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Active coupled-resonator optical waveguides.
I. Gain enhancement and noise
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We use a tight-binding formalism in the time domain to analyze the effect of resonant gain enhancement and
spontaneous emission noise in amplifying coupled-resonator optical waveguides (CROWs). We find the net am-
plification of a wave propagating in a CROW does not always vary with the group velocity, and depends
strongly on the termination and excitation of these structures. The signal-to-noise ratio and noise figure of
CROW amplifiers are derived in the tight-binding formalism as well. The physical interpretations and practi-
cal consequences of the theoretical results are discussed. © 2007 Optical Society of America
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. INTRODUCTION
coupled-resonator optical waveguide (CROW) is a peri-

dic array of resonators in which light propagates due to
he weak coupling between its nearest neighbors [1,2]. An
nteresting property of CROWs is that light can propagate
t a significantly reduced group velocity, dictated by the
nterresonator coupling, with no group velocity dispersion
t the band-center [3]. As fabrication technologies im-
rove, very high-order, even on the order of a hundred,
oupled resonators are now achievable [4–9].

One of the important challenges that remains is to
vercome the optical loss in these structures. Intuitively,
he loss accumulated in these devices can scale with the
umber of resonators in the structures and the time delay
10] (we shall show in this paper that this is not always
he case). Therefore, to compensate for the accumulated
osses, an amplifying section that is placed after a CROW

ay have to be long, perhaps much longer than the
ROW itself. Thus, to avoid additional device footprint, it
ould be advantageous to continuously amplify a wave
ropagating in an active CROW.
In this paper and the companion paper [11], we shall

nvestigate theoretically and experimentally active, am-
lifying CROWs. This paper will examine theoretically
he effect of resonant gain enhancement and noise. Using
tight-binding analysis, we will show that for real values

f the coupling constant, the net gain of a wave in a finite-
ength CROW does not necessarily depend only on its
roup velocity, but is also strongly affected by the excita-
ion and termination of the CROW. These results can be
pplied to losses as well, though optical gain makes laser
scillation possible and must be considered with more
are. Using the same formalism, we will find the expres-
ion for the noise caused by spontaneous emission. The
easurements of amplifying CROWs in the form of

nP–InGaAsP Fabry–Perot resonator arrays are dis-
ussed in [11].
0740-3224/07/092378-11/$15.00 © 2
. TIME DOMAIN TIGHT-BINDING
QUATIONS
o provide a generalized approach to analyze the ampli-
ying and noise properties of CROWs, we shall use a time
omain tight-binding or coupled-mode formalism. Time
omain coupled-mode equations are commonly used to
nalyze coupled resonators [12–14]. In this section, we
hall outline the derivation of these time domain coupled-
ode or tight-binding equations from Maxwell’s equa-

ions. The derivation will make the assumptions that are
ade in obtaining the simple coupled oscillator equations

ound in the literature explicit [12–14].
To analyze gain/loss as well as noise, we first define the

olarization density of the structure as

P�r,t� = �0��r�E + �0p�r,t�, �1�

here ��r� is the susceptibility and p�r , t� is the small
mplitude fluctuation of P�r , t� which we will use later in
ur analysis of noise. Generally speaking, in active struc-
ures, the susceptibility is a function of time, since the
arrier or population densities are modified by the optical
eld. We shall simplify the analysis to a quasi-static pic-
ure where the optical signal varies on a much longer
ime scale than the carrier dynamics, so that the gain and
oss can be taken as constants. Furthermore, in the re-
ime of small values of gain, we can neglect nonlinearities
ue to saturation so that ��r� is linear and can be ex-
ressed as ��r�=��r�+ i��r�. The variable ��r� is the di-
lectric profile of the structure, and ��r� accounts for the
ain or loss depending on its sign (positive for gain and
egative for loss). Substituting the polarization density

nto Maxwell’s equations, we arrive at

� � � � E�r,t� +
1

c2 ���r� + i��r��Ë�r,t� = −
1

c2 p̈�r,t�.

�2�
007 Optical Society of America
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In the tight-binding or coupled-mode approach, we as-
ume that the fields in a CROW, E�r , t�, can be expressed
s a superposition of the localized resonator modes, E��r�.
trictly speaking, in the presence of loss or gain, the
tructure does not support true eigenmodes [15,16]. How-
ver, we shall assume that the index contrast is suffi-
iently high and the loss/gain small, so that these “quasi-
odes” are well approximated by an expansion over the

ossless resonator modes. Therefore, for a CROW consist-
ng of N identical resonators, the field is

E�r,t� = exp�i�t��
n=1

N

an�t�E��r − n�ẑ�, �3�

here an�t� is a time-dependent amplitude coefficient, ẑ is
he direction of periodicity, and � is the period. a�t� varies
lowly compared to the optical frequency. We note that
he localized resonator modes themselves satisfy the
quation

� � � � E��r� =
�2

c2 ���r�E��r�, �4�

here � is the resonance frequency and ���r� is the di-
lectric constant of the single resonator.

