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1. INTRODUCTION

A coupled-resonator optical waveguide (CROW) is a peri-
odic array of resonators in which light propagates due to
the weak coupling between its nearest neighbors [1,2]. An
interesting property of CROWs is that light can propagate
at a significantly reduced group velocity, dictated by the
interresonator coupling, with no group velocity dispersion
at the band-center [3]. As fabrication technologies im-
prove, very high-order, even on the order of a hundred,
coupled resonators are now achievable [4-9].

One of the important challenges that remains is to
overcome the optical loss in these structures. Intuitively,
the loss accumulated in these devices can scale with the
number of resonators in the structures and the time delay
[10] (we shall show in this paper that this is not always
the case). Therefore, to compensate for the accumulated
losses, an amplifying section that is placed after a CROW
may have to be long, perhaps much longer than the
CROW itself. Thus, to avoid additional device footprint, it
would be advantageous to continuously amplify a wave
propagating in an active CROW.

In this paper and the companion paper [11], we shall
investigate theoretically and experimentally active, am-
plifying CROWSs. This paper will examine theoretically
the effect of resonant gain enhancement and noise. Using
a tight-binding analysis, we will show that for real values
of the coupling constant, the net gain of a wave in a finite-
length CROW does not necessarily depend only on its
group velocity, but is also strongly affected by the excita-
tion and termination of the CROW. These results can be
applied to losses as well, though optical gain makes laser
oscillation possible and must be considered with more
care. Using the same formalism, we will find the expres-
sion for the noise caused by spontaneous emission. The
measurements of amplifying CROWs in the form of
InP-InGaAsP Fabry—Perot resonator arrays are dis-
cussed in [11].
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2. TIME DOMAIN TIGHT-BINDING
EQUATIONS

To provide a generalized approach to analyze the ampli-
fying and noise properties of CROWs, we shall use a time
domain tight-binding or coupled-mode formalism. Time
domain coupled-mode equations are commonly used to
analyze coupled resonators [12—-14]. In this section, we
shall outline the derivation of these time domain coupled-
mode or tight-binding equations from Maxwell’s equa-
tions. The derivation will make the assumptions that are
made in obtaining the simple coupled oscillator equations
found in the literature explicit [12—14].

To analyze gain/loss as well as noise, we first define the
polarization density of the structure as

P(r7t) = €0X(r)E + E()p(r7t)7 (1)

where x(r) is the susceptibility and p(r,t) is the small
amplitude fluctuation of P(r,¢) which we will use later in
our analysis of noise. Generally speaking, in active struc-
tures, the susceptibility is a function of time, since the
carrier or population densities are modified by the optical
field. We shall simplify the analysis to a quasi-static pic-
ture where the optical signal varies on a much longer
time scale than the carrier dynamics, so that the gain and
loss can be taken as constants. Furthermore, in the re-
gime of small values of gain, we can neglect nonlinearities
due to saturation so that y(r) is linear and can be ex-
pressed as x(r)=e(r)+io(r). The variable e(r) is the di-
electric profile of the structure, and o(r) accounts for the
gain or loss depending on its sign (positive for gain and
negative for loss). Substituting the polarization density
into Maxwell’s equations, we arrive at

1 .. 1
VXV XE(r,t) + 5[e(r) +io(r)[E(r,t) = - 5p(r,f).
c c
(2)
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In the tight-binding or coupled-mode approach, we as-
sume that the fields in a CROW, E(r,#), can be expressed
as a superposition of the localized resonator modes, Eq(r).
Strictly speaking, in the presence of loss or gain, the
structure does not support true eigenmodes [15,16]. How-
ever, we shall assume that the index contrast is suffi-
ciently high and the loss/gain small, so that these “quasi-
modes” are well approximated by an expansion over the
lossless resonator modes. Therefore, for a CROW consist-
ing of N identical resonators, the field is

N
E(r,t) = exp(iot) D, a,()Eg(r —nA2), (3)

n=1

where a,(t) is a time-dependent amplitude coefficient, Z is
the direction of periodicity, and A is the period. a(t) varies
slowly compared to the optical frequency. We note that
the localized resonator modes themselves satisfy the
equation

Q2
VXV XEq(r)= c_gfsz(r)En(r), 4)

where ) is the resonance frequency and en(r) is the di-
electric constant of the single resonator.

Substituting Egs. (3) and (4) into Eq. (2), and applying
the slowly varying envelope approximation, |d, | <2w0|d,],
we drop the d, terms. The slowly varying envelope ap-
proximation is valid only in the case of weak inter-
resonator coupling, meaning that

f d°rEq(r - AD)f(r)Eqg(r) < f d*rEq(r)f(r)Eq(r), (5)

where f(r)=€(r) or |o(r)|. Typically, |o(r)| is much smaller
than e(r). However, at certain material resonances, the
imaginary part of the susceptibility can dominate so that
the resonators can be coupled through o(r) as well.

