
Active Database Systems

NORMAN W. PATON

University of Manchester

AND

OSCAR DÍAZ

University of the Basque Country

Active database systems support mechanisms that enable them to respond
automatically to events that are taking place either inside or outside the database
system itself. Considerable effort has been directed towards improving
understanding of such systems in recent years, and many different proposals have
been made and applications suggested. This high level of activity has not yielded a
single agreed-upon standard approach to the integration of active functionality
with conventional database systems, but has led to improved understanding of
active behavior description languages, execution models, and architectures. This
survey presents the fundamental characteristics of active database systems,
describes a collection of representative systems within a common framework,
considers the consequences for implementations of certain design decisions, and
discusses tools for developing active applications.

Categories and Subject Descriptors: H.2.3 [Database Management]: Languages

General Terms: Languages

Additional Key Words and Phrases: Active databases, events, object-oriented
databases, relational databases

1. INTRODUCTION

Traditionally, database systems have
been viewed as repositories that store
the information required by an applica-
tion, and that are accessed either by
user programs or through interactive
interfaces. In such a context, a range of
different tools and systems are used to-
gether to support the requirements of

the application. However, database sys-
tems are beginning to be applied to a
range of domains associated with highly
complex information processing, ever
more substantial quantities of data, or
highly stringent performance require-
ments, in which the conventional multi-
component environment has proved to
be unsatisfactory. This has resulted in a

We are pleased to acknowledge the support of the European Union Human Capital and Mobility
Network ACT-NET, the UK Engineering and Physical Sciences Research Council (Grant GR/H43847)
and the Basque Government for funding active database research involving the authors.

Authors’ addresses: N. W. Paton, Department of Computer Science, University of Manchester, Oxford
Road, Manchester M13 9PL, UK; e-mail: ^norm@cs.man.ac.uk&; O. Dı́az, Departamento de Lenguajes y
Sistemas Informaticos, University of the Basque Country, San Sebastián, Spain; e-mail:
^jipdigao@si.ehu.es&.

Permission to make digital / hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and / or a fee.
© 1999 ACM 0360-0300/99/0300–0063 $5.00

ACM Computing Surveys, Vol. 31, No. 1, March 1999



trend in database research towards
more of the functionality required by an
application being supported within the
database system itself, giving rise to
database systems with more compre-
hensive facilities for modeling both the
structural and the behavioral aspects of
an application. Among the fields that
have received attention in recent years
with a view to enhancing the behavioral
facilities of database systems are data-
base programming, temporal databases,
spatial databases, multimedia data-
bases, deductive databases, and active
databases. This survey focuses upon the
last mentioned.

Traditional database management
systems (DBMSs) are passive in the
sense that commands are executed by
the database (e.g., query, update, de-
lete) as and when requested by the user
or application program. However, some
situations cannot be effectively modeled
by this pattern. As an example, consider
a railway database where data are
stored about trains, timetables, seats,
fares, and so on, which is accessed by
different terminals. In some circum-
stances (e.g., public holidays, cultural
events) it may be beneficial to add addi-
tional coaches to specific trains if the
number of spare seats a month in ad-
vance is below a threshold value. Two
options are available to the administra-
tor of a passive database system who is
seeking to support this requirement.
One is to add the additional monitoring
functionality to all booking programs so
that the preceding situation is checked
each time a seat is sold. However, this
approach leads to the semantics of the
monitoring task being distributed, repli-
cated, and hidden among different ap-
plication programs. The second ap-
proach relies on a polling mechanism
that periodically checks the number of
seats available. Unlike the first ap-
proach, here the semantics of the appli-
cation is represented in a single place,
but the difficulty stems from ascertain-
ing the most appropriate polling fre-
quency. If too high, there is a cost pen-
alty. If too low, the reaction may be too

late (e.g., the coach is added, but only
after several customers have been
turned away).

Active databases support the preced-
ing application by moving the reactive
behavior from the application (or polling
mechanism) into the DBMS. Active da-
tabases are thus able to monitor and
react to specific circumstances of rele-
vance to an application. The reactive
semantics is both centralized and han-
dled in a timely manner. An active da-
tabase system must provide a knowl-
edge model (i.e., a description
mechanism) and an execution model
(i.e., a runtime strategy) for supporting
this reactive behavior.

A common approach for the knowl-
edge model uses rules that have up to
three components: an event, a condition,
and an action. The event part of a rule
describes a happening to which the rule
may be able to respond. The condition
part of the rule examines the context in
which the event has taken place. The
action describes the task to be carried
out by the rule if the relevant event has
taken place and the condition has eval-
uated to true.

Most active database systems support
rules with all three of the components
described; such a rule is known as an
event-condition-action or ECA-rule. In
some proposals the event or the condi-
tion may be either missing or implicit. If
no event is given, then the resulting
rule is a condition-action rule, or pro-
duction rule. If no condition is given,
then the resulting rule is an event-ac-
tion rule.

At first glance, the introduction of
active rules to a database system may
seem like a straightforward task, but in
practice proposals have been made that
support widely different functionalities.
Among the issues that distinguish pro-
posals are the expressiveness of the
event language, the scope of access to
database states from the condition and
action, and the timing of condition and
action evaluation relative to the event.
The functionality of a specific system
will be influenced by a number of fac-

64 • N. W. Paton and O. Dı́az

ACM Computing Surveys, Vol. 31, No. 1, March 1999



tors, including the nature of the passive
data model that is being extended, and
the categories of application to be sup-
ported.

1.1 Active Database Applications

As mentioned previously, database re-
search often aims to extend the range of
facilities within the database system for
representing application concepts.
Hence, additional capabilities are
largely dependent on the designated ap-
plications. In the case of active rules,
the following categories of application
can be distinguished.

Database System Extensions. Active
rules can be used as a primitive mecha-
nism for supporting the implementation
of other parts of a database system. For
example, ECA rules have been used to
support integrity constraints [Ceri et al.
1990; Diaz 1992], materialized views
[Stonebraker et al. 1990; Widom et al.
1991], derived data [Etzion 1993], coor-
dination of distributed computation
[Dayal et al. 1990; Ceri and Widom
1993], transaction models [Geppert and
Dittrich 1994], advanced data modeling
constructs [Paton et al. 1993], and auto-
matic screen updating in the context of
database change [Diaz et al. 1994; Pa-
ton et al. 1996].

Such extensions to core database
functionality are usually supported by
defining a high-level syntax for the ex-
tended functionality, plus a mapping
onto sets of active rules. For example,
Ceri et al. [1990] present a constraint
language for implementation using ac-
tive rules, illustrated using an applica-
tion that models a power distribution
system. In this constraint language, the
restriction that no wire has a voltage
that is greater than that of its type is
expressed thus:

wire:voltage . any

(select max-voltage

from wire-type

where type 5 wire.type)

This constraint can be violated by a
range of different update operations

(e.g., a new wire is created of an exist-
ing wire-type, the max-voltage of a
wire-type is updated, etc.) that can
then be monitored by a set of system-
generated active rules. For example, to
check for violation of the constraint on
insertion of a new wire, the following
active rule could be used.

on insert into wire

if insert.voltage . any

(select max-voltage

from wire-type

where type 5 insert.type)

do ^action&

Here, the on clause defines the event
(the insert of a tuple into the wire

relation), the if clause expresses the
condition, and the do clause specifies
the action. Information about the event
is referred to in the condition by access-
ing the voltage and type of the newly
inserted tuple using the reserved word
insert. In this example, the action
could be defined in different ways—the
update operation could be blocked by
aborting the transaction, the constraint
could be repaired by changing the volt-
age of the inserted wire, and so on.

Closed Database Applications. This
category of application involves the use
of active functionality to describe some
of the behavior to be manifested by a
software system without reference to
external devices or systems. For exam-
ple, rules might be used to describe
repair actions in a modeling database,
to monitor sales in a stock control data-
base, to propagate load calculations in
an architectural design database, or to
anticipate market activity in a portfolio
management database. In these appli-
cations there may not be any mapping
from a higher-level description onto the
active rule language—ECA rules are
used directly to support the semantics
of the application. For example, in a
portfolio management database a rule
could be written that deletes any stock-
holders whose portfolios have value 0,
while at the same time recording these
holders in a distinct relation:

Active Database Systems • 65

ACM Computing Surveys, Vol. 31, No. 1, March 1999



on update to value of Holder

if new.value 5 0

do begin

delete from Holder where

reg# 5 update.reg#;

insert into VoidHolder

values (update.reg#, update.

name, update.address, to-

day)

end

In this example, the event monitors
updates to the value attribute of the
Holder relation. The condition then
checks the new element that has been
assigned to the value attribute to see if
it is 0. If so, then the action is executed,
which deletes the updated tuple from
the Holder relation, and then inserts
information from the deleted tuple into
the VoidHolder relation. It is worth
noting that both the condition and the
action of this rule require access to in-
formation on the update that triggered
the rule.

Open Database Applications. In this
category of application, a database is
used in conjunction with monitoring de-
vices to record and respond to situations
outside the database. For example,
rules could be used in command and
control applications to respond to evolv-
ing battlefield scenarios [Dayal et al.
1988], in medical applications to warn
physicians of changes in a patient’s con-
dition [Blue et al. 1988], in transport
applications to anticipate traffic hold-
ups, and in air-traffic control to detect
potentially dangerous aircraft move-
ments [Naqvi and Ibraham 1994]. For
example, in an aircraft monitoring data-
base, the following rule adapted from
Naqvi and Ibraham [1994] could inform
a controller when two aircraft are ap-
proaching each other.

on update to pos of aircraft

if exists

(select p

from aircraft Other

where distance (Other.pos,

new.pos) , 5000 and

distance (Other.pos,old.

pos) . 5000)

do ^send message to control-

ler&

In this example, the event being mon-
itored is the position of an aircraft com-
municated to the database from an ex-
ternal device, and the action taken is a
change to a display that the air traffic
controller is monitoring. Both the new

value and the old value for the pos

affected by the event are accessed from
within the condition.

1.2 Outline of Survey

This survey provides an overview of re-
cent research into active database sys-
tems. Section 2 introduces an example
application that is used throughout the
article. Section 3 presents the struc-
tural characteristics of active rules, and
Section 4 shows how different execution
models can be used to characterize the
runtime interpretation of a set of rules.
Section 5 indicates what facilities may
be available for managing rule bases,
and Section 6 describes and compares a
range of representative active database
systems within the framework pre-
sented in Sections 3 to 5. Section 7
indicates what architectural features
are important for the implementation of
an active database system and Section 8
considers the facilities that are useful
for supporting the development of appli-
cations using active functionality. Sec-
tion 9 presents some conclusions.

2. EXAMPLE APPLICATION

This section introduces a portfolio man-
agement database that is used through-
out the article to exemplify the function-
ality of active database systems
[Chandra and Segev 1994]. In fact, a
range of different financial applications
stand to benefit from the presence of
active functionality for monitoring fi-
nancial transactions, identifying un-
usual patterns of activity, enforcing in-
tegrity constraints, maintaining derived
data, generating timely reports, and
performing periodic processing. The rel-

66 • N. W. Paton and O. Dı́az

ACM Computing Surveys, Vol. 31, No. 1, March 1999



evant entities and relationships are de-
picted graphically in Figure 1.

In this example, a Holder is an indi-
vidual or organization that owns stocks.
Every Holder has a unique registration
number, a name, a country, and a total
value of stock held. An organization
that has been floated on the stock mar-
ket is represented by the entity type
Stock, and has attributes that record
its name, share price, the total number
of shares available, and the unique
identification number by which it can be
referenced. The Owns relationship indi-
cates that a Holder possesses qty

items of a particular kind of Stock. A
relational schema for implementing this
database using SQL is presented in Fig-
ure 2.

Specific examples of active behavior
that can be used in this application are
introduced when they are used to illus-
trate concepts, rather than presented as
a group here. Where rules are presented
in this survey, the syntax used is not
that of any specific active rule system,
but rather a notation based upon SQL
that should require minimal explana-
tion.

3. KNOWLEDGE MODEL

The knowledge model of an active data-
base system indicates what can be said
about active rules in that system. This

is in contrast to the execution model,
which determines how a set of rules
behaves at runtime, as presented in
Section 4. As the knowledge model es-
sentially supports the description of ac-
tive functionality, the features dealt
with in this section often have a direct
representation within the syntax of the
rule language. Rather than using any
particular rule language to illustrate
features of the knowledge model, this
section is based around a number of
dimensions of active behavior, which ex-

Figure 2. Relational tables for storing portfolio
information.

Figure 1. Entity/Relationship diagram for portfolio database.

Active Database Systems • 67

ACM Computing Surveys, Vol. 31, No. 1, March 1999



tend those presented in Paton et al.
[1994]. These dimensions essentially
make explicit the decision space within
which the designers of active rule sys-
tems work, without endeavoring to pro-
vide any formal description of the se-
mantics of specific rule systems, a topic
that is dealt with in Section 8.2.

The concepts considered in this sec-
tion as dimensions are clearly not
new—the aim is to provide a framework
for characterizing active database func-
tionality, rather than to introduce new
notions, so the terminology used should
be familiar to the readers of papers such
as Dayal et al. [1988], Widom and
Finkelstein [1990], and Stonebraker et
al. [1990]. The dimensions of rule func-
tionality considered in this article are
presented in a tabular form. In the ta-
bles, the symbol , is used to indicate
that the particular dimension can take
on more than one of the values given,
whereas [ indicates a list of alterna-
tives.

The knowledge model of an active rule
is considered to have (up to) three prin-
cipal components, an event, a condition,
and an action. The dimensions associ-
ated with these structural components
of an active rule are presented in Table
I and discussed in the following sec-
tions.

3.1 Event

An event is something that happens at
a point in time. Specifying an event

therefore involves providing a descrip-
tion of the happening that is to be mon-
itored. The nature of the description
and the way in which the event can be
detected largely depend on the Source
or generator of the event. Possible alter-
natives are:

—structure operation, in which case
the event is raised by an operation on
some piece of structure (e.g., insert a
tuple, update an attribute, access a
tuple);

—behavior invocation, in which case
the event is raised by the execution of
some user-defined operation (e.g., the
message display is sent to an object of
type widget). It is common for event
languages to allow events to be raised
before or after an operation has been
executed;

—transaction, in which case the event
is raised by transaction commands
(e.g., abort, commit, begin-transac-
tion);

—abstract or user-defined, in which
case a programming mechanism is
used that allows an application pro-
gram to signal the occurrence of an
event explicitly (e.g., in response to
some information entered by a user);

—exception, in which case the event is
raised as a result of some exception
being produced (e.g., an attempt is
made to access some data without ap-
propriate authorization);

Table I. Dimensions for the Knowledge Model

68 • N. W. Paton and O. Dı́az

ACM Computing Surveys, Vol. 31, No. 1, March 1999



—clock, in which case the event is
raised at some point in time [Dayal et
al. 1988; Gatziu and Dittrich 1994].
Absolute (e.g., the 13th of November
1998 at 15:00), relative (e.g., 10 days
after the shares are sold), and peri-
odic (e.g., the first day of every
month) time events are reported in
the literature;

—external, in which case the event is
raised by a happening outside the da-
tabase (e.g., the temperature reading
goes above 30 degrees [Dayal et al.
1988]).

