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Abstract

The motivation of the work is twofold: (i) Understand the physics behind regenerative

chatter and the influence of structural damping and (ii) demonstrate an active damping

technique based on collocated actuator/sensor pairs. A numerical stability analysis is per-

formed with the Root Locus Method and it is shown that along with the structural poles,

eigenvalues due to the delay parameter may contribute to instability. Since experimental

demonstration of chatter in real machines is difficult, an alternative way of demonstra-

tion via a mechatronic simulator is presented, using the ”Hardware in the Loop” concept.

The mathematical model of the regenerative cutting process in turning is simulated in a

computer and this is interfaced to a beam, representing the structural dynamics of the

machine, via a displacement sensor and force actuator. In this way, a hardware and a soft-

ware loop are combined. In a second step, an additional control loop is added, consisting

of an accelerometer sensor and a collocated inertial actuator. Numerical and experimental

stability lobes diagrams are compared, with and without active damping.

Keywords: Chatter, Root Locus Method, Hardware in the Loop Demonstrator, Ac-

tive Damping
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1 Notations

a width of cut (m)

c damping coefficient (Ns/m)

Ff cutting force (N)

h0 feed of the tool (m)

h(t) total chip thickness (m)

k stiffness of the system (N/m)

Kf cutting constant (N/m2)

Kcut cutting stiffness (N/m)

m mass of the system (kg)

N spindle speed (RPM)

T = 60/N time for one revolution of spindle (s)

y(t − T ) displacement of the tool during the previous pass (m)

y current displacement of the tool (m)

ÿ acceleration of the tool (m/s2)

ẏ velocity of the tool (m/s)

G(s) Transfer function between cutting force Ff and tool displacement y

for a single input single output (SISO) system

2 Introduction

Chatter is a problem of instability in the metal cutting process, characterized by violent

vibrations, loud noise and poor quality of surface finish. Chatter reduces the life of the

tool and the productivity of the manufacturing process by interfering with the normal

functioning of the machine. The problem is affecting the manufacturing community for

quite some time and it is a popular topic for academic and industrial research. Generally

two mechanisms are responsible for chatter, a) Mode Coupling b) Regeneration of surface

waviness. The latter is by far the most common cause and is considered in the present

study. Tobias and Fishwick [1] and almost at the same time Tlusty [2] were among the first

to independently propose the phenomenon of regeneration to explain chatter instability.

Figure 1 shows the regeneration process in turning where the tool is cutting a cylindrical
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Figure 1: The regeneration process

surface. While machining, the tool may face a hard spot on the surface of the workpiece

and some vibrations are triggered. This leaves behind a wavy surface, as shown in the

figure and after one full rotation the tool faces the waves left during the previous pass.

This causes fluctuation of the cutting forces, further exciting the structure. This in turn

leaves more vibration marks on the workpiece surface. This is the process of regeneration.

3 Stability against chatter

Referring to the Figure 1, assuming the tool to be flexible only in the Y-direction, the

uncut chip thickness h(t) at any instant is given by,

h(t) = h0 + y(t − T ) − y (1)

where y and y(t − T ) are also called the inner modulation and outer modulation respec-

tively. Assuming that the cutting forces are proportional to the frontal area of the chip,
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the cutting force in the Y direction is equal to

Ff (t) = Kf .a.[h0 + y(t − T ) − y] (2)

Many authors have observed the existence of damping in the cutting process, especially

at low spindle speeds. Tobias et al [1], Tlusty [3] and later Minis et al [4] incorporate

the displacement variable and its derivative in the cutting force relationship to take into

account the damping. Knight [5] presents experimental investigations on the dependance

between the cutting force and the cutting velocity, the rake angle of the tool and the feed.