Subsequently, we integrate the result over [ d3rE;(r
-mAZ), and keep only up to nearest neighbor interaction
terms (i.e., only the n=m, m=+1 terms). We further ap-
proximate that the d,,,; terms are negligible compared to
the d,, term, which is again only valid in the weak cou-
pling regime. To simplify the expressions, we may adopt
the normalization condition [ d3rEf)(r)-eQ(r)EQ(r)zl. At
this point, we arrive at

2iwd,,(1+Aa+io,)=a,[(0® - 0%+’ (Aa+io,)]
+ Ay 0(d +iA0) - Q%D
+a,_q[0X(d +iAo*) - Q%]
—Pm exp(=iwt), (6)

where the various constants are given by

Aa= f drE(r) - [e(r) - eg@)]Eq(r),  (Ta)

b= f d*rEq(r) - eq(r — A2)Eq(r — A2), (7b)
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d= f d*rEq(r) - e(r)Eq(r — A2), (7c)
O = J d’rEq(r) - o(r)Eq(r), (7d)
Ac,, = f d°’rEq(r) - o(r)Eq(r — A2), (7e)
Pm= f d°rEg(r -mA2) - p(r). (79)

To simplify the algebra, we have assumed that e(r)
~e(r+Az), which is true only for infinitely long struc-
tures. The approximation holds the worst for the first and
last resonators in a finite CROW. This means that the
constants in Eq. (7) at the first and last resonators are
slightly different compared to resonators in the center of
the chain.

If Aa, |0,,| <1, and w={, such that both the gain and
the coupling are weak, Eq. (6) becomes

. .(l)O'm *
14, =a,, (w—Q’)+LT + K@i + K Qg

Pm )
- —exp(-iwt), (8)
2w

where Q' =0 -wAa/2, and k=w/2(d-b), or

K= g J d°rE,(r)[e(r + mAZ) - en(r — A2)|Eq(r — A2).

9)

In reaching Eq. (8), we neglected terms that vary with
Aag,, by assuming that the coupling through the real part
of the susceptibility dominates. However, in the case
where Ao, cannot be neglected, the coupling constant
will be a complex number with an imaginary part given
by iwAo,,/2.

Because a CROW consisting of weakly coupled resona-
tors is a narrowband device, if we consider only the noise
in the frequency range of a single propagation band, the
noise term, p,,(¢) can be approximated as a slowly varying
complex amplitude, so it can be expressed as p,,(t)
=2s,,(t)exp(iot) and p,,~-20%s,,(t)exp(iwt). With this fi-
nal approximation, and choosing the phase such that E,
is real and x=«", we finally arrive at the typical time do-
main coupled oscillator equation,

1

Q, = am|:— (wo-Q")+ —} — k(A1 + Appyq) — LS, (E),
i

(10)

where we have defined 1/7;= wo,,/2. The equation ;>0
represents gain, while 7;<0 represents loss.

Throughout our derivation, we have highlighted the ap-
proximations that are embodied by Eq. (10). These ap-
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proximations are justified in the regime of weak inter-
resonator coupling and small values of gain or loss. In the
limit of high gain or high field intensities, light propaga-
tion becomes nonlinear because of saturation. To deal
with large coupling strengths, transfer matrices are an al-
ternative analytical approach [17,18].

3. GAIN ENHANCEMENT AND
BOUNDARY CONDITIONS

In this section, we will use the coupled oscillator equa-
tion, Eq. (10), derived in Section 2 to understand the role
of coupled resonances on the net gain of an amplifying
CROW. We shall neglect the noise contribution here and
examine the steady-state response, so that s,,(£)=0 and
d,=0 in Eq. (10). Our results will show that gain en-
hancement is strongly dependent on the boundary condi-
tions and the excitation of the coupled resonators. We will
examine the following several scenarios illustrated in Fig.
1: (a) infinite structures, (b) finite structures in isolation
of additional dissipative pathways, (c¢) finite structures
with additional dissipation (such as input/output
waveguides), and (d) finite structures driven by input op-
tical fields.