The Event Granularity of an event
indicates whether an event is defined
for every object in a set (e.g., every
instance of a class), for given subsets
(e.g., all staff members except profes-
sors) or for specific members of the set
(e.g., to prevent unauthorized access to
specific instances, or to enable the up-
date of the specific widget objects that
are presently on screen [Diaz et al.
1994]).

The Type of an event can be:

—primitive, in which case the event is
raised by a single low-level occurrence
that belongs to one of the categories
described in Source. For example,
the event on insert to Owns mon-
itors the insertion of new tuples into
the Owns relation.

—composite, in which case the event is
raised by some combination of primi-
tive or composite events using a range
of operators that constitute the event
algebra.

The range of event operators varies
from system to system. The most com-
mon are: disjunction—E1orE2 occurs
when either E1 or E2 has occurred; con-
junction—E1andE2 happens when both
E1 and E2 have occurred in any order;
sequence—seq(E1, E2) occurs when E1

occurs before E2; closure—closure E in
Int is raised only once the first time E is
signaled, regardless of later occurrences
of E in the time interval Int; history—
times(n, E) in Int is signaled when
event E occurs n times during the time

interval Int; not—not E1 in Int detects
the nonoccurrence of the event E1 in the
interval Int.

As an example of a rule with a com-
posite event, the following rule enforces
the constraint that the qty attribute of
stock is the same as the amount re-
corded in the Owns relation.

on update to qty of Holder or

update to qty of Stock or

insert to Stock or

delete to Stock or

insert to Holder or

delete to Holder

if exists

(select p

from Stock

where qty Þ
(select sum(qty)

from Owns

where Owns.reg# 5 Stock-

.reg#)

)

do abort

As a further example, to detect whether
a stock price has changed during a
working day the event can be used: on
update to price of Stock in

[09:00, 17:00].

Rich event algebras have been pro-
posed for a range of systems, including
HiPAC [Dayal et al. 1988], SAMOS
[Gatziu and Dittrich 1994], ODE [Ge-
hani et al. 1992], and Sentinel [Chakra-
varthy et al. 1994]. However, composite
event handling presents challenges in
terms of semantics and efficiency that
have yet to be fully addressed.

When detecting composite events,
there may be several event occurrences
(of the same event type) that could be
used to form a composite event. As an
example, consider a composite event CE
which is the sequence of events EV1
and EV2. If two occurrences of event
EV1, first ev1 and later ev19, have al-
ready been signaled, and an occurrence
of event EV2 (e.g., ev2) is now pro-
duced, there is a question as to what
instances of CE should be raised. Possi-
bilities include sequence(ev1, ev2) or se-
quence(ev19, ev2) or sequence(ev1, ev2) ø

sequence(ev19,ev2). The alternatives are

Active Database Systems • 69

ACM Computing Surveys, Vol. 31, No. 1, March 1999



distinguished using consumption pol-
icies. In Chakravarthy et al. [1994]
four possible consumption policies are
introduced: a recent context, which
considers the most recent set of events
that can be used to construct the compo-
sition (in the previous example, sequen-
ce(ev19, ev2) is detected when ev2 arises,
after which ev19 and ev2 are no longer
considered for the detection of CE); a
chronicle context, which consumes the
events in chronological order (sequen-
ce(ev1, ev2) is signaled when ev2 arises,
after which ev1 and ev2 are no longer
considered for the detection of CE); a
continuous context, which defines a
sliding window and starts a new compo-
sition with each primitive event that
takes place (two sequence events would
begin to be constructed when ev1 and
ev19 arise, and both sequence events
would be signaled as ev2 is detected);
and a cumulative context, which accu-
mulates all the primitive events until
the composite event is finally raised (a
sequence event is signaled only once
when ev2 arises, where the first param-
eter of the sequence includes the pa-
rameters of all the occurrences of EV1,
i.e., ev1 and ev19).1 The rationale for
each context can be found in Chakra-
varthy et al. [1994].

The Role of an event indicates
whether events must always be given
for active rules, or whether the explicit
naming of an event is unnecessary. If
the role is optional, then when no
event is specified condition-action rules
are supported, which have significantly
different functionality and implementa-
tions from event-condition-action (ECA)
rules, as described in Section 7.5. If the
role is none then events cannot be spec-
ified, and all rules are condition-action
rules. If the role is mandatory then
only ECA-rules are supported.

3.2 Condition

The Role of a condition indicates
whether it must be given. In ECA-rules,
the condition is generally optional.
When no condition is given for an ECA-
rule, or where the role is none, an
event-action rule results. In systems in
which both the event and the condition
are optional, it is always the case that
at least one is given.

The Context indicates the setting in
which the condition is evaluated. The
different components of a rule are not
evaluated in isolation from the database
or from each other, and furthermore
they may not be evaluated in quick suc-
cession, as described in Section 4. As a
result, the processing of a single rule
can potentially be associated with at
least four different database states:
DBT—the database at the start of the
current transaction; DBE—the database
when the event took place; DBC—the
database when the condition is evalu-
ated; and DBA—the database when the
action is executed. Active rule systems
may support facilities within the condi-
tion of a rule that allow it to access zero
or more of the states DBT, DBE, and
DBC, and may also provide access to
bindings associated with the event
(BindE). The availability of information
to the different components of a rule is
illustrated in Figure 3. In general, the
position is even more complex than that
portrayed in Figure 3, as the state be-
fore and after an event has taken place
may be different, and as multiple rules

1 Unlike the continuous context, an event occur-
rence does not participate in more than one com-
posite computation in the cumulative context.

Figure 3. The context within which a rule is
processed.

70 • N. W. Paton and O. Dı́az

ACM Computing Surveys, Vol. 31, No. 1, March 1999



may be triggered and may execute to
completion during the execution of a
single action. As an example of the util-
ity of such information, the following
rule is used to respond to the situation
in which the value of the stock held by
a Holder drops to 0.

on update to value of Holder

if new.value 5 0

do ^action&

In this rule, information from the event
(DBE) is used to identify when the
value field has been set to 0, so that an
appropriate response can be made (e.g.,
the Holder is deleted, information on
the Holder is sent to the fund manager,
etc.). In other examples in this survey,
conditions or actions access event pa-
rameters using old to refer to the value
that a data item held before an event
updated it, insert to refer to a newly
inserted value, delete to refer to a
recently deleted value, and update to
refer to attributes of a data item that
were unaffected by an update event.

3.3 Action

The range of tasks that can be per-
formed by an action is specified as its
Options. Actions may update the
structure of the database or rule set,
perform some behavior invocation
within the database or an external
call, inform the user or system admin-
istrator of some situation, abort a
transaction, or take some alternative
course of action using do-instead
[Stonebraker et al. 1990]. As an exam-
ple of do-instead, if an attempt was
made to delete a tuple from the Holder

relation that has a value . 0, then
rather than allow the operation to pro-
ceed, the system manager could be in-
formed of the attempted operation:

on delete to Holder

if delete.value . 0

do instead ^inform system man-

ager&

This is in contrast with the more
standard semantics, in which the tuple

is deleted and the system manager is
informed:

on delete to Holder

if delete.value . 0

do ^inform system manager&

The Context of the action is similar
to that of the condition, and indicates
the information that is available to the
action, as illustrated in Figure 3. It is
sometimes possible for information to be
passed from the condition of a rule to its
action as DBE or BindC. As an example
of the utility of context information, the
following rule is used to revise the data
stored in the value attribute of all
Holder tuples that are affected by a
change in the price of some Stock.

on update to price of Stock

if true

do update Holder

set value 5 value p (new.

price/old.price)

where reg# in (select reg#

from Owns where stock# 5
update.stock#)

In this rule, both the old and the new

values of the price have to be accessed
(DBE), as does the state of the database
at the time of the update (DBA).

4. EXECUTION MODEL

The execution model specifies how a set
of rules is treated at runtime, and is
characterized by the dimensions pre-
sented in Table II. Although the execu-
tion model of a rule system is closely
related to aspects of the underlying
DBMS (e.g., data model, transaction
manager), there are a number of phases
in rule evaluation, illustrated in Figure
4, that transcend considerations that
relate to specific software environ-
ments.

(1) The signaling phase refers to the
appearance of an event occurrence
caused by an event source.

(2) The triggering phase takes the
events produced thus far, and trig-
gers the corresponding rules. The
association of a rule with its event

Active Database Systems • 71

ACM Computing Surveys, Vol. 31, No. 1, March 1999



occurrence forms a rule instantia-
tion.

(3) The evaluation phase evaluates the
condition of the triggered rules. The
rule conflict set is formed from all
rule instantiations whose conditions
are satisfied.

(4) The scheduling phase indicates how
the rule conflict set is processed.

(5) The execution phase carries out the
actions of the chosen rule instantia-
tions. During action execution other
events can in turn be signaled that
may produce cascaded rule firing.

These phases are not necessarily exe-
cuted contiguously, but depend on the
Event-condition and Condition-ac-
tion coupling modes. The former deter-
mines when the condition is evaluated
relative to the event that triggers the
rule. The Condition-action coupling
mode indicates when the action is to be
executed relative to the evaluation of
the condition. The options for coupling
modes most frequently supported are:

—immediate, in which case the condi-
tion (action) is evaluated (executed)
immediately after the event (condi-
tion);

—deferred, in which case the condition
(action) is evaluated (executed) within
the same transaction as the event

(condition) of the rule, but not neces-
sarily at the earliest opportunity.
Normally, further processing is left
until the end of the transaction. How-
ever, some authors [Diaz and Jaime
1997] have also proposed to have a
user-invoked coupling mode whereby
the condition (action) is evaluated (ex-
ecuted) at a user-specified time after
the event (condition) has been sig-
naled (evaluated). A similar effect is
also supported by Starburst [Widom
and Finkelstein 1990] where users
can invoke rule processing within a
transaction by issuing special com-
mands: the process rules, process
ruleset S, and process rule R com-
mands invoke rule processing for the
whole triggering rule set, a given sub-
set S, or a unique rule R, respec-
tively; and

—detached, in which case the condi-
tion (action) is evaluated (executed)
within a different transaction from
the event (condition). The execution of
the action can be dependent upon or
independent of the committing of the
transaction in which the event took
place or the condition was evaluated.

The nature of the relationship be-
tween events and the rules they trigger
is partially captured by the transition
granularity. This indicates whether

Table II. Dimensions for the Execution Model

Figure 4. Principal steps that take place during rule execution.

72 • N. W. Paton and O. Dı́az

ACM Computing Surveys, Vol. 31, No. 1, March 1999



the relationship between event occur-
rences and rule instantiations is 1:1 or
many:1. When the transition granu-
larity is tuple, a single event occur-
rence triggers a single rule. When the
transition granularity is set, a collec-
tion of event occurrences are used to-
gether to trigger a rule. For example, if
a rule R with a condition-action cou-
pling mode of deferred is monitoring
an event E, and occurrences e1, e2, and
e3 of E have taken place during a trans-
action, then the transition granularity
indicates how many instantiations of R
are created by the triggering phase. If
the transition granularity is tuple,
then a separate instantiations of R is
created for each of e1, e2, and e3; if the
transition granularity is set, then a
single instantiation of R is created to
respond to the set of events {e1, e2, e3}.

Another feature that influences the
relationship between events and the
rules they trigger is the Net effect pol-
icy, which indicates whether the net
effect of the event occurrences rather
than each individual event occurrence
should be considered. The difference be-
tween the two strategies stems from
cases in which several updates on the
same data item can be considered as a
single update: if an instance is updated
and then deleted, the net effect is dele-
tion of the original instance; if an in-
stance is inserted and then updated, the
net effect is the insertion of the updated
instance; if an instance is inserted and
then deleted, the net effect is no modifi-
cation at all [Hanson 1992].

The question of what happens when
events are signaled by the evaluation of
the condition or action of a rule is ad-
dressed by the Cycle policy of the exe-
cution model. In general, there are two
options. If the Cycle policy is iterative,
then events signaled during condition
and action evaluation are combined
with those from the original event
source illustrated in Figure 4, and are
subsequently consumed by rules from
this single global repository of signaled
events. This means that condition or
action evaluation is never suspended to

allow responses to be made to events
signaled by those conditions or actions.
By contrast, if the Cycle policy is recur-
sive, events signaled during condition
and action evaluation cause the condi-
tion or action to be suspended, so that
any immediate rules monitoring the
events can be processed at the earliest
opportunity. In practice, a recursive cy-
cle policy is only likely to be considered
in systems that support immediate rule
processing, and some systems support a
recursive cycle policy for immediate
rules and an iterative cycle policy for
deferred rules.

The Scheduling phase of rule evalu-
ation determines what happens when
multiple rules are triggered at the same
time. The two principal issues are as
follows.

—The selection of the next rule to be
fired. This topic has received much
attention in the expert system com-
munity as it is seen as fundamental to
understanding and controlling the be-
havior of a set of rules [Winston
1984]. Indeed, rule order can strongly
influence the result and reflects the
kind of reasoning followed by the sys-
tem. Examples of well-known Dy-
namic approaches (referred to as con-
flict resolution policies) are those that
prioritize rules based on either the
recency of update (i.e., the time of
event occurrence) or the complexity of
the condition. The former makes the
system focus on a line of reasoning,
since the most recently modified data
are those associated with the most
recently fired rule (i.e., the search
space is traversed depth-first). The
latter reflects the assumption that
condition complexity indicates the
specificity of the rule (i.e., the extent
to which the rule fits the current sit-
uation). However, mechanisms avail-
able in active database systems that
have to cope with large quantities of
data efficiently in a context where
deterministic behavior is held to be
highly desirable tend to support prior-

Active Database Systems • 73

ACM Computing Surveys, Vol. 31, No. 1, March 1999



ity schemes in which rules are associ-
ated with a priority statically.