Tlusty et al [6] and Sato et al [7] deal with non-linearities such as the tool leaving the

workpiece, due to excessive vibrations. Tobias et al [8] and Ulsoy et al [9] relate cutting

forces to the power of the chip thickness. However a proportional model has been found to

be quite adequate for analysis and is adopted in the present study. The dynamic equation

of motion in the Y direction is

mÿ + cẏ + ky = Kf .a.[h0 + y(t − T ) − y] (3)

Equ. 3 is a Delay Differential equation. In Laplace domain y(t−T ) = y(s).e−sT . Defining

the machine-tool transfer function between the applied force F and displacement y as

G(s) and substituting for y0, we have in Laplace domain,

h(s)

h0(s)
=

1

1 + Kf .a.G(s)(1 − e−sT )
(4)

where

G(s) =
y(s)

F (s)
=

1

ms2 + cs + k
(5)

Therefore the characteristic equation of the closed loop system is

1 + Kcut.G(s)(1 − e−sT ) = 0 (6)

where Kcut is the product of Kf and a. This equation is not restricted to a single degree of

freedom (SDOF) oscillator but can also be extended to single input single output (SISO)

systems with multiple degrees of freedom, provided the appropriate expression for G(s)

is used. Merrit [10] introduced a closed loop feedback diagram for regenerative chatter,

as shown in Figure 2 and is credited for providing a viewpoint from control engineering
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Figure 2: Merrit’s closed loop representation of chatter

literature. Under certain combinations of Kcut and spindle speed N , the feedback loop

becomes unstable, leading to chatter. The traditional method of stability analysis assumes

that a root of the characteristic equation is on the imaginary axis, i.e., s = ±jωc, where

ωc is the chatter frequency and then solves for the corresponding limiting value of Kcut

and spindle speed N . Based on this, Tobias et al [11] introduced the classical stability

lobe diagram which is a plot of Kcut or a versus N . Tlusty et al in [2] and Merrit [10]

and Altintas [12] , formulate limiting width of cut alim as a function of the frequency

response function G(s). Minis et al in [13] use the Nyquist Criterion for stability analysis.

Figure 3 shows the classical stability lobe diagram. The figure is a plot of the ratio

between limiting value of Kcut and k and the spindle speed N . The area below the lobes

is the stable machining region while the region above is that of instability or chatter.

The envelope of the minimum values on the stability lobe diagram is a straight line and

this represents the ”Asymptotic Stability Margin”, which is proportional to the structural

damping ratio ξ for a SDOF system. In this paper, we investigate the instability using

the Root Locus Method.

4 Role of the delay term in chatter instability

The Root Locus method plots the eigenvalues of the closed loop system for increasing

value of Kcut. Instability arises when at least a pair of conjugate roots just crosses the

imaginary axis. The corresponding value of Kcut is the limit of stability for the chosen
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Figure 3: A typical stability lobe diagram

spindle speed and the imaginary part of the root gives the chatter frequency. The whole

exercise is repeated for different spindle speeds and the stability lobe diagram and the

chatter frequency plot are generated. Equ. 6 is transcendental and has an infinite number

of roots, due to the delay term e−sT . Two limit cases arise depending on the value of

Kcut.

• For Kcut → 0, the roots are the poles of G(s)(1 − e−sT ) which are the poles of

G(s) and an infinite number of poles of (1 − e−sT ) at s = −∞± j(2nπ/T ), where

j =
√

− 1 and n is any integer.

• For cases where Kcut → ∞, the roots are the zeros of G(s)(1− e−sT ), which are the

zeros of G(s) and the infinite number zeros of (1 − e−sT ) at s = ±j(2nπ/T ).

This has been discussed by Olgac et al in [14]. The evolution of roots from very low

values of Kcut to very high values is investigated with a Root Locus plot in Figure 5. In the

present study, Padé Approximation is used, which converts the delay to a rational fraction

of two polynomials. The system, with an infinite number of roots is thus transformed to

one with finite number of characteristic roots. The quantity e−sT introduces a phase

lag proportional to the frequency, which differs from the phase, introduced by the Padé

approximation. The difference depends on the order of approximation chosen for the

polynomials and value of the quantity sT . In Figure 4, the variation from actual phase,

due to various orders of Padé approximation, is shown. The maximum value of sT , which

depends on the natural frequency s and the maximum value T (i.e., smallest value of N),

decides the order of the approximation required for an accurate solution of the eigenvalue
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Figure 4: Phase of Padé approximation with increasing order

problem. For multiple degrees of freedom (MDOF) systems, the highest frequency among

the modes included in the model of the structure should be considered. For low values of