Substituting Eqs. (3) and (4) into Eq. (2), and applying
he slowly varying envelope approximation, �än � �2� � ȧn�,
e drop the än terms. The slowly varying envelope ap-
roximation is valid only in the case of weak inter-
esonator coupling, meaning that

� d3rE�
* �r − �ẑ�f�r�E��r� �� d3rE�

* �r�f�r�E��r�, �5�

here f�r�=��r� or ���r��. Typically, ���r�� is much smaller
han ��r�. However, at certain material resonances, the
maginary part of the susceptibility can dominate so that
he resonators can be coupled through ��r� as well.

Subsequently, we integrate the result over �d3rE�
* �r

m�ẑ�, and keep only up to nearest neighbor interaction
erms (i.e., only the n=m, m±1 terms). We further ap-
roximate that the ȧm±1 terms are negligible compared to
he ȧm term, which is again only valid in the weak cou-
ling regime. To simplify the expressions, we may adopt
he normalization condition �d3rE�

* �r� ·���r�E��r�=1. At
his point, we arrive at

2i�ȧm�1 + 	
 + i�m� = am���2 − �2� + �2�	
 + i�m��

+ am+1��2�d + i	�� − �2b�

+ am−1��2�d* + i	� * � − �2b*�

− p̈m exp�− i�t�, �6�

here the various constants are given by

	
 =� d3rE�
* �r� · ���r� − ���r��E��r�, �7a�

b =� d3rE�
* �r� · ���r − �ẑ�E��r − �ẑ�, �7b�
d =� d3rE�
* �r� · ��r�E��r − �ẑ�, �7c�

�m =� d3rE�
* �r� · ��r�E��r�, �7d�

	�m =� d3rE�
* �r� · ��r�E��r − �ẑ�, �7e�

pm =� d3rE�
* �r − m�ẑ� · p�r�. �7f�

o simplify the algebra, we have assumed that ��r�
��r±�ẑ�, which is true only for infinitely long struc-

ures. The approximation holds the worst for the first and
ast resonators in a finite CROW. This means that the
onstants in Eq. (7) at the first and last resonators are
lightly different compared to resonators in the center of
he chain.

If 	
, ��m � �1, and �	�, such that both the gain and
he coupling are weak, Eq. (6) becomes

iȧm = am
�� − ��� + i
��m

2 � + �am+1 + �*am−1

−
p̈m

2�
exp�− i�t�, �8�

here ��=�−�	
 /2, and �=� /2�d−b�, or

� =
�

2 � d3rE�
* �r����r + m�ẑ� − ���r − �ẑ��E��r − �ẑ�.

�9�

n reaching Eq. (8), we neglected terms that vary with
�m by assuming that the coupling through the real part
f the susceptibility dominates. However, in the case
here 	�m cannot be neglected, the coupling constant
ill be a complex number with an imaginary part given
y i�	�m /2.
Because a CROW consisting of weakly coupled resona-

ors is a narrowband device, if we consider only the noise
n the frequency range of a single propagation band, the
oise term, pm�t� can be approximated as a slowly varying
omplex amplitude, so it can be expressed as pm�t�
2sm�t�exp�i�t� and p̈m	−2�2sm�t�exp�i�t�. With this fi-
al approximation, and choosing the phase such that E�

s real and �=�*, we finally arrive at the typical time do-
ain coupled oscillator equation,

ȧm = am
− i�� − ��� +
1

�i
� − i��am+1 + am−1� − i�sm�t�,

�10�

here we have defined 1/�i���m /2. The equation �i
0
epresents gain, while �i�0 represents loss.

Throughout our derivation, we have highlighted the ap-
roximations that are embodied by Eq. (10). These ap-



p
r
l
t
w
t

3
B
I
t
o
C
e
a
h
t
e
1
o
w
w
t

A
A
1
B
w
c
t
f

l

d
s
b

A
(
K
e
g
a
s
w
e
t
o

B
N
p
fi
t
t
a
d
c

b
c
s
v

1
F
t
i
i
t
a
s

2380 J. Opt. Soc. Am. B/Vol. 24, No. 9 /September 2007 J. K. S. Poon and A. Yariv
roximations are justified in the regime of weak inter-
esonator coupling and small values of gain or loss. In the
imit of high gain or high field intensities, light propaga-
ion becomes nonlinear because of saturation. To deal
ith large coupling strengths, transfer matrices are an al-

ernative analytical approach [17,18].