Static priorities are often determined
either by the system (e.g., based on rule
creation time) or by the user as an
attribute of the rule. In the latter case,
a rule is selected from a collection of
simultaneously fired rules for execution
using a Priority mechanism. Rules can
be placed in order using a numerical
scheme, in which each rule is given an
absolute value that is its priority
[Stonebraker et al. 1990], or by indicat-
ing the relative priorities of rules by
stating explicitly that a given rule must
be fired before another when both are
triggered at the same time [Agrawal et
al. 1991].

—The number of rules to be fired. Possi-
ble options include (1) to fire all rule
instantiations sequentially; (2) to
fire all rule instantiations in paral-
lel; (3) to fire all instantiations of a
specific rule before any other rules
are considered, which is known as
firing a rule to saturation; and (4) to
fire only one or some rule instantia-
tion(s). Which approach is most ap-
propriate depends upon the task that
is being supported by the rule. The
first alternative is suitable for rules
supporting integrity maintenance: an
update is successful once all con-
straints have been validated. The sec-
ond option is described in HiPAC in a
bid to encourage more efficient rule
processing. The third option is most
popular among expert-system practi-
tioners, as it yields more focused in-
ference than the other approaches.
The fourth option can be of use to
support derived data—different deri-
vation criteria may be available (each

of them supported by a rule), but only
one is used.

A further aspect to be considered is
how Error handling is supported dur-
ing rule firing. Most systems simply
abort the transaction, as this is stan-
dard behavior in databases. However,
other alternatives may be more conve-
nient [Hanson and Widom 1993]: to ig-
nore the rule that raised the error and
to continue processing other rules; to
backtrack to the state when rule pro-
cessing started and either restart rule
processing or continue with the transac-
tion; to adopt some contingency plan
that endeavors to recover from the error
state, possibly using the exception
mechanism of the underlying database
system.

5. MANAGEMENT

Sections 3 and 4 have, respectively, de-
scribed the structural characteristics of
individual active rules and the runtime
evaluation of sets of such rules. This
section considers the facilities provided
by the system for managing rules, spe-
cifically what operations can be applied
to rules, how rules are themselves rep-
resented, and programming support for
rules. Possible dimensions are shown in
Table III.

The Description of rules refers to
how rules themselves are normally ex-
pressed using a database program-
ming language [Gehani et al. 1992;
Buchmann et al. 1995], a query lan-
guage [Widom and Finkelstein 1990;
Stonebraker et al. 1990], or as objects
in an object-oriented database [Dayal et
al. 1988; Diaz et al. 1991]. These catego-
ries are not exclusive. For example, it is

Table III. Dimensions for Rule Management

74 • N. W. Paton and O. Dı́az

ACM Computing Surveys, Vol. 31, No. 1, March 1999



possible for an extended query language
facility in an object-oriented database to
arrange for rules to be stored as objects.

Besides creation and deletion, which
are taken to be mandatory, other Oper-
ations commonly found are activate,
deactivate, and signal. Activation (de-
activation) of rules makes the system
start (stop) monitoring the rule’s event
or condition. Since rules can persist for
long periods, this mechanism helps the
database administrator to temporarily
switch on (off) some rules without delet-
ing them. Among other things, such de-
activation mechanisms may be conve-
nient for improving efficiency, for
debugging, or for loop prevention (e.g.,
by deactivating rules once they have
been fired). This mechanism may be
available for individual rules as well as
for rule sets. The latter can help in
structuring the rule base, as well as
speeding up rule processing.

The operation Signal is required to
support abstract events, and is invoked
explicitly by the application to notify
the rule system of external occurrences.

Although all active DBMSs support
creation and deletion of rules, they can
differ in the level of Adaptability sup-
ported. In some systems it is only possi-
ble to change the rules associated with
an application by recompiling the appli-
cation code, and thus the rules can be
modified only at compile time. Others
support more dynamic run time rule
modification, including the ability of
rule actions to modify the rule base.
Clearly there is a sliding scale of de-
grees of Adaptability: in the context of
the dimensions, any system that allows
rules to be created without recompiling
application code can be considered to
support run time adaptability.

There is an extent to which the Data
Model with which an active rule system
is associated is independent of the other
dimensions of rule system functionality.
However, the data model is likely to
significantly influence the designers of
an active rule system, and is thus in-
cluded as a dimension.

Programmer Support is of para-

mount importance if active rules are to
be adopted as a mainstream implemen-
tation technology in business environ-
ments. Important facilities for support-
ing the developers of rule bases include
the ability to query the rule base and to
trace or in some other way monitor rule
system behavior. Support for applica-
tion development is discussed more
fully in Section 8.

6. ACTIVE RULE SYSTEMS

The previous three sections have intro-
duced many of the principal features of
active database systems, and together
constitute a framework within which
active functionality can be described. In
this section the framework is applied to
the presentation of a range of promi-
nent proposals for active database sys-
tems, thereby highlighting important
similarities and differences.

6.1 Relational Systems

The inclusion of active behavior model-
ing facilities in relational databases is
not particularly new, and most commer-
cial systems include triggering mecha-
nisms. In addition, a number of re-
search prototypes have been developed
that seek to provide more comprehen-
sive support for active rules. Proposals
for including active behavior in rela-
tional systems often have a range of
common characteristics, which stem
from the nature of the underlying pas-
sive database system. For example,
rules are generally triggered by system-
defined operations on the structure of
the database (e.g., insert a tuple, modify
a tuple), because until recently, rela-
tional systems have rarely supported
user-defined operations. It can be antic-
ipated that future active rule systems
for relational databases will be ex-
tended so that primitive events include
the execution of stored procedures, but
such functionality is not supported by
the systems reviewed here. Further-
more, because relational languages such
as SQL provide facilities for expressing

Active Database Systems • 75

ACM Computing Surveys, Vol. 31, No. 1, March 1999



conditions and for performing updates,
the rule description language is often an
extension of the query language. In gen-
eral, active mechanisms proposed for
relational databases support only one or
a limited range of coupling modes, and
have limited support for composite
event detection. This, however, is not
because of any fundamental restrictions
imposed by the relational model, and
extended proposals may emerge in due
course.

Table IV indicates how four proposals

for the inclusion of active behavior into
relational systems, namely Starburst,
POSTGRES, Ariel, and SQL-3, fit into
the framework introduced in the previ-
ous three sections. The following sub-
sections describe distinctive features of
these proposals. Other examples of ac-
tive extensions to systems with largely
relational data models are presented in
Kotz et al. [1988], Kiernan et al. [1990],
Zaniolo [1994], Harrison and Dietrich
[1994], Bayer and Jonker [1994], and
Reddi et al. [1995].

Table IV. Dimensions Applied to Active Relational Database Systems

76 • N. W. Paton and O. Dı́az

ACM Computing Surveys, Vol. 31, No. 1, March 1999



6.1.1 Starburst. The Starburst ac-
tive rule system adds active functional-
ity to an extensible relational database
system [Widom and Finkelstein 1990],
and has been used as a testbed for a
number of database internal applica-
tions, including integrity constraints
[Ceri et al. 1990] and materialized
views [Ceri and Widom 1991].

Perhaps the most noteworthy feature
of the Starburst rule system is its set-
based execution model, in which rules
are triggered by the net effect of a set of
changes to the data stored in the data-
base. When an operation takes place
that is being monitored by a rule, the
nature of the change is logged in a
transition table. Entries in such tables
can then be revised to take account of
subsequent update operations; for ex-
ample, if a tuple is inserted and then
updated, the net-effect is logged as an
insert of the updated tuple; if a tuple is
inserted and then deleted, the net-effect
is that no operation has taken place.
The information that is stored in transi-
tion tables is used to trigger rules at
rule assertion points, that may take
place either during or at the end of a
transaction. In this context, events do
not trigger rules directly. Rather, the
fact that an event has occurred is re-
corded in a transition table for subse-
quent consideration, and the timing or
order of specific events is not taken into
account by the scheduler.

Each rule that is monitoring a partic-
ular event has access to the net-effect of
all updates of relevance to that event,
and that have not already been consid-
ered by the rule; when a rule is fired
multiple times within a single transac-
tion, the changes it has access to are
those that have taken place since the
last firing of the rule.

The Starburst rule system can be con-
sidered to be conservative in its design,
in that a modest and fixed set of facili-
ties is supported. However, the seman-
tics of rule execution in Starburst is still
quite complex, and it can be argued that
supporting many more facilities is likely

to lead to rule sets that are difficult to
understand and maintain.

6.1.2 POSTGRES. The active rule
system is only one of a number of exten-
sions to the relational model supported
within POSTGRES [Stonebraker and
Kemnitz 1991], with others facilitating
the representation of objects and user-
defined operations. The POSTGRES
rule system is considered within the
section on relational databases because
the object-oriented features of POST-
GRES seem to have had little bearing
on the design of the rule system. The
POSTGRES rule system, like that of
Starburst, can be considered to be quite
conservative, although a key distinction
is that the POSTGRES rule system is
tuple-oriented. Furthermore, the conse-
quences of an event being raised take
effect immediately, rather than being
deferred until a later rule assertion
point.

6.1.3 Ariel. An important character-
istic of Ariel that distinguishes it from
Starburst or POSTGRES is the option-
ality of the event—Ariel principally sup-
ports condition-action rules. The conse-
quences of this distinction for the
implementation of rule systems is con-
sidered in Section 7.5.

The suitability of condition-action
rules compared with ECA-rules depends
upon the context. There are circum-
stances in which it is necessary to make
the event part of a rule explicit to cap-
ture the semantics of an application. In
the example application from Section 2,
there might be a general policy that no
more than 10% of the total value of the
stock owned by Cautious Investments
should be of the one kind. This could be
captured by a condition-action rule
thus.

if h.name 5 “Cautious Invest-

ments”

and h.reg# 5 o.reg#

and

o.stock# 5 s.stock# and

o.qty p s.price . 0.1 p

h.value

from h in Holder, o in Owns,

Active Database Systems • 77

ACM Computing Surveys, Vol. 31, No. 1, March 1999



s in Stock

do ^reduce quantity of s owned

by h&

However, this rule would have the
effect of selling a particular kind of
stock without regard for the reason that
its value had increased relative to the
total value held by Cautious Invest-
ments. It may be preferable to distin-
guish between the different events that
caused the condition to go true using
ECA-rules. For example, if the condition
became true as a result of the purchase
of more of the stock, then the update
may be blocked. By contrast, if the con-
dition became true as a result of an
increase in the price of the stock, then
the portfolio manager could be warned,
but no action taken. These approaches
can be supported by the following rules.

on update to qty of Owns

if h.name 5 “Cautious In-

vestments” and

h.reg# 5 new.reg# and

new.stock# 5 s.stock# and

new.qty p s.price . 0.1 p

h.value

from h in Holder, s in Stock

do abort

on update to price of Stock

if h.name 5 “Cautious In-

vestments” and

h.reg# 5 o.reg# and

o.stock# 5 new.stock# and

o.qty p new.price . 0.1 p

h.value

from h in Holder, o in Owns

do ^inform portfolio manager&

Thus ECA-rules can be considered to
describe the context of a rule in a more
precise way than condition-action rules.
This may not, however, always be to the
advantage of programmers using a rule
system. For example, to describe the
situation captured by the preceding con-
dition-action rule using ECA-rules,
events would have to be defined that
monitor the insertion of tuples into the
Owns table, changes to the reg# at-
tribute of Owns and Holder, updates to
the value attribute of Holder, and so
on. Thus, by providing both ECA-rules

and condition-action rules, Ariel can be
said to offer the best of both worlds in
contexts such as the preceding.

6.1.4 SQL-3. Most commercial rela-
tional databases support trigger mecha-
nisms. However, the knowledge and ex-
ecution models of these mechanisms
have traditionally differed from system
to system. With a view to providing
more consistent support for active
mechanisms in relational systems, trig-
gers are included in the emerging
SQL-3 standard [Kulkarni et al. 1999].
This survey features the standard
rather than any of the current commer-
cial systems, as it is expected that the
commercial systems will drift towards
the standard in due course.

The SQL-3 standard, like many com-
mercial systems, supports both row-
level triggers (with a transition granu-
larity of tuple) and statement-level
triggers (with a transition granularity
of set). Statement-level triggers are exe-
cuted once in response to an update
operation on a table, no matter how
many tuples are affected by the update.
However, perhaps the most important
feature of the SQL-3 standard is that it
makes explicit how triggers are to inter-
act with other features found in rela-
tional databases, and in particular, de-
clarative integrity-checking mechanisms.

6.2 Object-Oriented Systems

Object-oriented databases (OODBs), un-
like their relational predecessors, have
always supported a close association of
user-defined behavior with database
data. Such behavior is generally ex-
pressed as methods attached to the
classes that structure the data stored in
the database. This, plus the hiding of
certain aspects of the structure of an
object using encapsulation, means that
certain of the tasks that may be per-
formed by active behavior in relational
databases are supportable using
method code in object-oriented systems.
Despite this, proposals for active exten-
sions to OODBs abound, with early pro-
posals being made only a few years after

78 • N. W. Paton and O. Dı́az

ACM Computing Surveys, Vol. 31, No. 1, March 1999



the first work on passive OODBs. This
rapid and extensive research activity
has probably been encouraged by the
tendency for OODBs to be used in ad-
vanced applications, where the need for
comprehensive behavior management
facilities is greater than in more tradi-
tional domains. Furthermore, the na-
ture of certain applications has encour-
aged investigation of active database
constructs that are significantly more
powerful than those described for rela-
tional systems in Table IV, as shown for
selected systems in Tables V and VI. As
well as being more powerful than most
extensions to relational databases, a
common difference is that primitive
events in active OODBs are often asso-
ciated with method invocations rather
than access to or update of structure.
This partly derives from the desire to
avoid reducing data independence by
linking active behavior to structure di-
rectly, and partly from the fact that
some systems use layered architectures
in which it is not straightforward to
raise events on the basis of structure
operations.

The following subsections outline the
principal features of eight projects de-
veloping active object-oriented data-
bases, four of which are not based upon
persistent C11 systems (HiPAC, EX-
ACT, NAOS, and Chimera, as featured
in Table V), and four of which are based
on database extensions of C11 (Ode,
SAMOS, Sentinel, and REACH, as fea-
tured in Table VI). Other examples of
active extensions to OODBs are pre-
sented in Dittrich [1993], Etzion et al.
[1994], Naqvi and Ibraham [1994],
Thomas and Jones [1995], and Dinn et
al. [1996].