Kcut, as shown in Figure 5, the pole (denoted by a cross), closest to the imaginary axis

corresponds to the structural mode. The rest of the poles, due to the delay term, ideally

should be at infinite distance from the imaginary axis. But due to the approximation of

the delay term they can be seen at finite but large distances from the imaginary axis. With

increasing value of Kcut, all the roots approach the imaginary axis and cross it. They

ultimately converge to the s = ±j(2nπ/T ) points, i.e. s = ±j(n/T ) in Hz units, where

n as any integer, for very high values of Kcut. Traditional techniques of chatter analysis

generally recognize that instability arises from the structural mode of the system. However

it will be shown in the following that for certain spindle speeds, there is a possibility that

the roots due to the delay may cross over to the right side of the imaginary axis before

a structural pole does. The source of instability depends on the relative values of the

natural frequency of the structure and the quantity n/T , which is nothing but a harmonic

of the spindle speed frequency in Hz. A SDOF system, with a natural frequency of 47

Hz, is chosen and cases are investigated for various spindle speeds via Root Locus Plots.

The minimum spindle speed chosen is 1000 RPM and a Padé order of 40 is found to be
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Figure 5: The locus of closed loop poles with increasing Kcut

sufficient for the analysis. For 3000 RPM the spindle speed frequency is 1/T = 50 Hz,

which is higher than the natural frequency of 47 Hz. It is seen from Figure 6 a), that the

instability is arising from the structural mode as it migrates towards the j.1/T point with

increasing values of Kcut. The poles due to the delay term migrate towards points, which

are higher multiples of j.1/T . Only the locus of the delay pole, closest to the structural

mode, is shown for reasons of clarity of the figure. For 2820 RPM the spindle speed

frequency is equal to the natural frequency of the structure. The locus, corresponding to

the delay now becomes unstable, as shown in Figure 6 b). This is reflected in a sudden

change in the chatter frequency diagram in Figure 7 at that spindle speed. The pole due

to the delay continues to be unstable with further reduction of spindle speed and the

distance of the locus from the real axis decreases with reduction of the spindle speed.

At 2340 RPM, the root from the delay has migrated to a lower position, compared to

the structural poles. The pole for the delay migrates towards j.1/T now, whereas the

structural poles go towards the j.2/T point and become unstable, as shown in Figure

6 c). This change in behaviour explains the sudden changes in chatter frequencies at

certain spindle speeds from very high chatter frequencies to values close to the natural

frequency of the structure. It is observed that for a further decrease of the spindle speed,

the instability arises either from the structural pole or the higher placed delay poles, as

shown in the final Figure 6 d). Interaction between structures with multiple modes and
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the delay will be dealt with in a later part of the work.

Figure 6: Loci of eigenvalues for a)3000 RPM b)2820 RPM c)2340 RPM d)2000 RPM
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Figure 7: Stability lobe diagrams and chatter frequencies showing regions of instability arising

from the structural mode and the delay

The investigations show that an unstable condition may arise from the delay for certain

spindle speeds. The traditional stability analysis technique does not distinguish between

parts of the stability lobe diagram on the basis of the source of instability, as shown in

Figure 7. Higher stability is found at speeds, where the roots from the delay are becoming

unstable. This gives an insight that high stability machining is achievable by operating

at selected spindle speeds. The eigenvalues are always found to cross the imaginary axis

at frequencies, higher than the natural frequency of the structure confirming that chatter

frequencies in turning are higher in comparison to the natural frequency, as observed in

reference [15].

5 A ”Hardware in the Loop” chatter demonstrator

In the previous section a mathematical perspective is presented to understand regenera-

tive chatter. However in real machining it is difficult to understand chatter due to the

involvement of a huge number of parameters. Based on the well-established mathemat-

ical model of regenerative chatter by [1, 2, 10] and recent advances in signal processing

technologies, an alternative way to study chatter via a mechatronic simulator, without

conducting actual cutting tests, is presented. An aluminium cantilever beam is used to

represent the MDOF dynamics of a turning machine and a voice coil actuator at its end

generates the cutting force signal. A corner cube reflector is mounted on the other side
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of the tip, which is a part of a HP laser interferometer setup, acting as the displacement

sensor. The 16 bit position information from the interferometer is passed on to a DSP

board where the regenerative cutting process is simulated in real time. The cutting force

values, thus calculated, are fed back through the digital to analog converter of the DSP

board and a current amplifier into the voice coil . The closed loop system thus consists

of a hardware component, the beam, which represents the machine tool structure, the

sensor and actuator and a software layer simulating the cutting forces and the delay part

of the system. The setup is shown in Figure 8. The ”Hardware in the Loop” concept is

illustrated in Figure 9.