. GAIN ENHANCEMENT AND
OUNDARY CONDITIONS

n this section, we will use the coupled oscillator equa-
ion, Eq. (10), derived in Section 2 to understand the role
f coupled resonances on the net gain of an amplifying
ROW. We shall neglect the noise contribution here and
xamine the steady-state response, so that sm�t�=0 and

˙ m=0 in Eq. (10). Our results will show that gain en-
ancement is strongly dependent on the boundary condi-
ions and the excitation of the coupled resonators. We will
xamine the following several scenarios illustrated in Fig.
: (a) infinite structures, (b) finite structures in isolation
f additional dissipative pathways, (c) finite structures
ith additional dissipation (such as input/output
aveguides), and (d) finite structures driven by input op-

ical fields.

. Infinitely Long Structures
n infinitely long CROW is schematically depicted in Fig.
(a). The eigenmodes of infinitely long structures satisfy
loch boundary conditions so that am+1=am exp�−iK��,
here K is the Bloch wave vector. K can be complex and

an be expressed as K=KR+ iKI. Substituting this form of
he solution into Eq. (10), we have the following equations
or the real and imaginary parts of Eq. (10):

�� − ��� = − 2� cos�KR��cosh�KI��, �11a�

−
1

�i
+ 2� sin�KR��sinh�KI�� = 0. �11b�

In the absence of loss or gain, KI=0, thus the group ve-
ocity of a lossless and nonamplifying structure, v̄ , is
g
� /dK=2�� sin�KR��. However, in general, the band-
tructure and, hence the group velocity, can be modified
y gain and loss [19]. Substituting v̄g into Eq. (11b) gives

sinh�KI�� =
�

2�iv̄g
. �12�

s v̄g→0, KI→�, meaning that the field is most amplified
or attenuated) at the band-edges. For small values of

I�, near the band-center, KI�	� /2�iv̄g and scales lin-
arly with v̄g. Therefore, for infinitely long structures, the
ain (loss) of the Bloch modes of the coupled resonators
re enhanced compared to the gain (or loss) of the con-
tituent resonators by a factor of 1/ v̄g. This result agrees
ell with conventional arguments in describing band-
dge laser action and gain enhancement in photonic crys-
als where the analysis often begins with the Bloch modes
f the structures [20–22].

. Finite Structures
aturally, infinitely long structures are not realizable in
ractice. In this subsection, we shall show that even if the
nite structures contain a very large number of periods,
he modes can behave significantly different compared to
he Bloch modes. In particular, the termination or bound-
ry conditions play perhaps the most important role in
etermining the net gain (loss) in the coupled resonator
hains.

The field amplitudes in finite structures can be solved
y expressing Eq. (10) in terms of a matrix equation. For
onvenience, we define a��a1 a2 ¯ aN�T. In the following
ections, we shall find the fields of finite CROWs with
arious boundary conditions.

. Clamped Boundaries
irst, we examine the modes of a finite CROW with no ex-

ernal coupling to dissipation channels, in addition to the
ntrinsic gain/loss rate of 1/�i. This situation is depicted
n Fig. 1(b). In this scenario, because of the finite length of
he CROW, the fields are “clamped” to zero at the bound-
ries, or a0=0 and aN+1=0. The matrix equation that de-
cribes this system is
i�a = 

i�� +

1

�i

− i� 0 0 ¯ 0 0

− i� i�� +
1

�i

− i� 0 ¯ 0 0

. . . . . . .

. . . . . . .

. . . . . − i� i�� +
1

�i

�a. �13�
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he eigenvalues, �n, and the elements of the eigenvec-
ors, am, of Eq. (13) are [23]

�n = ��� −
i

�i
� − 2� cos� n�

N + 1�, n = 1 ¯ N, �14a�

am = sin�m
n�

N + 1�, m = 1 ¯ N. �14b�

From Eq. (14a), the real part of �n gives the dispersion
elation of the structure as N→�. However, the imagi-
ary part of all the eigenvalues are identical and equal

ig. 1. Various configurations of coupled resonators: (a) infi-
itely long CROWs, (b) finite CROWs in isolation, (c) finite
ROWs with out-coupling at the ends, and (d) finite CROWs
ith an input optical field with out-coupling at the ends.
i /�i, independent of n� / �N+1�. Therefore, regardless of fi

n
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m
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ow many resonators are in the chain, all of the modes
xperience equal amplification and dissipation rates. Un-
ike the Bloch modes in Section 3.A, there is no additional
nhancement of the gain loss that arises from the cou-
ling between the resonators compared to the intrinsic
ain loss of the individual resonators. Physically, this re-
ult is not surprising because these boundary conditions
mply that the standing-wave modes of the finite CROW
re isolated from the external world, so that the fields of
he CROW grow (or decay) at the same rate as its con-
tituent resonators.

. Free Boundaries
ext, we shall allow for additional dissipation in the
ROW. Most typically, this corresponds to the scenario
here light is coupled out somewhere in the CROW via
aveguides for example. We will now examine the specific

ase where this out-coupling occurs at the first and last
lements in the CROW as we show in Fig. 1(c), though our
pproach can easily be generalized to outcoupling at other
lements. Because we shall allow for additional dissipa-
ion at the ends of the CROW, the fields are no longer
lamped at the boundaries and are “free.”