6.2.1 HiPAC. The HiPAC project
[Dayal et al. 1988; Chakravarthy 1989;
Dayal 1989] pioneered many of the most
important ideas in active databases,
such as coupling modes and composite
events, although the resulting design
was not fully implemented. HiPAC was
associated with the passive OODB
PROBE, and objects in this model were

used to store the ECA-rules of the active
extension. Further distinctive features
of HiPAC are the parallel execution of
triggered rules as subtransactions, the
extension of the query algebra with a
changes operator that allows access to
delta relations that monitor the net ef-
fect of a set of changes, and identifica-
tion of real-time applications that can
benefit from active database facilities.

6.2.2 EXACT. EXACT, an extensi-
ble active rule manager [Diaz et al.
1991; Diaz and Jaime 1997], adds active
facilities to the OODB ADAM, in which
instances, classes, rules, and events are
represented uniformly as database ob-
jects. Two contentions support this
work, specifically: that control informa-
tion rarely refers to single rules but to
sets of rules, and that rules supporting
different applications often require dif-
ferent execution models. To support
these contentions, EXACT provides an
extensible rule model in which collec-
tions of rules can be developed that
share similar features, the functional-
ities of which are described by specializ-
ing the general rule management facili-
ties provided with the system. EXACT
has been used for experimentation in
the development of advanced database
facilities [Diaz 1992; Paton et al. 1993;
Diaz et al. 1994].

6.2.3 NAOS. NAOS [Collet et al.
1994] is an active rule system for the O2

commercial OODB [Deux et al. 1990].
As NAOS has been implemented as part
of the kernel of O2, rather than as a
layer on top that has not been sanc-
tioned by the vendor, it may develop
into the first commercially available ac-
tive OODB.

As O2 provides comprehensive sup-
port for two languages, O2C and OQL,
NAOS has been able to exploit this to
provide declarative expression of condi-
tions using OQL and powerful action
expression using O2C. The execution
model of NAOS is slightly unusual, in
supporting depth-first, recursive pro-
cessing of immediate rules, but breadth-
first, iterative processing of deferred

Active Database Systems • 79

ACM Computing Surveys, Vol. 31, No. 1, March 1999



rules. The NAOS rule system has been
formally specified using denotational
semantics [Coupaye and Collet 1995],

and is also being used for experimental
work on optimization [Collet and Man-
chado 1995].

Table V. Dimensions Applied to Active Object-Oriented Systems

80 • N. W. Paton and O. Dı́az

ACM Computing Surveys, Vol. 31, No. 1, March 1999



6.2.4 Chimera. The Chimera [Ceri
et al. 1996] active rule system is unique
among those surveyed here in building
upon a deductive object-oriented data-
base (another such system is described
in Dinn et al. [1996]). The use of the

deductive language for condition expres-
sion encourages a set-oriented view of
rule processing, and information is
passed from the event to the condition
by querying an event history. Another
unusual feature of Chimera is that rule

Table VI. Dimensions Applied to Active Object-Oriented Systems Based on C11

Active Database Systems • 81

ACM Computing Surveys, Vol. 31, No. 1, March 1999



conditions and actions can access past
database states, either at the start of
the current transaction, or when the
rule was last fired. Chimera is imple-
mented by compiling user statements
into an internal form that is interpreted
by a runtime system that stores both
database and rule system data using
the ALGRES extended relational stor-
age manager.

6.2.5 Ode. The Ode database system
is defined and manipulated using the
O11 database programming language,
which extends C11 with database facil-
ities (e.g., persistence, versions). It pro-
vides two categories of rules that are
semantically divided into constraints
and triggers, each with a different syn-
tax and execution model [Gehani and
Jagadish 1991]. Although triggers can,
in general, be used to support con-
straints, the authors argue that the dis-
tinction clarifies the role that is being
played, and facilitates more efficient im-
plementation. Both constraints and
triggers are defined at the class level,
and are subject to inheritance like other
properties of a class.

A constraint consists of a predicate on
the state of an object and a single action
to be executed if the condition becomes
false. Once the action has been exe-
cuted, the system checks the condition
again. If it is still false, the transaction
is aborted. As for the event-condition
coupling modes, different options are
supported depending on whether con-
straints should be checked immediately
(declared as hard constraints), or de-
ferred until the end of transaction (de-
clared as soft constraints). Multiple up-
dates affecting the same hard
constraint in the course of a transaction
cause the constraint to be evaluated
once after each update, whereas for a
soft constraint the check is only carried
out once at the end of the transaction.
Constraints affect all instances of a
class, and are permanently activated.

Unlike constraints, triggers have to
be explicitly activated on particular ob-
jects. If a trigger is active, then when its

condition becomes true, its action is ex-
ecuted. Once signaled, triggers declared
as once-only are automatically deacti-
vated whereas those declared as perpet-
ual are reactivated automatically. The
user can explicitly deactivate a trigger
using the command deactivate. Unlike
constraints, triggers with a condition
that has evaluated to true are executed
in a separate transaction after the cur-
rent transaction has committed (i.e., the
event-condition coupling mode is imme-
diate, whereas the condition-action cou-
pling mode is detached dependent).
Note that the processing supported by
triggers in Ode is quite distinctive, and
open to interpretation in different ways.
Here, triggers have been considered as
condition-action rules, but an equally
valid interpretation is that they are
event-action rules in which the event is
defined using a rich event algebra and
Boolean expressions, known as masks.

6.2.6 SAMOS. SAMOS [Gatziu et
al. 1991; Gatziu and Dittrich 1994] pro-
vides active facilities on top of the Ob-
jectStore commercial OODB. As the de-
velopers of SAMOS did not have access
to the source of ObjectStore, the active
system is implemented as a layer on top
of ObjectStore, rather than as part of
the kernel.

Perhaps the most significant feature
of SAMOS is its event detector, the se-
mantics of which is based upon Petri
nets, and which, in turn, is imple-
mented using a graph structure that
reflects the structure of the Petri net.
The event language itself presents users
with a series of operators that are
shared by other systems with compre-
hensive event languages, such as
HiPAC [Dayal et al. 1988], Sentinel
[Chakravarthy et al. 1994], or REACH
[Buchmann et al. 1995].

6.2.7 Sentinel. Sentinel [Chakra-
varthy et al. 1994] is an active exten-
sion to the C11 based OpenOODB sys-
tem from Texas Instruments [Wells et
al. 1992]. The focus in this project has
been upon the provision of comprehen-

82 • N. W. Paton and O. Dı́az

ACM Computing Surveys, Vol. 31, No. 1, March 1999



sive event specification mechanisms,
representation of rules as database ob-
jects, and integration of the rule system
with a sophisticated transaction man-
ager. In particular, the consumption
modes that are now widely accepted as
providing appropriate descriptions of
how to construct parameters to compos-
ite events in rule systems with tuple-
level transition granularities were first
implemented in Sentinel.

6.2.8 REACH. REACH [Buchmann
et al. 1995] has much in common with
Sentinel in that it too is an active exten-
sion to OpenOODB. The emphasis in
the REACH project has been on devel-
oping a comprehensive understanding
of how the rule manager interacts with
complex transaction models, with a
view to supporting open applications
[Branding et al. 1994]. Examples of cou-
pling modes supported in REACH with
open applications in mind are sequen-
tial causally dependent, in which a rule

executes in a separate transaction from
its triggering event only after the trig-
gering transaction commits, and exclu-
sive causally dependent, in which a rule
executes in a separate transaction from
its triggering event only after the trig-
gering transaction aborts.

7. ARCHITECTURAL ISSUES

This section considers how some of the
characteristics of active database sys-
tems presented in the foregoing sections
can be implemented. In addressing cer-
tain issues, reference is made to the
abstract architecture of an active data-
base system presented in Figure 5. This
figure makes explicit the principal pro-
cesses (rectangles) and data stores (el-
lipses) used to implement the function-
ality illustrated in Figure 4.

The principal processes are as follows.

(1) The Event Detector ascertains
what events of interest to the rule

Figure 5. Abstract active rule system architecture.

Active Database Systems • 83

ACM Computing Surveys, Vol. 31, No. 1, March 1999



system have taken place, if any.
Primitive events are notified from
the database or from external sourc-
es; composite events are constructed
from incoming primitive events plus
information about past events that
can be obtained from the history.

(2) The Condition Monitor evaluates
the conditions of rules associated
with events that have been detected
by (1). In systems that support con-
dition-action rules, there is no ex-
plicit statement of the events to be
monitored, although actual imple-
mentations do have to monitor prim-
itive events. The distinctive imple-
mentation strategies that are often
used in such systems are considered
in Section 7.5.

(3) The Scheduler compares recently
triggered rules with those that have
previously been triggered, updates
the conflict set, and fires any rules
that are scheduled for immediate
processing.

(4) The Query Evaluator executes da-
tabase queries or actions. Access
may be required both to the current
state of the database and to past
states in order to support monitor-
ing of how the database is evolving.

The functionality of each of the preced-
ing components depends very much on
the knowledge and execution models of
the active database system to be sup-
ported, which in turn are influenced by
the environment within which the ac-
tive database is being developed. Archi-
tecturally, two principal categories of
active database can be identified.

Layered. The active component is
developed as a layer of software on top
of an unchanged passive database sys-
tem. This approach has the advantage
that no access is required to the source
code of the passive database system,
and that the resulting active system
may be easily portable for use with dif-
ferent passive systems. However, the
lack of access to the kernel of the under-
lying database may have an impact

upon performance and limit what func-
tionality can be supported in terms of
primitive event detection, coupling
modes, and optimization.

Integrated. The active component is
developed by changing the source of an
existing passive database system. This
approach frees the designer of the active
database system from the limitations of
the layered approach, and is probably
the preferred model for developing in-
dustrial-strength systems. It is worth
noting, however, that the number of re-
quired changes to the kernel of a system
to allow it to support active capabilities
effectively is often not large, and that
practical systems can be developed us-
ing largely layered software, with a
small number of hooks into the kernel.

The first systematic performance
evaluation of different active database
systems and architectures is provided
by Geppert et al. [1998]. The following
subsections address a range of imple-
mentation issues in more detail.

7.1 Event Detection

There are two principal aspects to the
implementation of event detection—the
monitoring of primitive events and the
accumulation of information that is of
relevance to composite events.

The detection of primitive events nor-
mally involves some form of check
within the kernel of the database sys-
tem, a characteristic that means it is
often not possible for active functional-
ity to be implemented as a layer on top
of an existing database system. For ex-
ample, to detect that an update has
been made to a tuple in a relation, it is
necessary for the update operation of
the database system to be able to iden-
tify which primitive events are associ-
ated with the specific update being per-
formed. As a further example, in object-
oriented databases events are often
raised in response to the invocation of
user-defined methods, in which case the
event detector must be notified of mes-
sage-sending events by the method dis-

84 • N. W. Paton and O. Dı́az

ACM Computing Surveys, Vol. 31, No. 1, March 1999



patcher. Specific techniques for detect-
ing primitive events in object-oriented
systems are discussed in Dittrich
[1993], Gatziu and Dittrich [1994],
Chakravarthy et al. [1994], and Kim et
al. [1992]. Broadly speaking, this can be
achieved using a sender-based, receiver-
based, or dispatcher-based mechanism
[Fernandez and Diaz 1995]. The first
does not really lead to active systems,
as event detection is undertaken by the
application rather than the DBMS it-
self. The application is changed wher-
ever the relevant message is sent. As
well as being intrusive, the main draw-
back of this approach is that detection is
replicated, distributed, and embedded
in application programs, thus jeopardiz-
ing encapsulation and maintenance.

The receiver-based approach is
mainly based on wrappers: a monitored
message must activate an operation
that extends the original code provided
by the user with the associated signal to
the event detector. This extra code is
called a wrapper since it is typically
executed before and/or after the original
method. The receiver-based approach is
generally found in layered architec-
tures, as primitive event detection can
be implemented by preprocessing appli-
cation programs, and thus changes to
the kernel of the database are not re-
quired.

By contrast, dispatcher-based mecha-
nisms offer a general solution by placing
the signaling code inside the database
system itself. Such mechanisms can be
used to monitor a range of aspects of
system behavior, including transaction
operations, structural primitives, and
behavior invocations. As this approach
requires changes to the kernel of the
database, it is found only in systems
with integrated architectures.

As for composite event detection, it
involves recording information on all
partially detected composite events that
may become fully detected in the future.
For example, in the composite event E1

and E2, if E1 has taken place but E2 has
not, then this fact must be recorded
until E2 either does take place or the

timespan within which the event is to
be detected expires. For composite
events whose components are primitive
events that have originated within the
boundaries of a single transaction, the
end of the transaction marks the end of
the monitoring period, and all partially
composed events can be removed. If the
source transaction is not relevant, so
that a composite event can be formed by
events that originate in different trans-
actions, a validity interval is required.
This may be given either for the whole
composite event, or it may be deter-
mined by the smallest validity interval
of the composing events [Buchmann et
al. 1995].

A range of different structures has
been proposed for implementing com-
posite events along with event algebras.
For example, Gatziu and Dittrich [1994]
describe the use of colored Petri nets for
specifying and implementing an event
detector, whereas Gehani et al. [1992]
use finite state automata, and Chakra-
varthy et al. [1994] use an event graph
that is linked directly to the query
graph used to express the condition of
the corresponding rule. As an example
of how information on partially detected
events is accumulated, Figure 6 shows
the event graph that would be used to
describe the event E1 and E2 or E3. As
events take place, the event graph is
decorated with instances of primitive

Figure 6. Example of Sentinel event graph.

Active Database Systems • 85

ACM Computing Surveys, Vol. 31, No. 1, March 1999



events that are then consumed as com-
posite events are detected. For the ex-
ample, in Figure 6, in all event con-
sumption modes except Recent
mentioned in Section 4, if N occurrences
of E1 are raised before any occurrences
of E2, then all N occurrences of E1 must
be stored in anticipation of the subse-
quent raising of some matching occur-
rences of E2. Such a process can be very
expensive, and in practice care must be
taken in the design and use of compos-
ite event detectors to ensure that the
history datastore in Figure 5 does not
become extremely large.

7.2 Condition Monitoring

The event combined with the condition
describes the situation that an ECA-
rule is monitoring. As such, there is
often a close association between the
event detector and the condition moni-
tor—the event detector initiates pro-
cessing within the condition monitor,
and information about the events that
have occurred must be passed from the
event detector to the condition monitor.
The more sophisticated the event detec-
tor, the more complex will be the infor-
mation to be passed to the condition
monitor. For example, in the case of a
primitive event such as on insert to

Stock, the only information that needs
be passed to the condition monitor
about the event is the inserted tuple. By
contrast, where the event is composite,
the relevant information about the
event is also more complex. For exam-
ple, in a conjunctive event, information
should be available to the condition of
the rule on all of the events that caused
the conjunctive event to be signaled.

