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A b s t r a c t .  We consider how junction detection and classification can be 

performed in an active visual system. This is to exemplify that feature de. 

tection and classification in general can be done by both simple and robust 

methods, i f  the vision system is allowed to look at the world rather than at 

prerecorded images. We address issues on how to attract the attention to 

salient local image structures, as well as on how to characterize those. 

A prevalent view of low-level visual processing is that it should provide a rich but sparse 

representation of the image data. Typical features in such representations are edges, lines, 

bars, endpoints, blobs and junctions. There is a wealth of techniques for deriving such 

features, some based on firm theoretical grounds, others heuristically motivated. Never- 

theless, one may infer from the never-ending interest in e.g. edge detection and junction 

and corner detection, that current methods still do not supply the representations needed 

for further processing. The argument we present in this paper is that in an active system, 

which can focus its attention, these problems become rather simplified and do therefore 

allow for robust solutions. In particular, simulated foveation I can be used for avoiding 

the difficulties that arise from multiple responses in processing standard pictures, which 

are fairly wide-angled and usually of an overview nature. 

We shall demonstrate this principle in the case of detection and classification of 

junctions. Junctions and corners provide important cues to object and scene structure 

(occlusions), but in general cannot be handled by edge detectors, since there will be 

no unique gradient direction where two or more edges/lines meet. Of course, a number 

of dedicated junction detectors have been proposed, see e.g. Moravec [15], Dreschler, 

Nagel [4], Kitchen, Rosenfeld [9], FSrstner, Giilch [6], Koenderink, Richards [10], Deriche, 

Giraudon [3] and ter I-Iaar et al [7]. The approach reported here should not be contrasted 

to that work. What we suggest is that an active approach using focus-of-attention and 

foveation allows for both simple and stable detection, localization and classification, and 

in fact algorithms like those cited above can be used selectively in this process. 

In earlier work [1] we have demonstrated that a reliable classification of junctions can 

be performed by analysing the modalities of local intensity and directional histograms 

during an active focusing process. Here we extend that work in the following ways: 

- The candidate junction points are detected in regions and at scale levels determined 

by the local image structure. This forms the bottom-up attentional mechanism. 

* This work was partially performed under the ESPRIT-BRA project INSIGHT. The support 

from the Swedish National Board for Industrial and Technical Development, NUTEK, is 
gratefully acknowledged. We would also like to thank Kourosh Pahlavan, Akihiro Horii and 

Thomas Uhlin for valuable help when using the robot head. 

1 By foveation we mean active acquisition of image data with a locally highly increased resolu- 
tion. Lacking a foveated sensor, we simulate this process on our camera head. 
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- The analysis is integrated with a head-eye system allowing the algorithm to actually 

take a closer look by zooming in to interesting structures. 

- T h e  loop is further closed, including an automatic classification. In fact, by using the 

active visual capabilities of our head we can acquire additional cues to decide about 

the physical nature of the junction. 

In this way we obtain a three-step procedure consisting of (i) selection of areas of interest, 

(ii) foveation and (iii) determination of the local image structure. 

1 Background: Classifying Junctions by Active Focusing 

The basic principle of the junction classification method [1] is to accumulate local his- 

tograms over the grey-level values and the directional information around candidate 

junction points, which are assumed to be given, e.g. by an interest point operator. Then, 

the numbers of peaks in the histograms can be related to the type of junction according 

to the following table: 

Intensi ty Edge direct ion  

unimodal any 
bimodM unimodal 
bimodal bimodal 
trimodal bimodal 
trimodal trimodal 

Class i f icat ion hypothesis 
noise spike 

edge 
L-junction 
T-junction 
3-junction 

The motivation for this scheme is that for example, in the neighbourhood of a point 

where three edges join, there will generically be three dominant intensity peaks corre- 

sponding to the three surfaces. If that point is a 3-junction (an arrow-junction or a Y- 

junction) then the edge direction histogram will (generically) contain three main peaks, 

while for a T-junction the number of directional peaks will be two etc. Of course, the 

result from this type of histogram analysis cannot be regarded as a final classification 

(since the spatial information is lost in the histogram accumulation), but must be treated 

as a hypothesis to be verified in some way, e.g. by backprojection into the original data. 

Therefore, this algorithm is embedded in a classification cycle. More information about 

the procedure is given in [1]. 

1.1 C o n t e x t  I n f o r m a t i o n  R e q u i r e d  for  t he  Focus ing  P r o c e d u r e  

Taking such local histogram properties as the basis for a classification scheme leads to 

two obvious questions: Where should the window be located and how large should it be2? 

We believe that the output from a representation called the scale-space primal sketch 

[11, 12] can provide valuable clues for both these tasks. Here we will use it for two main 

purposes. The first is to coarsely determine regions of interest constituting hypotheses 

about the existence of objects or parts of objects in the scene and to select scale levels 

for further analysis. The second is for detecting candidate junction points in curvature 

data and to provide information about window sizes for the focusing procedure. 