For these boundary conditions, we can express the

elds as
i�a = 

i�� +

1

�i
−

1

�e

− i� 0 0 ¯ 0 0

− i� i�� +
1

�i

− i� 0 ¯ 0 0

. . . . . . .

. . . . . . .

. . . . . − i� i�� +
1

�i
−

1

�e

�a, �15�
here 1/�e
0 is the additional loss rate to the external
orld. In general, the eigenvalues of Eq. (15) are found
umerically. However, we can readily find an explicit ana-

ytical expression using our results from Eq. (14) if 1/�e
an be accounted for perturbatively.

Perturbatively, the first-order correction to Eq. (14a)
ue to 1/�e is given by an

TWan, where an is the normalized
igenvector and W is the perturbation. The resultant ei-
envalues are

�n = �� + 2� cos� n�

N + 1�
+ i
−

1

�i
+

2

�e

sin2�n�/N + 1�

�m=1

N
sin2�m�n�/N + 1��� . �16�
Equation (16) shows that 1/�i again does not scale with
/ �N+1�, thus there is no gain enhancement that de-
ends on 1/ v̄g. However, the rate of amplification is in-
eed higher at the band-edges (n	0, N) compared to the
and-center, because for �i
0, the imaginary part of �n is
ore negative at the band-edges compared to the band-

enter. Nonetheless, this increased gain at the band-edges
s wholly determined by the external coupling.

Figure 2 illustrates this result, where we have the nu-
erically computed eigenvalues of Eq. (15), and the ei-

envalues described by Eq. (16) for the parameters de-
cribed in the caption. The parameters are normalized to
�. The rate of amplification is given by −Im��n� and is
lotted against Re��n�−��. As it is evidenced by the fig-
re, the frequencies near the band-edge experience an in-
reased rate of amplification proportional to the out-
oupling rate.
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Physically, we can interpret the 1/�e term in Eq. (16) as
he effective rates of dissipation or out-coupling of the
arious CROW modes described by Eq. (14). This effective
ate is smallest at the band-edges and largest at the
and-center as though the termination is lower loss (more
reflective”) for the lower v̄g modes [24].

. Forced Coupled Oscillators
hus far, we have only examined eigenmodes of infinite

nd finite CROWs. The eigenmodes are useful when an b
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nput optical wave indeed excites superpositions of these
odes. In this section, we examine the transmission of a
ROW amplifier where the first resonator is excited by an

nput wave, and the output is detected at the last resona-
or as in Fig. 1(d).

To model the presence of an input source, we add a
riving term to the first resonator, −i�Sin, where � de-
cribes the strength of the coupling between the input
ave and the resonator. Thus, the matrix equation

ecomes
i�a = 

i�� +

1

�i
−

1

�e

− i� 0 0 ¯ 0 0

− i� i�� +
1

�i

− i� 0 ¯ 0 0

. . . . . . .

. . . . . . .

. . . . . − i� i�� +
1

�i
−

1

�e

�a − i�

Sin

0

.

.

0
� � Ma − i�sin. �17�
herefore, the amplitudes in the resonators are given by

a = − i��i�I − M�−1sin � − i�Tsin. �18�

he transmitted amplitude, St, is proportional to the am-
litude in the last resonator, which is given by aN
−i�TN,1Sin.
The constant of proportionality between St and aN is

etermined from the conservation of energy in the ab-
ence of gain and loss. For example, we can consider a
ingle resonator where the rates of out-coupling to the in-
ut and output waveguides are identical. If the magni-
ude of the field amplitude at the output is equal to the
nput on resonance then, from Eq. (10),

ig. 2. (Color online) −Im��n� versus Re��n�−�� for the CROW
ith out-coupling at two ends. �e=104, �i=5�104, �=0.1, and N
20.
−
2

�e
a1 − i�Sin = 0. �19�

he factor of 2 is due to out-coupling to both input and
utput waveguides. If �St�2= �Sin�2, as in the case of ring
esonators in the add-drop configuration [13], then �St�2

�2/ ��e��a1�2 and ��̄ � = �2/ ��e��� is the fraction of field am-
litude inside the resonator leaked out to the output
aveguide. For standing-wave resonators, �St�2 is divided

nto four output channels (two at the start of the CROW
nd two at the end) [18]. Therefore, generalizing to a
ROW using Eq. (18), the transmitted amplitude is

� St

Sin
�2

= � 2

�e
TN,1�2

. �20�

The matrix element, TN,1, is explicitly given by [25]

TN,1 =
� sin���

i/�e
2 sin��N − 1��� + 2�/�e sin�N�� − i�2 sin��N + 1���

,

�21a�

cos��� = −
�� − ���

2�
−

i

2��i
, �21b�

or �i�0. At the band edges, cos��be�= ±1− i / �2��i�, and at
he band-center, cos��bc�=−i / �2��i�. This equation can be
olved numerically. However, from Eqs. (20) and (21), we
ee that the transmitted amplitude depends solely on ��e
t a fixed �. Thus, the net gain or loss experienced by the
ransmitted field can be changed via �e.