Once rules that are associated with
detected events have been retrieved
from the rule base and bound to the
parameters of these events, they must
be passed to the query evaluator to es-
tablish which rules have satisfied condi-
tions. The query processor is likely to be
an extension of that used with a passive
database, as rule conditions are param-
eterized with bindings from events, and

may also have access to past states of
the database. For example, in Starburst
[Widom et al. 1991] a transition log
records how tables have changed during
a transaction, which supports access
from the condition of the rule to the
accumulated changes associated with
the event that has triggered the rule. A
comparable mechanism is required by
any system that supports rule process-
ing based upon the net effect of a set of
accumulated changes. The contents of
the history in a specific rule system
thus depend upon the nature of the
event specification language supported,
plus the scope of access to past database
states from the condition/action of the
rule.

Some condition languages are based
on the declarative query language of the
underlying database, which raises the
possibility of applying optimization
techniques to rule conditions. In gen-
eral, the existing optimizer can be ap-
plied directly to the optimization of such
conditions, and significant gains in per-
formance are likely to be experienced
where event parameters are used to re-
strict the information accessed by the
condition. A similar theme is explored
by Baralis and Widom [1995], where it
is shown how exploitation of intermedi-
ate information held by the rule man-
ager can be used to speed up condition
evaluation, although this approach only
provides significant gains where there
is repeated triggering of individual
rules. Furthermore, in systems with
rich event algebras that are able to
match specific values in events, an opti-
mizer may be able to move some of the
selections from the condition into the
event detector. It is also shown in Collet
and Manchado [1995] how detailed
analysis of rule conditions and actions
can be used to identify rules that are
amenable to parallel execution.

The design and implementation of ef-
fective situation monitors for active da-
tabase systems is of considerable impor-
tance, and various balances have to be
struck between the provision of expres-
sive facilities and efficiency of process-

86 • N. W. Paton and O. Dı́az

ACM Computing Surveys, Vol. 31, No. 1, March 1999



ing. For example, expressive event alge-
bras enable more of the situation that is
being monitored to be described within
the event part of the rule, which in turn
leads to less frequent invocation of sim-
plified rule conditions. However, the re-
duced cost of condition evaluation must
be balanced against the considerable
overheads associated with composite
event detection. A definitive position on
the tradeoffs involved in situation mon-
itoring awaits further theoretical and
empirical analyses of alternative ap-
proaches.

7.3 Action Execution

Rules with conditions that are satisfied
are prepared for execution by the sched-
uler, which also maintains the conflict
set of triggered rules that have yet to be
fired. The complexity of the scheduler
also varies considerably from system to
system: for example, in POSTGRES
[Stonebraker et al. 1990] the scheduler
is quite straightforward, as all rules are
fired as soon as they are triggered, and
because there is no priority scheme that
requires rules to be fired in a specific
order. By contrast, in Starburst [Widom
et al. 1991] the scheduler is more com-
plex: rules must be fired in an order
that is consistent with a priority graph,
and it is possible for a rule to be re-
moved from the conflict set without be-
ing fired because the processing of rules
is based upon the net effect of the
changes to the underlying database.

When a rule is scheduled for execu-
tion, its action is passed to the query
evaluator, which in turn is likely to
update the database and the history.
The action of a rule is also likely to have
access to information on the event that
caused the rule to be triggered (i.e.,
BindE), and may also be passed data
that have been retrieved by the condi-
tion of the rule (i.e., BindC), for exam-
ple, the set of objects for which an integ-
rity constraint has been violated.

Binding can be supported in different
ways. In HiPAC and EXACT, explicitly
specified parameters are available to

provide access to the current event. For
example, the predicate current_occur-
rence(O) can be used in rule conditions
or actions in EXACT to obtain the pa-
rameters of the event occurrence that
has triggered the rule. Starburst stores
binding information in transition tables
that record the net effect of tuple modi-
fications caused during query process-
ing. Transition tables can be queried by
the condition or the action of a rule.
Unlike Starburst, POSTGRES has
tuple-based processing, which consider-
ably simplifies the bindings, since only
the current tuple needs to be consid-
ered. Correlation names new and old
are provided to allow accessing the
value of the current tuple before and
after modification.

7.4 Transaction Management

It is often the case that sophisticated
facilities in the associated passive data-
base system can be used to increase the
functionality of the active mechanisms.
For example, in active object-oriented
systems much has been made of the
ability to associate rules with user-de-
fined operations, and to share active
behavior within inheritance hierarchies.
Most implemented active database sys-
tems are associated with conventional
flat transaction models, and thus rules
are processed to completion within the
same transaction as the events that led
to their triggering. However, where
more sophisticated transaction manage-
ment facilities are available, these can
be exploited to increase the flexibility of
conventional rule systems, and to allow
addition of features that can be used to
support more advanced applications.

Rich transaction models can be used
to underpin a range of different behav-
ioral extensions to execution models
[Beeri and Milo 1991]. A nested transac-
tion is a transaction that contains
within it a number of component trans-
actions, or subtransactions [Moss 1985].
The nested transaction creates the sub-
transitions and waits until they termi-
nate. This model can be extended so

Active Database Systems • 87

ACM Computing Surveys, Vol. 31, No. 1, March 1999



that the nested transaction can run con-
currently with the subtransactions
[Harder and Rothermel 1993]. As well
as speeding up the whole process as a
result of increased concurrency, this
model can be useful for active database
systems. For example, if the action of a
rule is unable to carry out the task
assigned to it, then there is a significant
chance that the whole transaction will
be aborted, potentially undoing a signif-
icant amount of work. By contrast, if
the action of the rule is executed in a
separate subtransaction (the triggered
transaction) which aborts, then the par-
ent transaction (the triggering transac-
tion) is free to decide how to respond to
the failure: it could repeat the action a
set number of times, fire an alternative
action, and so on. Such underlying func-
tionality can be made available to the
rule programmer as extensions to the
rule definition that describe how to re-
spond to failures.

In addition, a number of issues can be
identified that relate to the relationship
between concurrency control and cou-
pling modes. If the triggering and trig-
gered transaction are executed concur-
rently, it could happen, depending on
the concurrency control method used,
that the triggered transaction commits
while the triggering transaction is still
executing (and thus, potentially abort-
ing). This possible behavior jeopardizes
the concept of causality: an effect should
not precede its cause [Hsu et al. 1988].
To fall into line with this concept, a
schedule must obey the following two
rules: the triggered transaction must be
serialized after the triggering transac-
tion, and the triggered transaction can
commit only if the triggering transac-
tion commits. The user may either
choose to obey the causality principle or
to allow the triggered transaction to be
executed freely. Using the terminology
introduced in Section 4, these options
correspond to the detached depen-
dent and detached independent cou-
pling modes, respectively.

7.5 Production Rule Algorithms

The architecture presented in Figure 5
makes explicit the role of event detec-
tion for situation monitoring, whereas
some systems, such as Ariel [Hanson
1992] and Amos [Skold and Risch 1995]
support production (or condition-action)
rules without explicit event specifica-
tions. In practice, however, primitive
update events must also be detected by
database production systems, as the
truth of a condition can be changed as a
consequence of changes to the underly-
ing database. Figure 5 can thus be seen
as a potential architecture for imple-
menting a production rule system, al-
though algorithms commonly used for
improving the efficiency of condition
evaluation are quite different from
those generally applied in the context of
ECA-rules.

Condition-action rules are processed
in the context of the following recognize-
act cycle.

match

while (conflict set not

empty) do

conflict resolution

act

match

end-while

In such a cycle, the match phase iden-
tifies rules with conditions that are true
with respect to the state of the data-
base, and adds them to the conflict

set, which is essentially a queue of
triggered rules waiting to be fired. The
conflict resolution step selects a
single rule from the conflict set for fur-
ther processing in the act phase, which
executes the statements in the action of
the selected rule.

A naive evaluation of the match

phase would evaluate the condition of
every rule to find which rules should be
considered for processing. Such an ap-
proach would be prohibitively expen-
sive, and is unnecessary, as only a small
part of the database over which each
condition acts is likely to change during
each cycle. What many methods seek to
do is avoid recomputing the entire con-

88 • N. W. Paton and O. Dı́az

ACM Computing Surveys, Vol. 31, No. 1, March 1999



dition of a rule by storing information
on the partially computed condition of a
rule between cycles.

In what follows, the example relations
from Figure 2 are used to illustrate two
of the principal approaches. A typical
production rule in Ariel notation [Han-
son 1992] relating to these data could
monitor every UK based owner of IBM

stock:

if s.name 5 “IBM” and

s.stock# 5 o.stock# and

o.reg# 5 h.reg# and

h.country 5 “UK”

from s in Stock, o in Owns,

h in Holder

do ^action&

The query used to express the condi-
tion involves a join of the Owns relation
with both Stock and Holder.

The principal notion behind the Rete
[Forgy 1982] matching algorithm, which
was originally proposed for implement-
ing main-memory OPS-5 production
rule systems, is that by storing the par-
tially computed condition of a rule be-
tween cycles of rule execution, the effect
of changes to the database on the con-
flict set can be computed with minimal
additional effort. The partially com-
puted condition of a rule is often stored
in a graph structure known as a dis-
crimination network. The preceding ex-
ample query can be represented by the
Rete discrimination network in Figure
7.

The Rete network has a number of
different node types: a root node serves
as the entry point to the network; below
the root node are a number of nodes
that represent the base tables; and be-
low any node that represents a stored
table, there can be zero or more filter
nodes, each of which applies a single
condition to the relation. After a filter
has been applied, the tuples that have
satisfied the condition in the filter are
stored in a memory tables. A node with
two parents performs a join on its par-
ent relations, the result of which is
stored in a b memory node. At the bot-

tom of the tree is the result node that
holds the conflict set.

The Rete match phase operates by
passing information down through the
network from the root. For example, if a
new Holder tuple is entered into the
database, it is tested to see if it has a
country equal to UK—if so, it is stored
in the a memory node alpha1. The tuple
is then joined with the a memory node
alpha2, and if tuples result from the
join, they are stored in the b memory
node beta1. Any such new tuples are
then joined to the a memory node al-
pha3 to yield additional data for the
conflict set.

Although Rete has been used in com-
mercial production-rule systems, there
are a number of problems, especially
when large databases are used: the
space overhead is high, with both a and
b memories storing the intermediate re-
sults of computation, and maintenance
of such results, particularly on deletion
of data, imposes a significant overhead.
Work on the identification of alterna-
tives to Rete has explored two principal
issues relating to intermediate informa-
tion.

What to Store. A spectrum can be
seen to exist, with no storage of inter-
mediate results at one end, and storage
of all intermediate results at the other.
Rete is at the storage-intensive end of
this spectrum, with both a and b mem-
ories being used. A variation of Rete
with a but no b memories is TREAT
[Miranker 1987], which outperforms
Rete in many cases [Wang and Hanson
1992]. More recent research has shown
how rules can be analyzed to identify
what level of intermediate storage is
most suitable for them [Fabret et al.
1993].

How to Store It. Algorithms such as
TREAT can be built directly on top of
relational storage structures, but re-
searchers have identified structures
that improve certain aspects of condi-
tion monitoring. For example, Hanson
[1992] exploits interval skip lists to re-

Active Database Systems • 89

ACM Computing Surveys, Vol. 31, No. 1, March 1999



duce the cost of searching and updating
a memories, and Brant and Miranker
[1993] use a specialized index structure
to improve join performance.

7.6 Active Rules in a Distributed

Environment

Until now, this article has assumed that
active behavior is being supported in a
single centralized database. However,
many modern applications have a dis-
tributed nature, and a number of pro-
posals have been made for exploiting
active behavior in distributed systems.
Here, the active mechanism is seen as a

set of cooperating objects distributed
throughout a network of loosely coupled
autonomous nodes. Event detection,
event management, or rule manage-
ment are seen as services that cooperate
to offer the functionality previously
bundled in a monolithic active mecha-
nism. Standards such as CORBA [Orfali
et al. 1996] provide the communication
middleware required for cooperation in
this distributed setting. Figure 8 gives
an overview of how the architecture pre-
sented in Figure 11 has been adapted to
the new setting. The pioneer work of C2

offeine [Koschel et al. 1997] illustrates

Figure 7. Rete network for example rule.

90 • N. W. Paton and O. Dı́az

ACM Computing Surveys, Vol. 31, No. 1, March 1999



this approach. This system enables ECA
rule-based detection, processing, and re-
porting of events and complex situa-
tions to be done in CORBA-based sys-
tems with heterogeneous and
distributed information sources. Despite
the limited experience to date, some in-
sights can be given about the implica-
tions of distribution of active rule sup-
port.

As far as architecture is concerned,
rule management is no longer central-
ized but distributed. Although Figure 8
suggests that each component is cen-
trally located at a different site, this
does not need to be so. For instance,
event detection can be distributed
among sites [Bacon et al. 1995; Schwid-
erski 1996]. Each site contains a local
event detector and a global event detec-
tor. The former basically corresponds to
the detectors found in centralized sys-
tems, while the latter are responsible
for monitoring intersite composite
events. A global event detector responsi-
ble for event e registers its interest in
e’s components in the corresponding de-
tectors. The detection of a global event
is then distributed among different
sites. As soon as an event is detected, a
signal is sent to each of the detectors
that have registered an interest in it.
Likewise, rule management support of-

fers distinct alternatives: (1) a central
rule manager maintaining a global rule
base, (2) a set of rule managers in dis-
tinct sites each one with its local rule
base, and (3) a set of rule managers but
with a global rule set [von Bueltzings-
loewen et al. 1998].

Being in a distributed context, archi-
tectural alternatives must consider
communication overheads. For instance,
CORBA includes an event service that
supports asynchronous communication
between objects. Communication is
achieved through event channels. An
event channel is a queue onto which
events are placed by suppliers and re-
moved by consumers. Two models are
provided for event communication,
based on who initiates the communica-
tion. The push model allows a supplier
of events to initiate the transfer of the
event data to consumers. The pull
model permits a consumer of events to
request the event data from a supplier.2

These options should be considered

2 A key point, however, is that both the supplier
and the consumer are aware of event processing;
that is, they have to initiate event processing
explicitly, thus violating the nonintrusive princi-
ple that characterizes the event-based paradigm.
Moreover, CORBA does not explicitly support
composite events.

Figure 8. Active rule system architecture: moving to a distributed setting.