A. Infinitely Long Structures

An infinitely long CROW is schematically depicted in Fig.
1(a). The eigenmodes of infinitely long structures satisfy
Bloch boundary conditions so that a,,,;=a,, exp(-iKA),
where K is the Bloch wave vector. K can be complex and
can be expressed as K=Kp+iK;. Substituting this form of
the solution into Eq. (10), we have the following equations
for the real and imaginary parts of Eq. (10):

(w—=Q'")==2k cos(KrA)cosh(K;A), (11a)

1
— — + 2k sin(KgA)sinh(K;A) = 0. (11b)

T

In the absence of loss or gain, K;=0, thus the group ve-
locity of a lossless and nonamplifying structure, g, is

T

. T
lwa=

Q'+ — LS 0

—1iK 10+ — —1iK
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dw/dK=2kA sin(KzA). However, in general, the band-
structure and, hence the group velocity, can be modified
by gain and loss [19]. Substituting 7, into Eq. (11b) gives

sinh(K;A) = (12)

T; iﬂg ’
As v,— 0, K;— =, meaning that the field is most amplified
(or attenuated) at the band-edges. For small values of
KA, near the band-center, K;A~A/27,0, and scales lin-
early with v,. Therefore, for infinitely long structures, the
gain (loss) of the Bloch modes of the coupled resonators
are enhanced compared to the gain (or loss) of the con-
stituent resonators by a factor of 1/v,. This result agrees
well with conventional arguments in describing band-
edge laser action and gain enhancement in photonic crys-
tals where the analysis often begins with the Bloch modes
of the structures [20-22].

B. Finite Structures

Naturally, infinitely long structures are not realizable in
practice. In this subsection, we shall show that even if the
finite structures contain a very large number of periods,
the modes can behave significantly different compared to
the Bloch modes. In particular, the termination or bound-
ary conditions play perhaps the most important role in
determining the net gain (loss) in the coupled resonator
chains.

The field amplitudes in finite structures can be solved
by expressing Eq. (10) in terms of a matrix equation. For
convenience, we define a=[a; ay --* ay]’. In the following
sections, we shall find the fields of finite CROWs with
various boundary conditions.

1. Clamped Boundaries

First, we examine the modes of a finite CROW with no ex-
ternal coupling to dissipation channels, in addition to the
intrinsic gain/loss rate of 1/7;. This situation is depicted
in Fig. 1(b). In this scenario, because of the finite length of
the CROW, the fields are “clamped” to zero at the bound-
aries, or ap=0 and apn,1=0. The matrix equation that de-
scribes this system is

0 0 0
0 0 0
a. (13)
) 1
-1k Q' +—
T
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(a)

% o,
“() o0
C

Fig. 1. Various configurations of coupled resonators: (a) infi-
nitely long CROWSs, (b) finite CROWSs in isolation, (c¢) finite
CROWSs with out-coupling at the ends, and (d) finite CROWs
with an input optical field with out-coupling at the ends.

00 00
(b)

00-00

~ilSin

The eigenvalues, w,, and the elements of the eigenvec-
tors, a,,, of Eq. (13) are [23]

14 nw
w,=|Q"——|-2kcos , n=1---N, (14a)
T; N+1
nw
a,, =sin| m , m=1---N. (14b)
N+1

From Eq. (14a), the real part of w,, gives the dispersion
relation of the structure as N—«. However, the imagi-
nary part of all the eigenvalues are identical and equal
—i/7;, independent of n7/(N+1). Therefore, regardless of

lwa=

where 1/7,>0 is the additional loss rate to the external
world. In general, the eigenvalues of Eq. (15) are found
numerically. However, we can readily find an explicit ana-
lytical expression using our results from Eq. (14) if 1/7,
can be accounted for perturbatively.

Perturbatively, the first-order correction to Eq. (14a)
due to 1/7, is given by afWan, where a,, is the normalized
eigenvector and W is the perturbation. The resultant ei-
genvalues are

n
w, =0 + 2k cos
N+1

1 2 sin®(na/N + 1)
+i| -—+——F% . (16)
o sin? (m(na/N + 1))

1 1
i +—=— —iK 0
7 Te
1
—iK i+ — - ik
T
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how many resonators are in the chain, all of the modes
experience equal amplification and dissipation rates. Un-
like the Bloch modes in Section 3.A, there is no additional
enhancement of the gain loss that arises from the cou-
pling between the resonators compared to the intrinsic
gain loss of the individual resonators. Physically, this re-
sult is not surprising because these boundary conditions
imply that the standing-wave modes of the finite CROW
are isolated from the external world, so that the fields of
the CROW grow (or decay) at the same rate as its con-
stituent resonators.