Figure 3 shows the numerically calculated transmis-
ion amplitude using Eq. (21) for various values of 1/� .
e
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he other parameters for the calculations are described in
he figure caption. As evidenced by the plot, the net gain
f a wave and its transmittance is controlled by �e. Natu-
ally, the loss and gain through a finite CROW can also be
ontrolled by �i for a fixed �e [26].

Although Eq. (21) should in general be solved numeri-
ally, we can easily find some approximate results in the
ase of loss, �i�0, for which the equation does not possess
ny poles. In the regime where 1/ �� ��i � ��1 and
/ �2� ��i � ��1, after some algebra, the transmitted ampli-

ude at the band-center is approximately given by

� St

Sin
�

bc

	
4e

N
2��i

1/���e� + 2 + ��e
�i � 0. �22�

quation (22) gives the transmittance with loss and is in
greement with the heuristic argument presented in Ref.

ig. 4. (Color online) The exact solution of the transmittance
rom Eq. (21) and the approximation given by Eq. (22) as a func-
ion of the number of resonators �N� at the band-center frequency
ith optical loss. The other parameters are �i
−5�103, �=0.01, � =1/�=100.

ig. 3. (Color online) The transmittance, �St /Sin�2, of CROWs for
arious values of �e. The other parameters are �i=5�104, �
0.1, and N=10. Only the portion of �St /Sin�2�2 is shown for
omparison.
e

10] when �	1/�e. Figure 4 shows the transmittance as a
unction of the number of resonators at the band-center
requency, �=��, computed using Eqs. (21) and (22). The
lot shows that Eq. (22) is an excellent approximation to
qs. (21).

. SPONTANEOUS EMISSION NOISE
n optically amplifying devices, the effect of noise from
he spontaneous emission, which can obscure the signal is
s important as the magnitude of the transmission. Using
he formalism we developed in Section 2, we can explicitly
xamine the effect of spontaneous emission in a CROW.
e will make frequent use of the Fourier transform in

his section, which we define as

f�t� =�
−�

�

f̃��̃�exp�i�̃t�d�̃, �23a�

f̃��̃� =
1

2�
�

−�

�

f�t�exp�− i�̃t�dt. �23b�

We begin in the tight-binding picture with Eq. (10).
pontaneous emission causes small fluctuations in the po-

arization density in the medium, and is the basis of sm�t�.
rom Eq. (10), we can see that the spontaneous emission

s manifested as a small amplitude input at each resona-
or, which can then propagate and be amplified in the
ROW. A simple way to analyze the noise is to work in the

requency domain so that we will have a linear set of
quations. Taking the Fourier transform of Eq. (10), we
ave

i�̃ãm = ãm
− i	 +
1

�i
� − i��ãm+1 + ãm−1� − i�s̃m, �24�

here ãm, ãm±1, s̃m are the Fourier amplitudes of am, sm,
nd am±1 respectively, �̃ is a frequency that is much lower
han the optical frequency, and 	��−��. Equation (24)
an now be solved as a matrix equation to find ãm pro-
ided that s̃m is known.

. Normalization of s̃m„�̃…

he normalization of s̃m is related to the amount of spon-
aneous emission. We can readily determine s̃m of each
esonator by assuming there is no additional input wave,
nd taking �=0. For clarity, we separate the contributions
f the gain/absorption (due to induced transitions) and
he intrinsic loss of the resonator:

1/�i = 1/�g − 1/�l, �25�

here 1/�g gives the amplification/absorption rate of the
ctive medium, and 1/�l is the intrinsic loss rate. The
raction 1/�g depends on the inversion of the material and
an be negative or positive depending on the pumping.
he fraction 1/� is a positive quantity.
l
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At the material transparency, 1/�g=0, the spontane-
usly emitted wave, ãsp, at the resonant frequency is

i�̃ãsp,m = −
1

�l
ãsp,m − i�s̃m, �26�

nd its magnitude is

�ãsp,m�2 =
�2

�̃2 + 1/�l
2 �s̃m�2. �27�

The instantaneous energy of the spontaneous emission
s

Usp,m�t� = �asp,m�t��2� d3r�0���r��E��r��2 = �asp,m�t��2V,

�28�

here V��0�d3r���r� �E��r��2. Therefore, from the
einer–Khintchine theorem, the average energy is