Active Database Systems • 91

ACM Computing Surveys, Vol. 31, No. 1, March 1999



when addressing communication among
the distinct components supporting the
active functionality. For instance,
should the signaling phase involving
communication between event sources
and the event detector follow a push
model (also known as reactive) or a pull
model (also known as proactive)? Reac-
tive models are useful for central event
detectors where every event is relevant
for the system. Otherwise, an important
communication overhead is caused since
every event must be communicated to
the event detector. On the other hand,
proactive models incur a bigger process-
ing overhead [von Bueltzingsloewen et
al. 1999]. Likewise, communication be-
tween the event detector and the rule
manager (the triggering phase) can also
follow a reactive or a proactive ap-
proach. The former implies explicit sub-
scription of the rule manager to the set
of events in which it is interested,
whereas the proactive approach leaves
the rule manager to poll the event col-
lection periodically [von Bueltzingsloe-
wen et al. 1999].

In addition to architectural consider-
ations, both the knowledge and execu-
tion models should also be revised when
moved to a distributed (and potentially
heterogeneous) setting. As for the
knowledge model, heterogeneity of the
event sources can lead to additional
classifications besides those found in
centralized systems (e.g., workflow
events). Also, the diversity of the data
sources and the lack of a single state
requires further precision in setting the
context in which conditions and actions
are performed. A complex problem is
that of timestamps. In a centralized sys-
tem there is a single clock that allows a
total ordering of event instances based
on their occurrence time. That is, two
distinct primitive events e1 and e2 can
always be ordered as they cannot occur
simultaneously: either e1 happens be-
fore e2 or vice versa. The time of a
composite event occurrence is then de-
rived from the occurrence times of its
components. By contrast, distributed
systems do not have global time: each

site has its own local clock, and events
may occur simultaneously at different
sites. As events contributing to a com-
posite event originate from different
sites, an event’s timestamp should be
globally meaningful. Therefore, local
clocks must be synchronized through
special time servers that transmit time
information to each site, and the delay
in the synchronization among the sites
should be below a parameter P obtained
as the maximum time difference be-
tween two “simultaneous” ticks of any
two local clocks. Summing up, two time-
stamps are required, namely, local
timestamps, needed for constructing in-
trasite composite events, and global
timestamps as a canonical form used in
the detection of intersite composite
events [Schwiderski 1996].

Finally, the execution model also
needs to be revised. As a case in point,
the error handling dimension should
now be extended with communication
delays and disruptions to be faced in
any messaging among the components
of the active mechanism. The solution
will vary depending on the components
and the impact of the error. For in-
stance, communication delays during
signaling between the event detector
and an event source can cause global
event detectors to receive events in a
different order from their actual occur-
rence. Contingency actions can opt for
asynchronous evaluation or synchronous
evaluation [Schwiderski 1996]. The
former ignores the fact that there may
be delayed events, and begins evalua-
tion as soon as suitable event occur-
rences arrive at a composite event de-
tector. Hence, events are not composed
in a way that takes account of the order
of their occurrence, but, on the other
hand, event detection is not blocked by
delayed events and is therefore faster.
As an example, consider the event e1 or
e2. If e2’s site fails, the disjunction can
still be detected whenever e1 is de-
tected. By contrast, synchronous evalu-
ation waits for delayed events, and eval-
uation proceeds only if all relevant
events have arrived at the site of the

92 • N. W. Paton and O. Dı́az

ACM Computing Surveys, Vol. 31, No. 1, March 1999



global event detector. Although syn-
chronous evaluation respects the occur-
rence order of events, the evaluation
may be blocked long-term if there is
transmission disruption or site failure.
In the previous disjunctive example, the
sites of both e1 and e2 are checked for
relevant events before a disjunctive
event occurrence is detected. In most
cases, checking reveals that no relevant
events should have been detected. Occa-
sionally, a disruption can occur that de-
lays the arrival of a relevant event. The
global detector does this checking so
that the consumption policy can be
properly supported. As Schwiderski
points out, which strategy is most ap-
propriate depends on the application.
Likewise, failure of data source access
(e.g., due to a node breakdown) during
condition evaluation or action execution
should be addressed. The options pro-
posed range from an instead action to
the execution of no action [Koschel et al.
1997].

Although few details are yet avail-
able, distributed active rule manage-
ment is likely to be one of the future
services offered by CORBA-compliant
suppliers. Its need can be corroborated
by the proposals for event mechanisms
which, independently of the active
DBMS community, have already been
proposed for supporting debugging
[Bates 1995], communication, and inte-
gration in distributed applications
[Amouroux 1995; Barghouti and Krish-
namurthy 1995].

8. DEVELOPING ACTIVE APPLICATIONS

Comprehensive support for active mech-
anisms within a database system is no
guarantee that they will be used. In-
deed, experience in the application of
active databases often indicates that al-
though such facilities are suitable for
performing a range of different tasks,
they are not straightforward to use. Dif-
ficulties include the following.

—It is not obvious (1) which parts of an
application should be supported using

active mechanisms, and which using
other techniques, and (2) what perfor-
mance penalty is likely to result from
the use of rules. This is exacerbated
by the lack of appropriate design
methodologies.

—The functionality of a large rule base
may be difficult to understand, with
rules interacting in complex ways and
no single description of how control
flows through an application.

—The tools associated with an active
rule system may be minimal, with
little support for browsing, monitor-
ing, or debugging of active rules.

These points reflect a need for design
methodologies, rule analysis tech-
niques, and tools for debugging and ex-
planation. In what follows, recent ad-
vances in each of these areas are
outlined.

8.1 Rule Design

There are well-established techniques
for database design that emphasize the
description of the structural aspects of
information in a domain (e.g., E/R mod-
eling, normalization), and which in turn
are used alongside mechanisms for de-
scribing processes (e.g., dataflow dia-
grams) to capture the semantics of com-
plete applications. Although active
behavior is often closely linked to the
structures stored in a database, and
rule actions carry out tasks that can be
viewed as processes, it is not yet clear
what techniques are most suitable for,
or most easily adapted to address, the
functionalities supported by active
rules. In particular, given the require-
ments of an application, design tech-
niques should provide guidance on the
aspects that should be supported using
active mechanisms, and those that are
better addressed using other facilities.

Where proposals have been made for
methods with explicit support for active
behavior, this has often been as an ex-
tension to an existing structural data
model. For example, (ER)2 [Navathe et
al. 1995] is an extension of the E/R

Active Database Systems • 93

ACM Computing Surveys, Vol. 31, No. 1, March 1999



model to support the description of
events and rules that can be mapped to
active rule facilities similar to those
found in commercial relational data-
bases. IFO2 adapts the modeling con-
structs of the IFO semantic data model
[Abiteboul and Hull 1987] for use in
describing composite events, and also
includes a mapping to an active rule
language, although in this case the des-
ignated language must be more power-
ful than in the case of (ER)2. More
comprehensive facilities still, including
temporal events, are provided by
Bichler and Schrefl [1994] in an ex-
tended object-oriented modeling lan-
guage. These approaches, however, all
assume that active rules should surface
explicitly in the design method, which
tends to prejudge the question of which
parts of an application should be sup-
ported using active techniques and
which using other alternatives.

This has been the focus of the IDEA
methodology [Ceri and Fraternali 1997]
which gives some initial insights on this
topic, and provides high-level descrip-
tion languages which in the later stages
of development are mapped into low-
level triggers (such as those found in a
commercial DBMS).

8.2 Rule Analysis

The semantics of most active database
systems in the literature are described
informally; for representative examples
see Section 6, and papers such as Stone-
braker et al. [1990] and Widom and
Finkelstein [1990]. There are a number
of disadvantages to this approach: spe-
cific descriptions may be incomplete or
ambiguous, it is often difficult to com-
pare the functionality of different sys-
tems, and there is no basis upon which
to build tools that support the formal
analysis of rule bases. Recently, formal
specifications have been developed for
active database systems using denota-
tional semantics [Widom 1992; Coupaye
and Collet 1995], Object-Z [Campin et
al. 1997], and combined logic/opera-
tional techniques [Fraternali and Tanca

1995; Fernandes et al. 1997], but al-
though such proposals help to clarify
the informal definitions of specific sys-
tems, they have not yet been used as a
basis for reasoning about rule bases.

There are a number of different char-
acteristics of rule behavior for which a
rule analyzer can search [Aiken et al.
1992].

—Termination. Is rule processing
guaranteed to terminate? Rule pro-
cessing may fail to terminate when-
ever a cycle exists in a graph in which
nodes represent rules and edges rep-
resent Can-Trigger relationships—the
triggering graph. For example, in Fig-
ure 9, any firing of rules R2 and R4 is
guaranteed to terminate, but any fir-
ing of rules R1 or R3 may initiate a
series of rule firings that fails to ter-
minate.

Static analysis of a rule base can indi-
cate whether a set of rules may fail to
terminate. For example, a straightfor-
ward approach to the analysis of the
Can-Trigger relationship would insert
an edge from rule Ri to rule Rj if the
action of Ri performs an update to a
relation that is being monitored by
the event of Rj. This approach is

Figure 9. Graph depicting possible rule trigger-
ing dependencies.

94 • N. W. Paton and O. Dı́az

ACM Computing Surveys, Vol. 31, No. 1, March 1999



conservative, in the sense that poten-
tial nontermination will be detected
even when in practice the rules will
always terminate. For example, con-
sider the following rule definition that
relates to the unary relation Rel with
the integer attribute num.

create rule R1 as

on insert to Rel

if num . 10

do insert into Rel values

(5)

Using the approach described previ-
ously, R1 in itself would be considered
to be a potential source of nontermi-
nation, although in practice R1 is
never directly recursive because the
tuple inserted by its action always
leads to the condition of the rule be-
ing false. Less conservative ap-
proaches to rule termination analysis
that examine the conditions and the
actions of rules in more detail, but
which are as a result more system
specific, are presented in Baralis and
Widom [1994] and Weik and Heurer
[1995].

—Confluence. Is the result of rule
processing independent of the order
in which simultaneously triggered
rules are selected for processing? If
the policy Holder relation from Sec-
tion 2 had an attribute NumStocks,
the role of this attribute could be in-
terpreted differently by different
rules. For example, the following rule
would help to maintain NumStocks as
the number of items of stock held.

on insert to Owns or

update to reg# of Owns or

update to reg# of Holder

if ^change affects amount of

stock held by Holder h&
do ^update NumStocks at-

tribute of h&

However, an alternative interpreta-
tion would treat NumStocks as the
maximum number of stocks that a
Holder can own at any one time, giv-
ing rise to the following rule.

on insert to Owns or update

to reg# of Owns or

update to reg# of Holder

if ^amount of stock held by

Holder h is more than Num-

Stocks&
do ^reduce range of stock

held by Holder h&

These rules clearly implement incon-
sistent policies regarding stock hold-
ing; if both rules have the same prior-
ity and are present in the rule base at
the same time, then updates to the
database will nondeterministically af-
fect what stock is held.

Confluence can be understood by con-
sidering that the firing of a rule in
one database state may lead to the
creation of a new database state. If
more than one rule is triggered at the
same time, then more than one poten-
tial successor state exists, as illus-
trated in Figure 10 where the states
S2 and S3 are the successors of S1
that result from the firing of rules Ri

and Rj, respectively. A rule base is
confluent if for any two rules Ri and
Rj triggered in any initial state S1, a
single final state S4 is guaranteed to
be reached regardless of the order in

Figure 10. Graph depicting confluent rule behav-
ior.

Active Database Systems • 95

ACM Computing Surveys, Vol. 31, No. 1, March 1999



which any subsequent simultaneously
triggered rules are selected for firing
(denoted as * in Figure 10). Note that,
for example, the actions of rules Ri

and Rj may have triggered additional
rules as a side-effect of the transition
from S1 to states S2 and S3, and that
the behaviors of these subsequently
triggered rules have to be taken into
account when considering confluence

of the entire rule base. Work on con-
fluence analysis has developed algo-
rithms for analyzing complete rule
bases [Aiken et al. 1992], for consider-
ing the effect of an update on the
truth of a condition [Baralis and Wi-
dom 1994; Levy and Sagiv 1993], and
for characterizing the contexts in
which nonconfluent behavior may be
exhibited [van der Voort and Siebes
1994].

—Observable determinism. Is the
effect of rule processing as observed
by a user of the system independent
of the order in which triggered rules
are selected for processing? This no-
tion seeks to extend deterministic
rule system behavior beyond the
boundaries of the database itself. For
example, the following two rules im-
plement a response which is confluent
but observably nondeterministic.

on ^event E1&
if ^condition C1&
do ^send message to user&

on ^event E1&
if ^condition C1&
do ^abort&

In this example, if the first rule is
scheduled for firing before the second,
then the user receives a message and
the transaction over the database is
aborted. By contrast, if the second
rule is scheduled before the first, then
the transaction is aborted, but no
message is sent to the user.

Initial research into the static analy-
sis of active rule bases has not, to date,
significantly eased the development of
active applications. This is because such
rule analyzers are not generally sup-

plied with active systems, and because
it is not always obvious what action
should be taken when a potential source
of nontermination or nonconfluence is
detected. There is a range of possible
changes that can be made: rule priori-
ties can be used to tailor the order in
which rules fire, rule conditions or ac-
tions can be modified to change their
effect, or rules may be seen to be imple-
menting conflicting policies and
dropped. The development of effective
rule analysis systems awaits further
work on communicating the results of
analysis to users, as well as experience
based upon the use of implemented rule
analyzers.

8.3 Rule Debugging

Users may be reluctant to apply active
facilities because of anticipated prob-
lems with maintenance, unforeseeable
behavior, and lack of control [Simon and
Kotz-Dittrich 1995], which motivates
the development of debugging environ-
ments that help in defining safe rule
sets, that is, rules that comply with the
termination, confluence, and observable
determinism properties previously de-
scribed.

Unfortunately, these properties are
not always easy to ascertain for a fully
fledged rule language at compile time,
and hence research on rule analysis has
focused on formal declarative lan-
guages. However, not all authors agree
that active rule systems should neces-
sarily be associated with such lan-
guages, and many implemented rule
systems are integrated with imperative
database programming languages
[Buchmann 1994]. Furthermore, the
fact that a rule base exhibits terminat-
ing and confluent behavior does not in
itself imply that it is correct. Thus, as
rule languages become more compli-
cated, thereby increasing the range of
applications for which they are suitable,
the need for rule debugging environ-
ments becomes increasingly pressing.

Unfortunately, traditional debugger
models are not adequate for debugging

96 • N. W. Paton and O. Dı́az

ACM Computing Surveys, Vol. 31, No. 1, March 1999



rules. Conventional debuggers provide
exhaustive information on the state of
the execution process (e.g., program
variables, subroutines, and the like),
thereby allowing the user to monitor the
evolution of this state information. By
contrast, what makes rule debugging a
challenging task are the insidious ways
in which rules can interact. Interaction,
rather than state, becomes the main
source of incorrect or unexpected behav-
ior, and this context-dependent control
exhibited by active rules imposes new
demands on the debugger.