2. Free Boundaries
Next, we shall allow for additional dissipation in the
CROW. Most typically, this corresponds to the scenario
where light is coupled out somewhere in the CROW via
waveguides for example. We will now examine the specific
case where this out-coupling occurs at the first and last
elements in the CROW as we show in Fig. 1(c), though our
approach can easily be generalized to outcoupling at other
elements. Because we shall allow for additional dissipa-
tion at the ends of the CROW, the fields are no longer
clamped at the boundaries and are “free.”

For these boundary conditions, we can express the
fields as

0 0 0
0 0 0
a, (15)
1 1
-tk i+ ——-—
Tl Te

Equation (16) shows that 1/7; again does not scale with
n/(N+1), thus there is no gain enhancement that de-
pends on 1/v,. However, the rate of amplification is in-
deed higher at the band-edges (n=0, N) compared to the
band-center, because for 7,>0, the imaginary part of w, is
more negative at the band-edges compared to the band-
center. Nonetheless, this increased gain at the band-edges
is wholly determined by the external coupling.

Figure 2 illustrates this result, where we have the nu-
merically computed eigenvalues of Eq. (15), and the ei-
genvalues described by Eq. (16) for the parameters de-
scribed in the caption. The parameters are normalized to
Q'. The rate of amplification is given by —Im[w,] and is
plotted against Re[w,]-)'. As it is evidenced by the fig-
ure, the frequencies near the band-edge experience an in-
creased rate of amplification proportional to the out-
coupling rate.
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Physically, we can interpret the 1/7, term in Eq. (16) as
the effective rates of dissipation or out-coupling of the
various CROW modes described by Eq. (14). This effective
rate is smallest at the band-edges and largest at the
band-center as though the termination is lower loss (more
“reflective”) for the lower v, modes [24].

3. Forced Coupled Oscillators
Thus far, we have only examined eigenmodes of infinite
and finite CROWSs. The eigenmodes are useful when an

1 1 )
0 +——-— —iK 0 0
7 Te
. 1 .
- ik 10+ — - Ik 0
T

iwa =

Therefore, the amplitudes in the resonators are given by
a=—iuiol-M) s, =—-iuTs,,. (18)

The transmitted amplitude, S, is proportional to the am-
plitude in the last resonator, which is given by ay
=—iMTN,1Sin~

The constant of proportionality between S; and ay is
determined from the conservation of energy in the ab-
sence of gain and loss. For example, we can consider a
single resonator where the rates of out-coupling to the in-
put and output waveguides are identical. If the magni-
tude of the field amplitude at the output is equal to the
input on resonance then, from Eq. (10),

x107°

Perturbative Result
0r %X Numerical Calculations ]

-Imfo]

-18 L L L L L L
-02 -0.15 -0.1 -0.05 0 005 01 015 02

Relx ] -

Fig. 2. (Color online) -Im[w, ] versus Re[w,]-Q’ for the CROW
with out-coupling at two ends. 7,=10% 7,=5Xx10% «k=0.1, and N
=20.
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input optical wave indeed excites superpositions of these
modes. In this section, we examine the transmission of a
CROW amplifier where the first resonator is excited by an
input wave, and the output is detected at the last resona-
tor as in Fig. 1(d).

To model the presence of an input source, we add a
driving term to the first resonator, —iuS;,, where u de-
scribes the strength of the coupling between the input
wave and the resonator. Thus, the matrix equation
becomes

0 0
Sin
0 0 0
a-ipu =Ma —ius;,. (A7)
0
) 1 1
-tk Q)+ ——-—
T; Te
I
2
——al—i,uSin=0. (19)
Te

The factor of 2 is due to out-coupling to both input and
output waveguides. If |S,>=|S;,?, as in the case of ring
resonators in the add-drop configuration [13], then |S,?
=|2/(7,m)a;|?> and |k|=|2/(7,u)| is the fraction of field am-
plitude inside the resonator leaked out to the output
waveguide. For standing-wave resonators, |S,|? is divided
into four output channels (two at the start of the CROW
and two at the end) [18]. Therefore, generalizing to a
CROW using Eq. (18), the transmitted amplitude is

2 2

2
—Tha

Te

S,

3 (20)

in

The matrix element, Ty 1, is explicitly given by [25]

T K sin(¢)
N1T 32 sin((N - 1)) + 2/7, sinNe) — i sin(N + 1))’
(21a)
(0-0') i
COS(¢)=—2—K—E, (21Db)

for 7;# 0. At the band edges, cos(¢y,)=+1-i/(2«kT;), and at
the band-center, cos(¢y.)=—i/(2«7;). This equation can be
solved numerically. However, from Eqgs. (20) and (21), we
see that the transmitted amplitude depends solely on «7,
at a fixed ¢. Thus, the net gain or loss experienced by the
transmitted field can be changed via 7,.

