas are already avail-

able (e.g. [4,8]). In addition, the actuator for micro-

gravity isolation has to be chosen and designed prac-

tically capable of making quick response with respect

to the base motion. Lastly, the actuator’s bandwidth,

high-frequency responses of experiment modules, dif-

ferent patterns of acceleration-input levels and various

experiment facilities could be taken into consideration

as well in future works.
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