Unlike traditional programming lan-
guages, where sequential control is
specified both explicitly and statically
by the programmer, active rules are
fired dynamically by the system based
on the previous flow of events. There is
thus no way to know in advance which
rules will be fired. Rules eligible for

firing, as represented by the conflict set,
depend on the events raised (internal or
external to the DBMS). Hence, it is
more appropriate to reveal the context
in which rules have been triggered (e.g.,
the conflict set and the event base) than
to present a sequential trace of trig-
gered rules. DEAR, a debugger for EX-
ACT [Diaz et al. 1994], attempts to ad-
dress this issue by showing the
intertwined cycle of rules and events.
Hence, the user can ascertain not only
which rules have been triggered, but
also whether the event triggering the
rule was raised from a top-level transac-
tion instruction or a rule execution.
Furthermore, when an event is raised,
such a cycle permits identification of the
context in which the event took place in
terms of recently triggered rules.

Figure 11 shows such an event-rule
cycle for an immediate coupling mode.

Figure 11. An intertwined event-rule cycle.

Active Database Systems • 97

ACM Computing Surveys, Vol. 31, No. 1, March 1999



The representation is a tree where the
root is artificially created (the corre-
sponding node is labeled with root) and
its direct descendants are the first
events to be raised. Nodes can represent
either events or rules, where event
nodes alternate with rule nodes. An arc
from an event node to a rule node
means that the event has triggered the
rule. An arc from a rule node to an
event node means that the event was
produced as a result of executing the
action of the rule. As execution pro-
ceeds, the event/rule tree is constructed
depth-first. In Figure 11, event (put_
projects,before,2#manager) happened be-
fore (modify_method,before,2#manager),
and the leftmost occurrence of rule 12#in-
tegrity_rule before the leftmost occur-
rence of rule 14#integrity_rule. More-
over, Figure 11 also makes explicit the
conflict set of simultaneously triggered
rules, once the conflicts among those
rules have been resolved by the rule
manager. An indication of the rules par-
ticipating in this conflict set is useful
for focusing on a restricted number of
rules where complex interactions can
occur.

Rather than building trees following
the execution, an alternative investi-
gated in the visual tool for rule analysis
VITAL [Benazet et al. 1995] is to show
the trace in the triggering graph created
during analysis (see Figure 9). A color
code is used for each event state (i.e.,
raised or not raised) and each rule state
(i.e., inactive, triggered, or executed).
As execution proceeds the displayed col-
ors change, and a textual trace of the
execution is displayed in a separated
window. VITAL also proposes the use of
a statistics manager that calculates and
records statistics on the behavior of the
rule processor (e.g., the number of
tuples inserted, deleted, or modified
during a rule execution cycle, the num-
ber of times a rule is triggered, etc).
These data can be used, for instance, to
identify potentially infinite cycles, or to
help find erroneous rule declarations.
The former can be ascertained by moni-
toring the size of relevant tables: if the

size tends to increase in a uniform way,
it suggests that the cycle will not termi-
nate. Erroneous rule condition declara-
tions may be suspected if the number of
times a rule is executed is very low
compared to the number of times the
rule is triggered. Thus, features of sta-
tistical data can point to potentially ab-
normal behavior.

The preceding approaches have fo-
cused mainly on displaying the inter-
leaving of events and rules, but are
restricted to primitive events. The mon-
itoring of composite event occurrences is
a more complicated task due to the
large number of occurrences that may
need to be shown and the intricate ways
in which events are combined to obtain
composite event occurrences. A first ap-
proach to this issue has been presented
as part of the Sentinel system [Chakra-
varthy et al. 1995]. Sentinel provides a
post-execution debugging tool where in-
formation from the execution is stored
in log files that are consulted by the
debugging tool to simulate runtime ac-
tivities. An event tree is created where
primitive events are leaf nodes and
composite events are seen as parents of
their component events. A color code is
used to represent event status (detected
or not detected). This tree grows from
primitive events to the root. In addition,
a transaction tree describes the trigger-
ing rule context: the root node repre-
sents the top-level transaction, and
child nodes represent rules fired in the
context of their parent node (either the
user transaction or a rule, as rules are
executed as subtransactions). A color
code is used to represent the different
states of subtransactions: running, sus-
pended, or committed. Whenever a rule
is fired, a line is drawn connecting the
transaction node of the current rule and
the triggering event. An example is
given in Figure 12. The detection of
events e1 and e2 leads to the happening
of the conjunction event e5, which in
turn causes the triggering of rule R1
(i.e., trans 111). This rule is fired in the
context of the running transaction trans
11, which is a child of transaction trans

98 • N. W. Paton and O. Dı́az

ACM Computing Surveys, Vol. 31, No. 1, March 1999



1. In the first version of this system, all
rules and events produced are shown,
which could lead to cluttered visualiza-
tions [Chakravarthy et al. 1995].

Despite the advances in rule debug-
ging, more remains to be done (e.g.,
customizable visualization of rule exe-
cution, automatic generation of test
data), and different active rule system
functionalities are likely to be most ef-
fectively presented to users using differ-
ent visualizations.

9. CONCLUSIONS

Research into active databases has pro-
ceeded along similar lines to early re-
search into object-oriented databases, in
that there has been considerable exper-
imentation, but relatively little work on
standardization or theory. This has re-
sulted in a wide range of constructs,
execution strategies, and software ar-
chitectures being proposed that have
utility in different problem domains
[Dittrich et al. 1995]. This survey has
reviewed research and development
work in active databases by: describing
tasks that can benefit from active be-
havior, presenting a framework that
characterizes important aspects of ac-
tive functionality, describing a range of
representative systems within the

framework, indicating how imple-
mented systems support the principal
features described in the framework,
and by outlining ongoing activity on
tools that support the design and imple-
mentation of applications that exploit
active technologies. In so doing, the aim
has been to identify the principal contri-
butions made by researchers to date, to
indicate how important ideas have
made their way into implemented sys-
tems, to allow detailed comparison of
specific proposals, and to suggest areas
that stand to benefit from future re-
search results.

Future research is required on appli-
cation and efficient implementation of
event algebras, optimization of active
rules, implementation and use of rule
analyzers, tools that support design and
maintenance of rule bases, architec-
tures for realtime active applications,
distributed active functionality, and in-
tegration of active behavior with deduc-
tive and temporal facilities.

ACKNOWLEDGMENTS

We are grateful to our colleagues for useful dis-
cussions on active database systems, including
Alex Buchmann, Andrew Dinn, Alvaro Fernandes,
Ray Fernandez, Peter Gray, Jon Iturrioz, Arturo
Jaime, and Howard Williams.

REFERENCES

ABITEBOUL, S. AND HULL, R. 1987. IFO: A for-
mal semantic database model. ACM Trans.
Database Syst. 12, 4 (Dec.), 525–565.

AGRAWAL, R., COCHRANE, R., AND LINDSAY, B.
1991. On maintaining priorities in a produc-
tion rule language. In Proceedings of the Sev-
enteenth VLDB, G. Lohman, A. Sernadas, and
R. Camps, Eds., Morgan-Kaufmann, San Ma-
teo, CA, 479–487.

AIKEN, A., WIDOM, J., AND HELLERSTEIN, J. 1992.
Behaviour of database production rules: Ter-
mination, confluence, and observable deter-
minism. In SIGMOD Rec. 21, 59–68.

AMOUROUX, R. 1995. Reactive services for sup-
porting tool integration in a development en-
vironment. In Proceedings on Technology of
Object-Oriented Languages and Systems
(TOOLS), 61–70.

BACON, J., BATES, J., HAYTON, R., AND MOODY,
K. 1995. Using events to build distributed
applications. In Proceedings of the Interna-

Figure 12. Tracing composite events in Sentinel.

Active Database Systems • 99

ACM Computing Surveys, Vol. 31, No. 1, March 1999



tional Workshop on Services in Distributed
and Networked Environments (SDNE) (Whis-
tler, BC), 148–155.

BARALIS, E. AND WIDOM, J. 1994. An algebraic
approach to rule analysis in expert database
systems. In Proceedings of the Twentieth
VLDB, J. Bocca, M. Jarke, and C. Zaniolo,
Eds., Morgan-Kaufmann, San Mateo, CA,
475–486.

BARALIS, E. AND WIDOM, J. 1995. Using delta
relations to optimize condition evaluation in
active databases. In Proceedings of the Second
International Workshop on Rules In Database
Systems (RIDS), T. Sellis, Ed., Springer-Ver-
lag, 292–308.

BARGHOUTI, N. AND KRISHNAMURTHY, B. 1995.
Using event contexts and matching con-
straints to monitor software processes. In Pro-
ceedings of the ICSE, 83–92.

BATES, P. 1995. Debugging heterogeneous dis-
tributed systems using event-based models of
behaviour. ACM Trans. Comput. Syst. 13, 1,
1–31.

BAYER, P. AND JONKER, W. 1994. A framework
for supporting triggers in deductive data-
bases. In Proceedings of the First Interna-
tional Workshop on Rules in Database Sys-
tems, N. Paton and M. Williams, Eds.,
Springer-Verlag, 316–330.

BEERI, C. AND MILO, T. 1991. A model for active
object oriented database. In Proceedings of the
Seventeenth International Conference on Very
Large Data Bases (Barcelona), R. C. G. M.
Lohman and A. Sernadas, Eds., Morgan-Kauf-
mann, San Mateo, CA, 337–350.

BENAZET, E., GUEHL, H., AND BOUZEGHOUB, M.
1995. VISUAL: A visual tool for analysis of
rule behaviour in active databases. In Pro-
ceedings of the Second International Work-
shop on Rules in Database Systems, T. Sellis,
Ed., Springer-Verlag, 182–196.

BICHLER, P. AND SCHREFL, M. 1994. Active ob-
ject-oriented database using active object/be-
haviour diagrams. In Proceedings of the
Fourth International Workshop on Research
Issues in Data Engineering (RIDE-ADS’94),
163–171.

BLUE, A., BROWN, B., AND GRAY, W. 1988. An
implementation of alerters for health district
management. In Proceedings of the Sixth Brit-
ish National Conference on Databases (BN-
COD), W. Gray, Ed., 125–140.

BRANDING, H., BUCHMANN, A., KUDRASS, T., AND

ZIMMERMANN, J. 1994. Rules in an open
system: The REACH rule system. In Rules in
Database Systems, N. Paton and M. Williams,
Eds., Springer-Verlag, 111–126.

BRANT, D. AND MIRANKER, D. 1993. Index sup-
port for rule activation. SIGMOD Rec. 42–48.

BUCHMANN, A. 1994. Current trends in active
databases: Are we solving the right problems.
In Information Systems Design and Multime-

dia, Proceedings of the Basque International
Workshop on IT, C. Chrisment, Ed., Cepadues
Editions, 121–133.

BUCHMANN, A., ZIMMERMANN, J., BLAKELY, J., AND

WELLS, D. 1995. Building an integrated ac-
tive OODBMS: Requirements, architecture,
and design decisions. In Proceedings of IEEE
Data Engineering, 117–128.

CAMPIN, J., PATON, N., AND WILLIAMS, M. 1997.
Specifying active database systems in an ob-
ject-oriented framework. Softw. Eng. Knowl.
Eng. 7(1), 101–123.

CERI, S. AND FRATERNALI, P. 1997. Designing
Applications with Objects and Rules: The
IDEA Methodology. International Series on
Database Systems and Applications, Addison-
Wesley Longman, Reading, MA.

CERI, S. AND WIDOM, J. 1993. Managing seman-
tic heterogeneity with production rules and
persistent queries. In Proceedings of the Nine-
teenth International Conference on Very Large
Data Bases, R. Agrawal, S. Baker, and D.
Bell, Eds., Morgan-Kaufmann, San Mateo,
CA, 108–119.

CERI, S. AND WIDOM, J. 1991. Deriving produc-
tion rules for incremental view maintenance.
In Proceedings of the Seventeenth Interna-
tional Conference on Very Large Data Bases,
R. C. G. M. Lohman and A. Sernadas, Eds.,
Morgan-Kaufmann, San Mateo, CA, 577–589.

CERI, S., FRATERNALI, P., PARABOSCHI, S., AND

TANCA, L. 1996. Active rule management
in Chimera. In Active Database Systems: Trig-
gers and Rules for Active Database Processing,
J. Widom and S. Ceri, Eds., Morgan-Kauf-
mann, San Mateo, CA, 151–175.

CERI, S., GOTTLOB, G., AND TANCA, L. 1990.
Logic Programming and Databases, Springer-
Verlag, Berlin.

CHAKRAVARTHY, S. 1989. Rule management and
evaluation: An active DBMS perspective. SIG-
MOD Rec. 18, 3, 20–28.

CHAKRAVARTHY, S., ANWAR, E., MAUGIS, L., AND

MISHRA, D. 1994a. Design of Sentinel: An
object-oriented DBMS with event-based rules.
Inf. Softw. Technol. 36, 9, 555–568.

CHAKRAVARTHY, S., KRISHNAPRASAD, V., ANWAR, E.,
AND KIM, S.-K. 1994b. Composite events for
active databases: Semantics, contexts and de-
tection. In Proceedings of the Twentieth Inter-
national Conference on Very Large Data
Bases, J. Bocca, M. Jarke, and C. Zaniolo,
Eds., Morgan-Kaufmann, San Mateo, CA,
606–617.

CHAKRAVARTHY, S., TAMIZUDDIN, Z., AND ZHOU,
J. 1995c. A visualization and explanation
tool for debugging ECA rules in active data-
bases. In Proceedings of the Second Interna-
tional Workshop on Rules in Database Sys-
tems, T. Sellis, Ed., Springer-Verlag, 196–
209.

CHANDRA, R. AND SEGEV, A. 1994. Active data-

100 • N. W. Paton and O. Dı́az

ACM Computing Surveys, Vol. 31, No. 1, March 1999



bases for financial applications. In Proceed-
ings of the Fourth International Workshop on
Research in Data Engineering (RIDE-ADS), J.
Widom and S. Chakravarthy, Eds., IEEE, 46–
52.

COLLET, C. AND MANCHADO, J. 1995. Optimiza-
tion of active rules with parallelism. In Pro-
ceedings of Active and Real Time Database
Systems (ARTDB), M. Berndtsson and J.
Hansson, Eds., Springer-Verlag, 82–103.