In order to estimate the number of peaks in the histogram, some minimum number 

of samples will be required. With a precise model for the imaging process as well as the 

2 This is a special case of the more general problem concerning how a visual system should be 
able to determine where to start the analysis and at what scales the analysis should be carried 
out, see also [13]. 
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noise characteristics, one could conceive deriving bounds on the resolution, at least in 

some simple cases. Of course, direct setting of a single window size immediately valid 

for correct classification seems to be a very difficult or even an impossible task, since if 

the window is too large, then other structures than the actual corner region around the 

point of interest might be included in the window, and the histogram modalities would 

be affected. Conversely, if it is too small then the histograms, in particular the directional 

histogram, could be severely biased and deviate far from the ideal appearance in case the 

physical corner is slightly rounded - -  a scale phenomenon that  seems to be commonly 

occurring in realistic scenes 3. 

Therefore, what we make use of instead is the process of focusing. Focusing means 

that  the resolution is increased locally in a continuous manner (even though we still have 

to sample at discrete resolutions). The method is based on the assumption that  stable 

responses will occur for the models that  best fit the data. This relates closely to the 

systematic parameter variation principle described in [11] comprising three steps 

- vary the parameters systematically 

- detect locally stable states (intervals) in which the type of situation is qualitatively 

the same 

- select a representative as an abstraction of each stable interval 

2 D e t e c t i n g  C a n d i d a t e  J u n c t i o n s  

Several different types of corner detectors have been proposed in the literature. A prob- 

lem, that,  however, has not been very much treated, is that  of at what  scale(s) the 

junctions should be detected. Corners are usually treated as pointwise properties and are 

thereby regarded as very fine scale features. 

In this t reatment  we will take a somewhat unusual approach and detect corners at 

a coarse scale using blob detection on curvature data as described in [11, 13]. Realistic 

corners from man-made environments are usually rounded. This means that  small size 

operators will have problems in detecting those from the original image. 

Another motivation to this approach is that  we would like to detect the interest points 

at a coarser scale in order to simplify the detection and matching problems. 

2.1 C u r v a t u r e  o f  Level  C u r v e s  

Since we are to detect corners at a coarse scale, it is desirable to have an interest point 

operator with a good behaviour in scale-space A quanti ty with reasonable such properties 

is the rescaled level curve curvature given by 

= IL**L2y + LyyL~ - 2L=~L,L~ I (1) 

This expression is basically equal to the curvature of a level curve multiplied by the 

gradient magnitude 4 as to give a stronger response where the gradient is high. The 

motivation behind this approach is that  corners basically can be characterized by two 

properties: (i) high curvature in the grey-level landscape and (ii) high intensity gradient. 

Different versions of this operator have been used by several authors, see e.g. Kitchen, 

Rosenfeld [9], Koenderink, Richards [10], Noble [16], Deriche, Giraudon [3] and Florack, 

ter Haar et al [5, 7]. 

3 This effect does not occur for an ideal (sharp) corner, for which the inner scale is zero. 
4 Raised to the power of 3 (to avoid the division operation). 
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Figure l(c) shows an example of applying this operation to a toy block image at a 

scale given by a significant blob from the scale-space primal sketch. We observe that the 

operator gives strong response in the neighbourhood of corner points. 

2.2 Reg ions  of  I n t e r e s t  - -  C u r v a t u r e  B lobs  

The curvature information is, however, still implicit in the data. Simple thresholding on 

magnitude will in general not be sufficient for detecting candidate junctions. Therefore, 

in order to extract interest points from this output we perform blob detection on the 

curvature information using the scale-space primal sketch. Figure l(d) shows the result 

Fig. 1. Illustration of the result of applying the (rescaled) level curve curvature operator at 
a coarse scale, (a) Original grey-level image. (b) A significant dark scale-sp~ce blob extracted 
from the scale-space primal sketch (marked with black). (c) The absolute value of the rescaled 
level curve curvature computed at a scale given by the previous scale-space blob (this curvature 
data is intended to be valid only in a region around the scale-space blob invoking the analysis). 
(d) Boundaries of the 50 most significant curvature blobs (detected by applying the scale-spa~:e 
primal sketch to the curvature data). (From Lindeberg [11, 13]). 

of applying this operation to the data in Figure l(c). Note that a set of regions is extracted 

corresponding to the major corners of the toy block. Do also note that the support regions 

of the blobs serve as natural descriptors for a characteristic size of a region around the 

candidate junction. This information is used for setting (coarse) upper and lower bounds 

on the range of window sizes for the focusing procedure. 

A trade-off with this approach is that the estimate of the location of the corner will 

in general be affected by the smoothing operation. Let us therefore point out that we 

are here mainly interested in detecting candidate junctions at the possible cost of poor 

locMization. A coarse estimate of the position of the candidate corner can be obtained 

from the (unique) local maximum associated with the blob. Then, if improved localization 

is needed, it can be obtained from a separate process using, for example, information from 

the focusing procedure combined with finer scale curvature and edge information. 

The discrete implementation of the level curve curvature is based on the scale-space for 

discrete signals and the discrete N-jet representation developed in [11, 14]. The smoothing 

is implemented by convolution with the discrete analogue of the Gaussian kernel. From 

this data low order difference operators are applied directly to the smoothed grey-level 

data implying that only nearest neighbour processing is necessary when computing the 

derivative approximations. Finally, the (rescaled) level curve curvature is computed as a 

polynomial expression in these derivative approximations. 