�Usp,m� = lim
T→�

1

T�−T/2

T/2

dtUsp,m�t�

= lim
T→�

2�V

T � d�̃�ãsp,m��̃��2, �29�

here T is interpreted as the measurement integration
ime [23]. However, the spontaneous emission power into
n ideal single uncoupled resonator is Psp,m	Rsp,m��,
here Rsp,m is the rate of spontaneous emission. Rsp,m is a

unction of the pump rate and can be modified compared
o bulk dielectrics by the Purcell factor [15]. As the cou-
ling to its neighbors increases, Rsp,m of a single cavity
ill be modified. For simplicity, let us assume that the
esonators are sufficiently weakly coupled so that Rsp,m i
oes not change appreciably in the coupled resonator
hain. Since the spontaneous emission dissipates from the
esonator at a rate of 2/�l,

�Usp,m� =
Psp,m�l

2
=

Rsp,m���l

2
. �30�

herefore, using Eqs. (27), (29), and (30), as 1/�l→0 (i.e.,
mall values of intrinsic loss), we arrive at the normaliza-
ion condition,

lim
T→�

�s̃m�0��2

T
=

�Rsp,m

4�2V�
, �31�

here we have used the identity lim�→0� / �x2+�2�=���x�.
t is important to note that Rsp,m, �l, and �g are not inde-
endent of each other, and are related through the cavity
osses and the carrier densities. In Subsection 4.B, we will
se the result in Eq. (31) to derive the signal-to-noise ra-
io in active CROWs.

. Signal-to-Noise Ratio
n important metric of propagating optical signals in any
mplifying structure with gain is the signal-to-noise ratio
SNR). SNRs in nonresonant and Fabry–Perot amplifiers,
s well as noise in multielement lasers have been studied
16,23,27–29]. Here, we use our tight-binding formalism
o derive expressions for the SNR of a CROW amplifier. In
articular, we will focus on the case described in Subsec-
ion 3.B.3 where the CROW is excited by an input wave at
he first resonator, and the signal is detected at the out-
ut at the last resonator. Our approach can be easily ex-
ended to other excitation conditions and boundary condi-
ions.

We begin with the matrix form of Eq. (24) with an input

n the first resonator, so that


− i��̃ + 	� +

1

�i
−

1

�e

− i� 0 0 ¯ 0 0

− i� − i��̃ + 	� +
1

�i

− i� 0 ¯ 0 0

. . . . . . .

. . . . . . .

. . . . . − i� − i��̃ + 	� +
1

�i
−

1

�e

�ã − i�

s̃1

s̃2

.

.

s̃N

� − i�

S̃in

0

.

.

0
� = 0,

�32a�

ã = − i�P−1s̃ − i�P−1s̃in, �32b�
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here P is the N�N matrix in Eq. (32a), s̃ are the spon-
aneous emission noise sources, and s̃in is the input sig-
al. For an input of the form s̃in= �S̃in 0 0 ¯ 0�T, the am-
litude at the Nth resonator is

�aN��̃��2 = �2�PN,1
−1 S̃in�2 + �2�

j=1

N

�PN,j
−1 s̃j�2

− 
���PN,1
−1 �*�

j=1

N

PN,j
−1 s̃jS̃in

* + c.c.� . �33�

Equation (33) gives the total magnitude of the field at
he Nth resonator. We note that the first term on the right
ide is the signal, the second term is the spontaneous
mission, and the last term corresponds to the beating be-
ween the input and the spontaneous emission. For
trong input powers and weak amplification, the beat
oise dominates. We shall proceed to analyze this ideal
ase where the spontaneous emission signal beat noise is
ominant. The other noise term can be dealt with easily
n a similar fashion.

The noise current from the beating is given by

in��̃� = − ����PN,1
−1 �*�

j=1

N

PN,j
−1 s̃jS̃in

* + c.c., �34�

here � is the responsivity of the detector and accounts
or the normalization of an. The mean electrical noise
ower is given by �in

2�, which using the Weiner–
hintchine theorem is

�in
2� = �2lim

T→�

1

T � d�̃2�2�2�PN,1
−1 S̃in�2 �

j,k=1

N

PN,j
−1 �PN,k

−1 �*s̃js̃k
*

+ �2�22 Re
�PN,1
−1 �*2S̃in

*2 �
j,k=1

N

PN,j
−1 PN,k

−1 s̃js̃k� . �35�

Since the spontaneous emission noise is not correlated
n amplitude and phase, �d�̃s̃l

*��̃�s̃m��̃���l,m, where �l,m
0 for l�m and 1 for l=m. Therefore, Eq. (35) simplifies

o

�in
2� = �2lim

T→�

1

T � d�̃2�2�2�PN,1
−1 s̃in�2�

j=1

N

�PN,j
−1 s̃j�2. �36�

f we only consider a narrow-band signal and noise con-
ributions within this narrow bandwidth, the integral in
he above equation can be approximated by the product of
he integrand at �̃=0 and the bandwidth 	�̃. Therefore

�in
2� 	 �2lim

T→�

1

T
2�2�2�PN,1
−1 S̃in�2�

j=1

N

�PN,j
−1 s̃j�2	�̃�

�̃=0

= �2�2�TN,1S̃in�0��2�
j=1

N

�TN,j�2
�Rsp,j

2�2V�
	�̃, �37�

here we have substituted the result from Eq. (31) and
he matrix T was defined in Subsection 3.B.3.