COLLET, C., COUPAYE, T., AND SVENSEN, T. 1994.
NAOS: Efficient and modular reactive capa-
bilities in an object-oriented database system.
In Proceedings of the Twentieth VLDB Confer-
ence, J. Bocca, M. Jarke, and C. Zaniolo, Eds.,
Morgan-Kaufmann, San Mateo, CA, 132–143.

COUPAYE, T. AND COLLET, C. 1995. Denotational
semantics for an active rule execution model.
In Proceedings of the Second International
Workshop on Rules in Database Systems, T.
Sellis, Ed., Springer-Verlag, 36–50.

DAYAL, U. 1989. Active database management
systems. SIGMOD Rec. 18, 3, 150–169.

DAYAL, U., BUCHMANN, A., AND MCCARTHY, D.
1988. Rules are objects too: A knowledge
model for an active object oriented database
system. In Proceedings of the Second Interna-
tional Workshop on OODBS, LNCS 334, K.
Dittrich, Ed., Springer-Verlag, 129–143.

DAYAL, U., HSU, M., AND LANDIN, R. 1990. Or-
ganising long-running activities with triggers
and transactions. In Proceedings of the SIG-
MOD Conference, ACM, New York, 204–214.

DEUX, O. ET AL. 1990. The story of O2. IEEE
Trans. Knowl. Data Eng. 2, 1 (March), 91–
108.

DIAZ, O. 1992. Deriving rules for constraint
maintenance in an object-oriented database.
In Proceedings of the International Conference
on Databases and Expert Systems DEXA,
I. R. A. M. Tjoa, Ed., Springer-Verlag, 332–
337.

DIAZ, O. AND JAIME, A. 1997. EXACT: an EX-
tensible approach to ACTive object-oriented
databases. VLDB J. 6, 4, 282–295.

DIAZ, O., JAIME, A., AND PATON, N. 1994a.
DEAR: A DEbugger for Active Rules in an
object-oriented context. In Proceedings of the
First International Workshop on Rules in Da-
tabase Systems, N. Paton and M. Williams,
Eds., Springer-Verlag, 180–193.

DIAZ, O., JAIME, A., PATON, N., AND AL QAIMARI, G.
1994b. Supporting dynamic displays using
active rules. SIGMOD Rec. 23, 1, 21–26.

DIAZ, O., PATON, N., AND GRAY, P. 1991. Rule
management in object-oriented databases: A
uniform approach. In Proceedings of the Sev-
enteenth International Conference on Very
Large Data Bases (Barcelona), G. Lohman, A.
Sernadas, and R. Camps, Eds., Morgan-Kauf-
mann, San Mateo, CA, 317–326.

DINN, A., PATON, N., WILLIAMS, M., AND FER-
NANDES, A. 1996. An active rule language
for ROCK & ROLL. In Proceedings of the
Fourteenth British National Conference on
Databases, Springer-Verlag, 36–55.

DITTRICH, A. K. 1993. Adding active functional-
ity to an object-oriented database—a layered
approach. In Proceedings of Datenbank-
systeme in Buro (Braunschweig, Germany).

DITTRICH, K., GATZIU, S., AND GEPPERT, A.
1995. The active database management sys-
tem manifesto: A rulebase of ADBMS fea-
tures. In Rules In Database Systems: Proceed-
ings of the Second International Workshop, T.
Sellis, Ed., Springer-Verlag, 3–17.

ETZION, O. 1993. PARDES—a data-driven ori-
ented active database model. SIGMOD Rec.
22, 1, 7–14.

ETZION, O., GAL, A., AND SEGEV, A. 1994. Data
driven and temporal rules in PARDES. In
Proceedings of the First International Work-
shop on Rules in Database Systems, N. Paton
and M. Williams, Eds., Springer-Verlag, 92–
108.

FABRET, F., REGNIER, M., AND SIMON, E. 1993.
An adaptive algorithm for incremental evalu-
ation of production rules in databases. In
Proceedings of the Nineteenth International
Conference on Very Large Data Bases, R.
Agrawal, S. Baker, and D. Bell, Eds., Morgan-
Kaufmann, San Mateo, CA, 455–466.

FERNANDES, A., WILLIAMS, M., AND PATON, N.
1997. A logic-based integration of active and
deductive databases. New Gen. Comput. 15, 2,
205–244.

FERNANDEZ, R. AND DIAZ, O. 1995. Reactive be-
haviour support: Themes and variations. In
Proceedings of the Second International Work-
shop on Rules in Database Systems, T. Sellis,
Ed., Springer-Verlag, 69–85.

FORGY, C. 1982. Rete: A fast algorithm for the
many pattern/many object pattern match
problem. Artif. Intell. 19, 17–37.

FRATERNALI, P. AND TANCA, L. 1995. A struc-
tured approach to the definition of the seman-
tics of active databases. ACM Trans. Data-
base Syst. 20, 4, 414–471.

GATZIU, S. AND DITTRICH, K. 1994. Events in an
active object-oriented database. In Proceed-
ings of the First International Workshop on
Rules in Database Systems, N. Paton and M.
Williams, Eds., Springer-Verlag, 23–39.

GATZIU, S., GEPPERT, A., AND DITTRICH, K. 1991.
Integrating active concepts into an object-ori-
ented database system. In Proceedings of the
Third Workshop on Database Programming
Languages, P. Kanellakis and J. Schmidt,
Eds., Morgan-Kaufmann, San Mateo, CA.

GEHANI, N. AND JAGADISH, H. 1991. ODE as an
Active Database: Constraints and Triggers. In
Proceedings of the Seventeenth International
Conference on Very Large Data Bases (Barce-

Active Database Systems • 101

ACM Computing Surveys, Vol. 31, No. 1, March 1999



lona), R. C. G. M. Lohman and A. Sernadas,
Eds., Morgan-Kaufmann, San Mateo, CA,
327–336.

GEHANI, N., JAGADISH, H., AND SHMUELI, O. 1992.
Event specification in an active object-ori-
ented database. SIGMOD Rec., 81–90.

GEPPERT, A. AND DITTRICH, K. 1994. Rule-based
implementation of transaction model specifi-
cations. In Proceedings of the First Interna-
tional Workshop on Rules in Database Sys-
tems, N. Paton and M. Williams, Eds.,
Springer-Verlag, 127–142.

GEPPERT, A., BERNDTSSON, M., LIEUWEN, D., AND

RONCANCIO, C. 1998. Performance evalua-
tion of object-oriented active database man-
agement systems using the beast benchmark.
Tapos 4, 4.

HANSON, E. 1992. Rule condition testing and
action execution in Ariel. In Proceedings of
SIGMOD, ACM, New York, 49–58.

HANSON, E. N. AND WIDOM, J. 1993. An over-
view of production rules in database systems.
Knowl. Eng. Rev. 8, 2, 121–143.

HARDER, T. AND ROTHERMEL, K. 1993. Concur-
rency control issues in nested transactions.
VLDB J. 2, 1, 39–74.

HARRISON, J. AND DIETRICH, S. 1994. Integrat-
ing active and deductive rules. In Proceedings
of the First International Workshop on Rules
In Database Systems, N. Paton and M. Wil-
liams, Eds., Springer-Verlag, 288–305.

HSU, M., LADIN, R., AND MCCARTHY, D. 1988.
An execution model for active data base man-
agement systems. In Proceedings of the Inter-
national Conference on Data and Knowledge
Bases, 171–179.

KIERNAN, G., DE MAINDREVILLE, C., AND SIMON, E.
1990. Making deductive databases a practi-
cal technology: A step forward. In Proceedings
of the ACM SIGMOD Conference, H. Garcia-
Molina and H. Jagadish, Eds., 237–246.

KIM, W., LEE, Y., AND SEO, J. 1992. A frame-
work for supporting triggers in object-ori-
ented database systems. Int. J. Intel. Coop.
Inf. Syst. 1, 1, 127–143.

KOSCHEL, A., KRAMER, R., VON BULTZINGSLOEWEN,
G., BLEIBEL, T., KRUMLINDE, P., SCHMUCK, S.,
AND WEINAND, C. 1997. Configurable active
functionality for Corba. In Proceedings of the
Eleventh ECOOP Workshop 7 on CORBA.

KOTZ, A., DITTRICH, K., AND MULLE, J. 1988.
Supporting semantic rules by a generalized
event/trigger mechanism. In Proceedings of
Advance in Database Technology, EDBT
(Venice), 76–91.

KULKARNI, K., MATTOS, N., AND COCHRANE, R.
1999. Active database features in SQL-3. In
Active Rules in Database Systems. N. Paton,
Ed., Springer-Verlag.

LEVY, A. AND SAGIV, Y. 1993. Queries indepen-
dent of updates. In Proceedings of the Nine-

teenth VLDB, R. Agrawal, S. Baker, and D.
Bell, Eds., Morgan-Kaufmann, San Mateo,
CA, 171–181.

MIRANKER, D. 1987. TREAT: A better match al-
gorithm for AI production systems. In Pro-
ceedings of AAAI, 42–47.

MOSS, E. ED. 1985. Nested Transactions: An
Approach to Reliable Distributed Computing.
MIT Press, Cambridge, MA.

NAQVI, W. AND IBRAHAM, M. 1994. Rule and
knowledge management in an active database
system. In Proceedings of the First Interna-
tional Workshop on Rules in Database Sys-
tems, N. Paton and M. Williams, Eds., Spring-
er-Verlag, 58–69.

NAVATHE, S., TANAKA, A., MADHAVAN, R., AND GAN,
Y. H. 1995. A methodology for application
design using active database technology.
Tech. Report RL-TR-95-41, Rome Laboratory.

ORFALI, R., HARKEY, D., AND EDWARDS, J. 1996.
The Essential Distributed Objects Survival
Guide. Wiley, New York.

PATON, N., ED. 1999. Active Rules in Database
Systems. Springer-Verlag.

PATON, N., DIAZ, O., AND BARJA, M. 1993.
Combining active rules and metaclasses for
enhanced extensibility in object-oriented sys-
tems. Data Knowl. Eng. 10, 45–63.

PATON, N., DIAZ, O., WILLIAMS, M., CAMPIN, J.,
DINN, A., AND JAIME, A. 1994. Dimensions
of active behaviour. In Proceedings of the First
International Workshop on Rules in Database
Systems, N. Paton and M. Williams, Eds.,
Springer-Verlag, 40–57.

PATON, N., DOAN, D., DIAZ, O., AND JAIME,
A. 1996. Exploitation of object-oriented
and active constructs in database interface
development. In Proceedings of the Third In-
ternational Workshop on Interfaces to Data-
base Systems, J. Kennedy and P. Barclay,
Eds., Springer-Verlag.

REDDI, S., POULOVASSILIS, A., AND SMALL, C. 1995.
Extending a functional DBPL with ECA-
rules. In Proceedings of the Second Interna-
tional Workshop on Rules in Database Sys-
tems, T. Sellis, Ed., Springer-Verlag, 101–115.

SCHWIDERSKI, S. 1996. Monitoring the behav-
iour of distributed systems. Ph.D. Thesis,
University of Cambridge, United Kingdom.

SIMON, E. AND KOTZ-DITTRICH, A. 1995. Prom-
ises and realities of active database systems.
In Proceedings of the 21st International Con-
ference on Very Large Data Bases, U. Dayal,
P. Gray, and S. Nishio, Eds., Morgan-Kauf-
mann, San Mateo, CA, 642–653.

SKOLD, M. AND RISCH, T. 1995. Using partial
differencing for efficient monitoring of de-
ferred complex rule conditions. In Proceedings
of IEEE Data Engineering.

STONEBRAKER, M. AND KEMNITZ, G. 1991. The
POSTGRES next-generation database man-

102 • N. W. Paton and O. Dı́az

ACM Computing Surveys, Vol. 31, No. 1, March 1999



agement system. Commun. ACM 34, 10 (Oct.),
78–92.

STONEBRAKER, M., JHINGRAN, A., GOH, J., AND

POTAMIANOS, S. 1990. On rules, procedures,
caching and views in database systems. In
Proceedings of ACM SIGMOD, 281–290.

THOMAS, I. AND JONES, A. 1995. Design and im-
plementation of an active object-oriented da-
tabase supporting construction of database
tools. In Proceedings of the Second Interna-
tional Workshop on Rules in Database Sys-
tems, T. Sellis, Ed., Springer-Verlag, 147–164.

VAN DER VOORT, L. AND SIEBES, A. 1994.
Enforcing confluence of rule execution. In Pro-
ceedings of the First International Workshop
on Rules in Database Systems, N. Paton and
M. Williams, Eds., Springer-Verlag, 194–207.

VON BUELTZINGSLOEWEN, G., KOSCHEL, A., LOCK-
EMANN, P., AND WALTER, H. 1999. ECA
functionality in a distributed environment. In
Active Rules in Database Systems. Springer-
Verlag.

WANG, Y.-W. AND HANSON, E. 1992. A perfor-
mance comparison of the Rete and TREAT
algorithms for testing database rule condi-
tions. In Proc. of Data Engineering, 88–97.

WEIK, T. AND HEURER, A. 1995. An algorithm
for the analysis of termination of large trigger
sets in an OODBMS. In Proceedings of Active

Real Time Database Systems (ARTDB), M.
Berndtsson and J. Hansson, Eds., Springer-
Verlag, 158–169.

WELLS, D., BLAKELEY, J., AND THOMPSON, C. 1992.
Architecture of an open object-oriented data-
base management system. IEEE Comput. 25,
10 (Oct.).

WIDOM, J. 1992. A denotational semantics for
the Starburst production rule language. SIG-
MOD Rec. 21, 3, 4–9.

WIDOM, J. AND FINKELSTEIN, S. 1990. Set-ori-
ented production rules in relational database
systems. In Proceedings of the ACM SIGMOD
International Conference on Management of
Data, 259–270.

WIDOM, J., COCHRANE, R., AND LINDSAY, B. 1991.
Implementing set-oriented production rules
as an extension to Starburst. In Proceedings
of the Seventeenth International Conference on
Very Large Data Bases (Barcelona),
R. C. G. M. Lohman and A. Sernadas, Eds.,
Morgan-Kaufmann, San Mateo, CA, 275–286.

WINSTON, P. 1984. Artificial Intelligence (Sec-
ond ed.). Addison-Wesley, Reading, MA.

ZANIOLO, C. 1994. A unified semantics for ac-
tive and deductive databases. In Rules in
Database Systems, N. Paton and M. Williams,
Eds., Springer-Verlag.

Received November 1994; revised February 1998; accepted June 1998

Active Database Systems • 103

ACM Computing Surveys, Vol. 31, No. 1, March 1999