Figure 3 shows the numerically calculated transmis-
sion amplitude using Eq. (21) for various values of 1/7,.
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Fig. 3. (Color online) The transmittance, |S,/S;,|?, of CROWs for
various values of 7,. The other parameters are 7,=5X10% «
=0.1, and N=10. Only the portion of |S,/S;,[>?<2 is shown for
comparison.

The other parameters for the calculations are described in
the figure caption. As evidenced by the plot, the net gain
of a wave and its transmittance is controlled by 7,. Natu-
rally, the loss and gain through a finite CROW can also be
controlled by 7; for a fixed 7, [26].

Although Eq. (21) should in general be solved numeri-
cally, we can easily find some approximate results in the
case of loss, 7;<0, for which the equation does not possess
any poles. In the regime where 1/(x|7|)<1 and
N/(2k|7;|)> 1, after some algebra, the transmitted ampli-
tude at the band-center is approximately given by

N
S; 4e2iy;
—| =—— 7;<0. (22)
Sinlp U(k7)+2+kT,

Equation (22) gives the transmittance with loss and is in
agreement with the heuristic argument presented in Ref.

—— Approximation
0.8’ X Exact Solution |

‘10 20 30 40 50 60 70 80 90 100
N
Fig. 4. (Color online) The exact solution of the transmittance
from Eq. (21) and the approximation given by Eq. (22) as a func-
tion of the number of resonators (V) at the band-center frequency
with  optical loss. The other parameters are 7
=-5X%103, k=0.01, 7,=1/x=100.
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[10] when k=1/7,. Figure 4 shows the transmittance as a
function of the number of resonators at the band-center
frequency, =)', computed using Eqgs. (21) and (22). The
plot shows that Eq. (22) is an excellent approximation to
Eqgs. (21).

4. SPONTANEOUS EMISSION NOISE

In optically amplifying devices, the effect of noise from
the spontaneous emission, which can obscure the signal is
as important as the magnitude of the transmission. Using
the formalism we developed in Section 2, we can explicitly
examine the effect of spontaneous emission in a CROW.
We will make frequent use of the Fourier transform in
this section, which we define as

fit)= f f(@)exp(iat)dd, (23a)

- 1 ("
fl®) = 2—f f(t)exp(-iwt)ds. (23b)
7T -

We begin in the tight-binding picture with Eq. (10).
Spontaneous emission causes small fluctuations in the po-
larization density in the medium, and is the basis of s,,(¢).
From Eq. (10), we can see that the spontaneous emission
is manifested as a small amplitude input at each resona-
tor, which can then propagate and be amplified in the
CROW. A simple way to analyze the noise is to work in the
frequency domain so that we will have a linear set of
equations. Taking the Fourier transform of Eq. (10), we
have

1
i@, = am{- iA + —} = ik(@pypy + Gy ) — 05, (24)

T

where @,,, @,,.1, S,, are the Fourier amplitudes of a,,, s,,,
and a,,,1 respectively, @ is a frequency that is much lower
than the optical frequency, and A=w-()’'. Equation (24)
can now be solved as a matrix equation to find @,, pro-
vided that §,, is known.

A. Normalization of s,,(®)

The normalization of 5, is related to the amount of spon-
taneous emission. We can readily determine §,, of each
resonator by assuming there is no additional input wave,
and taking «=0. For clarity, we separate the contributions
of the gain/absorption (due to induced transitions) and
the intrinsic loss of the resonator:

Vr=11,-Um, (25)

where 1/7, gives the amplification/absorption rate of the
active medium, and 1/7; is the intrinsic loss rate. The
fraction 1/7, depends on the inversion of the material and
can be negative or positive depending on the pumping.
The fraction 1/7 is a positive quantity.
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At the material transparency, 1/7,=0, the spontane-
ously emitted wave, @,,, at the resonant frequency is

1
6, =~ s =~ 10 (26)
!

Sp»

and its magnitude is
2

a (27)

~ 2 < |2
=——5IS .
| sp,m| 5)2+ 1/7%| m|

The instantaneous energy of the spontaneous emission
is
Usp,m(t) = |asp,m(t)|2 f dBrEOGQ(r)‘EQ(r)F = |asp,m(t)|2V,

(28)

where V=g¢)[d’ren(r)|Eqg(r)]>. Therefore, from the
Weiner—Khintchine theorem, the average energy is