Figure 8: The demonstrator setup

The dSpace Control Desk software provides a graphic user interface, enabling the

change of Kcut and T in real time on the DSP board. In other words the spindle speed

and the cutting condition can be changed just as in real machining. Certain combinations

of the two parameters, lead to an unstable feedback loop, resulting in a growth in the

oscillations of the beam, thus representing a chatter situation. The feasibility of chatter
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control by active damping is also investigated in the latter portion of the study. The

beam has an inertial actuator, also called an Active Mass Damper (AMD)(manufactured

by Micromega Dynamics) mounted on its side (details in Figure 12) which acts as an

active damper to stabilize the system. This aspect of the demonstrator will be dealt with

in the section on control of chatter.

Figure 9: a)The ”Hardware in the Loop” setup b) The software and hardware layers

5.1 Numerical simulation of chatter

This portion deals with investigations on stability with a numerical model of the beam

structure. The frequency response data for the beam is obtained experimentally. The

state space model of the beam is generated, using the Matlab based Structural Dynam-

ics Toolbox, developed by SDTools [16], by curve fitting on the experimental frequency
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response plot, using the Pole-Residue method in frequency domain. The identification is

done without dismounting the AMD, in order to include its dynamics and generate a real-

istic model for the system. The Root Locus Method is used to generate the stability lobe

diagram and to check for the nature of instability for various spindle speeds. The system

is more complicated than the previous example, because of the involvement of multiple

modes in the chatter process. The stability lobe diagrams and the chatter frequency for

the demonstrator are plotted in Figure 10. As in the case of the SDOF system, there are

different sources of instability, as shown in the figure. The Root Locus plots, showing the

migration of the eigenvalues of the system are not included in the present work due to

space constraints. The interaction between the structural poles and the delay is similar to

that of the SDOF system, the only difference arising from the involvement of more than

one mode in the process of instability.

Figure 10: Stability lobes and chatter frequency diagrams for the demonstrator

5.2 Experimental simulation of chatter

Stability lobe diagrams are also generated experimentally. A value of the delay T is chosen.

Kcut is increased step by step and for each step the displacement response of the beam,

due to a computer generated impulse excitation is checked on the computer display. A

stable system is characterized by a decaying response in contrary to an unstable response,

which grows with time. In case the system is critically stable, the response to impulse does

not grow or decay with time and the oscillations are sustained. The corresponding value

of Kcut is stored as the limiting value for the chosen spindle speed. The frequency of the
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displacement signal is approximately measured from an oscilloscope. This experiment is

repeated for many spindle speeds. The experimental stability lobes and chatter frequencies

are compared with those obtained by the Root Locus Method in Figure 11. Three sets

of experiments are performed in order to check for the repeatability of the results. The

match between experimental and the numerical analysis is good.

Figure 11: Comparison between experimental and numerical analyses on chatter instability

6 Application of active damping

Control of chatter is the most important aspect of research on this subject. The stability

lobe diagram, as proposed in [1, 11], is an attempt to avoid chatter by prescribing a limit

to the cutting condition for a chosen spindle speed. Efforts have been made by Slavicek

[17] to avoid chatter by changing the geometry of the tool. However this approach is

not practical since it makes the design of cutters specific to cutting conditions. Many

authors have proposed on-line techniques for chatter avoidance either by spindle speed

modulation or spindle speed selection. The spindle speed modulation technique involves

periodic variation of the spindle speed with very low frequency, as proposed by Hoshi et al

[18] experimentally and also by Sexton et al [19] and Lin et al [20]. The speed modulation

technique is costly and limited by the inertia of the rotating parts of the machine. Tlusty

et al [21], present an online speed selection control system, which iteratively finds out

the spindle speed, corresponding to the maximum stability region in the stability lobe

diagram. Soliman et al [22] present a control system that ramps up the spindle speed
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until a stable machining situation is reached.