To find the SNR, we first note that the signal is given
y

�iin
2 � = �2�4lim

T→�

2�

T � d�̃�PN,1
−1 S̃in�4

	 �2�4lim
T→�

2�

T
�TN,1S̃in�0��4	�̃, �38�

here the second part of the equation is with the narrow-
and approximation. Therefore, if the resonators are
dentical so that Rsp,j=Rsp, the SNR is

SNR =
4�3V��2�TN,1�2

��2Rsp�j=1

N
�TN,j�2

· lim
T→�

�S̃in�0��2

T
. �39�

imT→� � S̃in��̃��2 /T is the power spectral density of the in-
ut, so the rightmost term in the above equation refers to
he input power at �.

Physically, Eq. (39) states that the beat noise at any
requency at the output is simply the sum of the transmit-
ed magnitudes of spontaneous emission originating from
ach resonator in the CROW. The key difference between
CROW and a nonresonant amplifier is that the SNR can

ary dramatically at different signal frequencies because
can be a strong function of the wavelength. To have an

cceptable SNR, the matrix elements, �TN,j�2, should have
small magnitude. This can be achieved if resonators are
ot high loss to begin with so that the gain can be kept
eak. A reduced pump rate also reduces Rsp.
Figure 5 shows the normalized SNR factor, G

Rsp0 �TN,1�2 /Rsp�j=1
N �TN,j�2 as a function of wavelength for

arious values of �g. Rsp0 is the spontaneous emission rate
hen �i=0 or �g0=�l. For weak, unsaturated gain,
sp0 /Rsp	�g /�g0, since both Rsp and 1/�g vary linearly
ith the pump rate. �l is taken to be a constant at 104. As

videnced by the figure, a higher gain leads to a reduction
n the SNR. The SNR is also highest at the band-center
nd lowest at the band edges.

. Noise Figure
second parameter that characterizes the performance of

n amplifier is the noise figure. The noise figure (NF) is
efined as

ig. 5. (Color online) The normalized SNR factor, G, as a func-
ion of wavelength at various gain levels. For the calculations,
=104, �=0.01, � =100, N=10.
l e
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NF =
SNRin

SNRout
, �40�

here SNRin is the SNR at the input of the amplifier and
NRout is the SNR at the output. To determine the NF, we
imply need to define our input as Sin=Ssig+S�, where
sig is the field amplitude of the signal and S� is the field
mplitude of the noise.
Substituting this form of the input into Eq. (38), and

ssuming a narrow bandwidth signal, we find

SNRin =
�S̃sig�0��2

2�S̃��0��2
. �41�

t the output, using Eq. (39), we have

SNRout =
4�3V��2�TN,1�2

��2Rsp�j=1

N
�TN,j�2

· lim
T→�

�S̃sig�0��2 + �S̃��0��2

T
.

�42�

herefore, the noise figure, in the limit �S̃��0��2

�S̃sig�0��2, is

NF =
��2Rsp�j=1

N
�TN,j�2

4�3V��2�TN,1�2
· lim

T→�

T

2�S̃��0��2
. �43�

In the scenario in which the noise is at the standard
uantum limit (i.e., shot noise), S� is the due to the
acuum fluctuations of the electric field. The quantization
f the field gives

Ŝ��t� =���

V
Â�t�, �44�

here Ŝ�t� is now an operator and Â�t� is the photon an-
ihilation operator [30]. The expectation value is

1

2
�Ŝ�

† Ŝ� + Ŝ� Ŝ�
†� =

��

2V
, �45�

ince the noise arises from the vacuum, �0�, photon state.
n the other hand, the classical equivalence is

�S�
2� = lim

T→�

2�

T � d�̃�S̃���̃��2 	 lim
T→�

2�

T
�S̃��0��2	�̃. �46�

herefore, equating Eq. (45) with Eq. (46), we have

lim
T→�

�S̃��0��2

T
=

��

4�V	�̃
. �47�

aking 	�̃=2�, the bandwidth of a CROW band, and �
�, the noise figure is

NF =
�Rsp�j=1

N
�TN,j�2

�2�2�TN,1�2
. �48�

Figure 6 shows an estimate of the noise figure for a
oss-compensated CROW where 1/�i=0. Rsp is given by

sp=N2Vcav / tsp, where N2 is the population density of the
xcited state of the gain medium, V is the active vol-
cav
me of the resonator, and tsp is the spontaneous emission
ifetime. Taking N2=1018 cm−3, Vcav=10 �m�10 �m

50 nm, and tsp=1 ns, we compute Eq. (48) at the band-
enter frequency for various values of inter-resonator cou-
ling coefficients at a fixed input/output coupling constant
f �e=1000 and �=0.045. The noise figure depends
trongly on the input/output coupling as well as the inter-
esonator coupling. Nonetheless, using these rough esti-
ates, we see that loss-compensated CROWs of the order

f tens of resonators long can maintain noise figures of
ess than five.