1 T/2
(Uyp) = lim — f AU, ()

T—ed J_1/2

T
=lim——

T

daldg, (@), (29)

where T is interpreted as the measurement integration
time [23]. However, the spontaneous emission power into
an ideal single uncoupled resonator is Pg,, =R, ,,i{},
where R, ,, is the rate of spontaneous emission. R, ,, is a
function of the pump rate and can be modified compared
to bulk dielectrics by the Purcell factor [15]. As the cou-
pling to its neighbors increases, Ry, ,, of a single cavity
will be modified. For simplicity, let us assume that the
resonators are sufficiently weakly coupled so that R, ,

11 .
—(@+AN)+—-— —iKk 0 0
7 Te
. 1 .
—1lK —i(@+A)+— -ik 0
T

ol
1l
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does not change appreciably in the coupled resonator
chain. Since the spontaneous emission dissipates from the
resonator at a rate of 2/,

Psp,mTl Rsp,mﬁQTl

<Usp,m> = 9 = 9 . (30)

Therefore, using Eqgs. (27), (29), and (30), as 1/7,—0 (.e.,
small values of intrinsic loss), we arrive at the normaliza-
tion condition,

5.(0)* AR, .
T 472V’

(31)

m

T—o0 T

where we have used the identity lim,_ e/ (x?+ €)= 7d(x).
It is important to note that R, ,,, 7, and 7, are not inde-
pendent of each other, and are related through the cavity
losses and the carrier densities. In Subsection 4.B, we will
use the result in Eq. (31) to derive the signal-to-noise ra-
tio in active CROWs.

B. Signal-to-Noise Ratio
An important metric of propagating optical signals in any
amplifying structure with gain is the signal-to-noise ratio
(SNR). SNRs in nonresonant and Fabry—Perot amplifiers,
as well as noise in multielement lasers have been studied
[16,23,27-29]. Here, we use our tight-binding formalism
to derive expressions for the SNR of a CROW amplifier. In
particular, we will focus on the case described in Subsec-
tion 3.B.3 where the CROW is excited by an input wave at
the first resonator, and the signal is detected at the out-
put at the last resonator. Our approach can be easily ex-
tended to other excitation conditions and boundary condi-
tions.

We begin with the matrix form of Eq. (24) with an input
in the first resonator, so that

0 0 o
§1 gin
0 0 §2 0
a-iw|l - |-ig| . |=0,
5 0
_ 11 SR R
—1iK —i(@+A)+—-—
T Te

(32a)

— 0P B - iuP 15, (32b)
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where P is the N XN matrix in Eq. (32a), s are the spon-
taneous emission noise sources, and §;, is the input sig-

nal. For an input of the form §;,=[S;, 0 0 --- 0]%, the am-
plitude at the Nth resonator is
N
lan(®)[? = 1Py 1Sinl?+ wZE |PN,/ a
N
wu(P3H) 2 PNES, +c.c. (33)

Equation (33) gives the total magnitude of the field at
the Nth resonator. We note that the first term on the right
side is the signal, the second term is the spontaneous
emission, and the last term corresponds to the beating be-
tween the input and the spontaneous emission. For
strong input powers and weak amplification, the beat
noise dominates. We shall proceed to analyze this ideal
case where the spontaneous emission signal beat noise is
dominant. The other noise term can be dealt with easily
in a similar fashion.

The noise current from the beating is given by

N
ip(@)=- ﬂwM(PN 1) 2 PN,]SS +c.c., (34)

where 7 is the responsivity of the detector and accounts
for the normalization of a,. The mean electrical noise
power is given by (ii), which using the Weiner—
Khintchine theorem is

1 B N .
(i) = P lim 7 J d@20*uW* PS5 l* 2 Py(PyL) 33)

T—o Jk=1
N
+ 0’ u?2 Re{(P;V{l)WSj,% > PRLPRYER |- (35)
Jik=1

Since the spontaneous emission noise is not correlated
in amplitude and phase, [ d6§;(6)5m(5))0051’m, where §;,,
=0 for [ #m and 1 for [=m. Therefore, Eq. (35) simplifies
to

1 N
(i2) = nzlim; J d@2w M2|PN13m|2E IPy5/1% (36)

T—os

If we only consider a narrow-band signal and noise con-
tributions within this narrow bandwidth, the integral in
the above equation can be approximated by the product of
the integrand at ®=0 and the bandwidth A®. Therefore

T

1 _ N
(i2) =~ ﬁlimilhzﬂzlpfvﬂsmlzg Py.E A
Jj=1 @=0

N
= 0 1*(Ty 15;,(0)? 2 |TNJ|2

o
A~, 37
202VQ @7
where we have substituted the result from Eq. (31) and
the matrix T was defined in Subsection 3.B.3.