Vibration control techniques have been used by various researchers. Nachtigal et al

in [23, 24] propose a feedforward strategy of using the cutting force signal for chatter

control in turning. In many studies on chatter, it has been observed that machining

stability can be enhanced by increased damping of the whole system. Tlusty [3] shows

that damping in the cutting process stabilizes chatter. Merrit [10] shows that increase in

the structural damping would raise the asymptotic threshold of stability and the region of

stable machining would increase. Passive damping techniques such as the ”Lanchester”

damper have been proposed in [25], impact dampers in [26] and tuned mass dampers in

[27]. But the amount of damping achievable is limited and the performance of tuned mass

dampers depends on the accurate tuning between the damper frequency and the structural

modal frequency. In the present work, active damping is applied using a collocated system

with velocity feedback. Such a collocated configuration ensures unconditional stability in

the closed loop [28].

In the present study on the demonstrator, the setup consists of an electromagnetic

active mass damper (AMD), which is basically a spring-mass-dashpot system coupled to a

voice coil actuator. This generates inertial forces which act upon the beam structure. This

adds an extra layer to the ”Hardware in the Loop” system. Two loops exist in the setup,

i.e., the regeneration-cutting process loop and the active damping loop. This is illustrated

in Figure 12. An accelerometer collocated with the AMD senses the acceleration signal.

This is integrated and multiplied by a gain g through a controller block and fed into the

coil of the AMD. The AMD thus introduces damping into the structure. Such a technique

has been adopted in [29, 30]. The effect of active damping on the system under chattering

conditions is now investigated.
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Figure 12: The chatter demonstrator with active damping layer

A Root Locus plot is generated for increasing Kcut at a spindle speed of 2000 RPM,

without any active damping and for arbitrary feedback gains of 5 and 10 units. The

identified model of the beam is used in this numerical exercise. In all the three cases, the

instability arises from the first mode as shown in Figure 13. The system at 2000 RPM,

without active damping, has an initial damping of 1.9% for the first mode, 1% for the

second mode and 0.8% for the third mode. With active damping the first mode is heavily

damped to 5% and 9% for 5 and 10 units of feedback gain respectively but the effect on

the other two modes is not much. The loci of the eigenvalues for the first mode are much

longer than that without any active damping. This explains the rise in the stability of

the system against chatter.
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Figure 13: Root locus of eigenvalues for increasing Kcut without active damping and with

feedback gains g = 5 and 10 units

Finally the stability lobes are determined experimentally to demonstrate the effect of

active damping. As described earlier on experimental simulation of chatter, the demon-

strator is set to chatter under several spindle speeds with the active damping feedback

loop working. The results are plotted in Figure 14. Feedback gains of 5 and 10 units are

chosen for the experiment. A rise in the level of stability limits is observed, confirming

the role of active damping in increasing the stability against chatter.
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Figure 14: Effect of active damping on stability lobe diagram (Experimental)

7 Conclusions

The first part of this paper has analyzed the effect of damping on the stability lobe di-

agram for regenerative chatter. A root locus method was used, together with a Pade

approximation of the delay, to investigate the stability numerically. It was found that in-

stability may arise not only from the structural modes, but also from the poles due to the

delay parameter. In the second part of the study a ”Hardware in the Loop” demonstrator

is developed to provide an insight into the physics of regenerative chatter in turning. The

match between the experimental and numerical stability lobes is good. The demonstrator

is also used for application of active damping for chatter suppression. The active control

loop consists of a Active Mass Damper collocated with an accelerometer and the configu-

ration has guaranteed stability. It is found that active damping is capable of raising the

stability lobes and has a stabilizing effect on chatter. Thus this technique appears to be a

good candidate for damping real machines actively and increase their productivity. The

active damping scheme is currently being implemented on a large scale milling machine

by Micromega Dynamics (http://www.micromega-dynamics.com/amd.htm).
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