. DISCUSSION
e have elucidated the effect of the boundary conditions

n the net gain in a CROW and the spontaneous emission
n the SNR. Our results imply that the transmission
pectra, gain/loss, and noise of CROWs depend signifi-
antly on the exact configuration of the CROWs and how
hey are excited. The dispersion relation of an infinite
tructure, in the presence of gain (or loss), does not nec-
ssarily model a periodic structure of finite length regard-
ess of the number of periods that constitute the device.

hile the real part of the phase accumulated in a finite
ROW can be similar to an infinite structure, the imagi-
ary part of the phase (loss/gain) can differ significantly.
Our results show that gain/loss enhancement in

ROWs does not strictly depend on v̄g, but can instead be
nderstood as the combined effect of the gain/loss of the

ndividual cavities and the resonance due to the finite
ength of the structure. Since the effective reflectivity of a
emi-infinite CROW is highest at the band-edges [24], the
large” resonator set up in the direction of periodicity con-
isting of all the cavities in the CROW is lowest loss for
he band-edge or low v̄g modes. In the same way that
ransmission spectrum ripples can be minimized by modi-
ying only the input/output coupling coefficients in a
ROW [24], the gain (and loss) can also be controlled. The
ependence of optical loss on the structural termination
as been observed in photonic crystals [31], and the de-

ig. 6. (Color online) The NF as a function of the number of
esonators �N� in an active CROW at the band-center frequency
here the losses are exactly compensated. The parameters for

he calculations are in the text.
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endence of the laser frequencies and cleaved facets have
een analyzed in distributed feedback lasers [32]. The ef-
ect of the termination on the optical properties of periodic
tructures should be explored in greater detail.

Our calculations of active CROWs with an input at the
rst resonator and output show that the frequencies near
he band-center have the highest SNR. Fortuitously, the
and-center is also the region of lowest group velocity dis-
ersion, and its dispersive properties are the most robust
o disorder in the coupling constants [33,34]. Naturally
hen, the most ideal frequencies for the propagation of op-
ical signals with small v̄g should be those near the
ROW band-center. In contrast to other types of periodic
tructures, such as gratings and photonic crystals, the
mall group velocities at the band-edges are accompanied
y a large group velocity dispersion. The value of the SNR
s also unclear at those frequencies.

Although we have not formulated a complete picture of
mplification in CROWs, which would require additional
quations to describe the carrier densities and a quantum
echanical treatment of the transition rates (to derive

he gain/loss, noise), we briefly note the impact of v̄g on
he induced optical transition rates and the gain. For a
imple two-level atom model, the induced transition rate,

i, is proportional to the optical intensity [30], which is
igher for reduced group velocities. To show this, we ob-
erve that, for a monochromatic wave in a homogeneous
edium, its intensity is

I��� =
cnph��

nV
, �49�

here nph is then the number of photons in the mode os-
illating at �, V is the modal volume, and n is the effective
ndex of the medium. However,

nph = ����d� = ��K�dK, �50�

here ���� is the photon density of states in frequency
nd ��K� is the density of states in wavenumber. Because
g=d� /dK and ��K�=N� /2� [34], substituting into Eq.
50), we have

nph =
N�

2�

��

vg���
. �51�

hus, a small group velocity leads to a higher stimulated
mission rate. However, the optical gain does not strictly
epend on Wi. Rather, the optical amplification rate is the
ractional increase in the intensity of a wave per unit
ime, i.e., İ /I= ṅph /nph [30]. Since ṅph is also proportional
o Wi, the 1/vg contribution cancels. This implies that al-
hough Wi scales with 1/vg, the gain does not necessarily.
n practice, the gain may also be lower for higher inten-
ity modes because of saturation. Thus, in CROW lasers,
he lowest vg or band-edge modes need not be the first to
scillate nor does it have to oscillate at all.

. CONCLUSION
n summary, we have presented a derivation of the time
omain tight-binding equations describing the modes and
ave propagation in CROWs. Only in the limit of weak
oupling and weak gain does the tight-binding equation
esemble the simple coupled oscillator equations com-
only found in literature. Using this formalism, we find

hat the termination and excitation of a CROW has a pro-
ound impact on the net gain of an optical wave inside the
tructure. A finite CROW can have significantly different
mplification and loss properties compared to an infi-
itely long chain of resonators. Finally, we have derived
he SNR and the noise figure of amplifying CROWs using
he tight-binding approach.
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