To find the SNR, we first note that the signal is given
by
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2
<112n> = 411111— dw‘PN lsm|
Teo T
2 _
=~ 772M4lim?|TN,1Sin(O)|4Aa)a (38)
T

where the second part of the equation is with the narrow-
band approximation. Therefore if the resonators are
identical so that R, j=R;,, the SNR is
AT VO Ty o 15, (0)?
SNR = & - lim T (39)
2 2 Tow
fw Rspzjzl Ty 7

limy_..|S;,(@)2/T is the power spectral density of the in-
put, so the rightmost term in the above equation refers to
the input power at w.

Physically, Eq. (39) states that the beat noise at any
frequency at the output is simply the sum of the transmit-
ted magnitudes of spontaneous emission originating from
each resonator in the CROW. The key difference between
a CROW and a nonresonant amplifier is that the SNR can
vary dramatically at different signal frequencies because
T can be a strong function of the wavelength. To have an
acceptable SNR, the matrix elements, [Ty |%, should have
a small magnitude. This can be achieved if resonators are
not high loss to begin with so that the gain can be kept
weak. A reduced pump rate also reduces Ry,

Figure 5 shows the normalized SNR factor, G
=Rsp0|TN,1|2/RSPEJ»A£1|TNJ|2 as a function of wavelength for
various values of 7,. R, is the spontaneous emission rate
when 7,=0 or 7,=7. For weak, unsaturated gain,
R0/ Ry, = 74/ 749, since both R, and 1/7, vary linearly
with the pump rate. 7; is taken to be a constant at 10%. As
evidenced by the figure, a higher gain leads to a reduction
in the SNR. The SNR is also highest at the band-center
and lowest at the band edges.

C. Noise Figure

A second parameter that characterizes the performance of
an amplifier is the noise figure. The noise figure (NF) is
defined as

0.1

7, = 9500|
' - - -17,=8500
0.08} ¥ NN | 4= 7500
0.07 3 i

0.09+

0.06
G 0.05F
0.04r
0.03r
0.02r

0.01r

0 . . ;
-0.03 -0.02 -0.01 0 0.01 0.02 0.03
®-Q
Fig. 5. (Color online) The normalized SNR factor, G, as a func-
tion of wavelength at various gain levels. For the calculations,
7=10%, k=0.01, 7,=100, N=10.
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SNR;,
" SNR,,,’

where SNR;, is the SNR at the input of the amplifier and
SNR,,; is the SNR at the output. To determine the NF, we
simply need to define our input as S;,=S;,,+Ss where
8S;ig is the field amplitude of the signal and S;is the field
amplitude of the noise.

Substituting this form of the input into Eq. (38), and
assuming a narrow bandwidth signal, we find

NF

(40)

1S,i(0)[?
SNR;, = —. (41)
2|S50))
At the output, using Eq. (39), we have
4V TP [S,(0)2 +[S40)
SNR,,; = 5 - lim T )
ﬁszszjzl |TN,i|2 T—»
(42)

Therefore, the noise figure, in the limit \§5(0)|2
< |Ssig(0)|27 is
N
ﬁszspEJ-:l |TNJ|2 T

NF = 3 3 5~ - lim— .
47 VQu* Ty 4| 7-=9|S (0)[2

(43)

In the scenario in which the noise is at the standard
quantum limit (i.e., shot noise), S5 is the due to the
vacuum fluctuations of the electric field. The quantization

of the field gives
. fiw
Si(t) = VA(t)’ (44)

where S(t) is now an operator and A(t) is the photon an-
nihilation operator [30]. The expectation value is
1 At 5 ot hw
—(S\Ss+S;8H)=—, 45
2( 2555555 =50 (45)

since the noise arises from the vacuum, |0), photon state.

On the other hand, the classical equivalence is

2 _ 2 _

(8% =lim— | da|Ss@)? = lim—|S0)?A®. (46)
T T Toe T

Therefore, equating Eq. (45) with Eq. (46), we have

IS 02 e
T 4nVAG'

im (47)

T T

Taking Aw=2«, the bandwidth of a CROW band, and
=(), the noise figure is

N
Id%spzjzl |TN,/'|2
NF=—7————. (48)
L M2|TN,1|2

Figure 6 shows an estimate of the noise figure for a
loss-compensated CROW where 1/7,=0. R, is given by
Ry,=NyVqo/ts,, where Ny is the population density of the
excited state of the gain medium, V,,, is the active vol-
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Fig. 6. (Color online) The NF as a function of the number of
resonators (V) in an active CROW at the band-center frequency
where the losses are exactly compensated. The parameters for
the calculations are in the text.

ume of the resonator, and ¢, is the spontaneous emission
lifetime. Taking N,= 10lg em™3, V=10 um X 10 um
X 50 nm, and t,,=1ns, we compute Eq. (48) at the band-
center frequency for various values of inter-resonator cou-
pling coefficients at a fixed input/output coupling constant
of 7,=1000 and w=0.045. The noise figure depends
strongly on the input/output coupling as well as the inter-
resonator coupling. Nonetheless, using these rough esti-
mates, we see that loss-compensated CROWs of the order
of tens of resonators long can maintain noise figures of
less than five.

5. DISCUSSION

We have elucidated the effect of the boundary conditions
on the net gain in a CROW and the spontaneous emission
on the SNR. Our results imply that the transmission
spectra, gain/loss, and noise of CROWs depend signifi-
cantly on the exact configuration of the CROWs and how
they are excited. The dispersion relation of an infinite
structure, in the presence of gain (or loss), does not nec-
essarily model a periodic structure of finite length regard-
less of the number of periods that constitute the device.
While the real part of the phase accumulated in a finite
CROW can be similar to an infinite structure, the imagi-
nary part of the phase (loss/gain) can differ significantly.

Our results show that gain/loss enhancement in
CROWs does not strictly depend on U, but can instead be
understood as the combined effect of the gain/loss of the
individual cavities and the resonance due to the finite
length of the structure. Since the effective reflectivity of a
semi-infinite CROW is highest at the band-edges [24], the
“large” resonator set up in the direction of periodicity con-
sisting of all the cavities in the CROW is lowest loss for
the band-edge or low U, modes. In the same way that
transmission spectrum ripples can be minimized by modi-
fying only the input/output coupling coefficients in a
CROW [24], the gain (and loss) can also be controlled. The
dependence of optical loss on the structural termination
has been observed in photonic crystals [31], and the de-
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pendence of the laser frequencies and cleaved facets have
been analyzed in distributed feedback lasers [32]. The ef-
fect of the termination on the optical properties of periodic
structures should be explored in greater detail.

Our calculations of active CROWs with an input at the
first resonator and output show that the frequencies near
the band-center have the highest SNR. Fortuitously, the
band-center is also the region of lowest group velocity dis-
persion, and its dispersive properties are the most robust
to disorder in the coupling constants [33,34]. Naturally
then, the most ideal frequencies for the propagation of op-
tical signals with small , should be those near the
CROW band-center. In contrast to other types of periodic
structures, such as gratings and photonic crystals, the
small group velocities at the band-edges are accompanied
by a large group velocity dispersion. The value of the SNR
is also unclear at those frequencies.

Although we have not formulated a complete picture of
amplification in CROWS, which would require additional
equations to describe the carrier densities and a quantum
mechanical treatment of the transition rates (to derive
the gain/loss, noise), we briefly note the impact of v, on
the induced optical transition rates and the gain. For a
simple two-level atom model, the induced transition rate,
W,, is proportional to the optical intensity [30], which is
higher for reduced group velocities. To show this, we ob-
serve that, for a monochromatic wave in a homogeneous
medium, its intensity is

cnppho
I(w) = , 49
(w) - (49)
where 7, is then the number of photons in the mode os-

cillating at w, V is the modal volume, and » is the effective
index of the medium. However,

np;, = pw)do = p(K)dK, (50)

where p(w) is the photon density of states in frequency
and p(K) is the density of states in wavenumber. Because
vg=dw/dK and p(K)=NA/2m [34], substituting into Eq.
(50), we have

NA bw

" 27 vy(w)

Tph . (51)

Thus, a small group velocity leads to a higher stimulated
emission rate. However, the optical gain does not strictly
depend on W;. Rather, the optical amplification rate is the
fractional increase in the intensity of a wave per unit
time, i.e., I/I:ﬂph/nph [30]. Since 7,y is also proportional
to W;, the 1/v, contribution cancels. This implies that al-
though W; scales with 1/v,, the gain does not necessarily.
In practice, the gain may also be lower for higher inten-
sity modes because of saturation. Thus, in CROW lasers,
the lowest v, or band-edge modes need not be the first to
oscillate nor does it have to oscillate at all.

6. CONCLUSION

In summary, we have presented a derivation of the time
domain tight-binding equations describing the modes and
wave propagation in CROWs. Only in the limit of weak
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coupling and weak gain does the tight-binding equation
resemble the simple coupled oscillator equations com-
monly found in literature. Using this formalism, we find
that the termination and excitation of a CROW has a pro-
found impact on the net gain of an optical wave inside the
structure. A finite CROW can have significantly different
amplification and loss properties compared to an infi-
nitely long chain of resonators. Finally, we have derived
the SNR and the noise figure of amplifying CROWSs using
the tight-binding approach.
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