3 Focusing and Verification 

The algorithm behind the focusing procedure has been described in [1] and will not 

be considered further, except that we point out the major difference that classification 
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procedure has been integrated with a head-eye system (see Figure 2 and Pahlavan, Ek- 

lundh [17]) allowing for algorithmic control of the image aquisition. 

Fig. 2. The KTH Head used for acquiring the image data for the experiments. The head-eye 
system consists of two cameras mounted on a neck and has a total of 13 degrees of freedom. It 
allows for computer-controlled positioning, zoom and focus of both the cameras independently 
of each other. 

The method we currently use for verifying the classification hypothesis (generated 

from the generic cases in the table in Section 1, given that a certain number of peaks, 

stable to variations in window size, have been found in the grey-level and directional 

histogram respectively) is by partitioning a window (chosen as representative for the 

focusing procedure [1, 2]) around the interest point in two different ways: (i) by back- 

projecting the peaks from the grey-level histogram into the original image (as displayed 

in the middle left column of Figure 5) and (ii) by using the directional information 

from the most prominent peaks in the edge directional histograms for forming a simple 

idealized model of the junction, which is then fitted to the data (see the right column 

of Figure 5). From these two partitionings first and second order statistics of the image 

data are estimated. Then, a statistical hypothesis test is used for determining whether 

the data from the two partitionings are consistent (see [2] for further details). 

4 E x p e r i m e n t s :  F i x a t i o n  a n d  F o v e a t i o n  

We will now describe some experimental results of applying the suggested methodology 

to a scene with a set of toy blocks. An overview of the setup is shown in Figure 3(a). The 

toy blocks are made out of wood with textured surfaces and rounded corners. 

Fig. 3. (a) Overview image of the scene under study. (b) Boundaries of the 20 most significant 
dark blobs extracted by the scale-space primal sketch. (c) The 20 most significant bright blobs. 

Figures 3(b)-(c) illustrate the result of extracting dark and bright blobs from the 

overview image using the scale-space primal sketch. The boundaries of the 20 most signif- 

icant blobs have been displayed. This generates a set of regions of interest corresponding 

to objects in the scene, faces of objects and illumination phenomena. 
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Fig.  4. Zooming in to a region of interest obtained from a dark blob extracted by the scale-space 

primal sketch. (a) A window around the region of interest, set from the location and the size of 

the blob. (b) The rescaled level curve curvature computed at the scale given by the scale-space 

blob (inverted). (c) The boundaries of the 20 most significant curvature blobs obtained by 

extracting dark blobs from the previous curvature data. 

Fig .  5, Classification results for different junction candidates corresponding to the upper left, 

the central and the lower left corner of the toy block in Figure 4 as well as a point along the 

left edge. The left column shows the maximum window size for the focusing procedure, the 

middle left column displays back projected peaks from the grey-level histogram for the window 

size selected as representative for the focusing process, the middle right column presents line 

segments computed from the directional histograms and the right column gives a schematic 

illustration of the classification result, the abstraction, in which a simple (ideal) corner model 

has been adjusted to data. (The grey-level images have been stretched to increase the contrast). 

In Figure 4 we have zoomed in to one of the dark blobs from the scale-space pr imal  

sketch corresponding to the central dark toy block. Figure 4(a) displays a window around 

tha t  blob indicat ing the current region of interest.  The size of this window has been set 

from the size of the blob. Figure 4(b) shows the rescaled level curve curvature computed at  

the scale given by the blob and and Figure 4(c) the boundaries  of the 20 most significant 

curvature blobs extracted from the curvature data .  

In Figure 5(a) we have zoomed in further to one of the curvature blobs (corresponding 

to the upper left corner of the dark toy block in Figure 4(c)) and in i t ia ted  a classification 

procedure. Figures 5(b)-(d) i l lustrate a few output  results from tha t  procedure, which 
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classified the point  as being a 3-junction. Figures 5(e)-(1) show similar  examples  for two 

other  junct ion  candidates  (the central and the lower left corners) from the same toy 

block. The interest  point  in Figure 5(e) was classified as a 3-junction, while the poin t  in 

Figure 5(i) was classified as an L-junction. Note the weak contrast  between the two front 

faces of the central corner in the original image. Finally,  Figures 5(m)-(p)  in the b o t t o m  

row indicate the abi l i ty  to suppress "false alarms" by showing the results of applying the 

classification procedure to a point  along the left edge. 

5 Addit ional  Cues: Accomodat ion  Distance  and Vergence 

The abi l i ty  to control gaze and focus does also facil i tate further feature classification, since 

the camera  parameters ,  such as the focal distance and the zoom rate, can be controlled 

by the algori thm. This can for instance be applied to the task of invest igat ing whether a 

grey-level T- junct ion in the image is due to a depth discontinui ty or a surface marking.  

We will demonst ra te  how such a classification task can be solved monocular ly ,  using 

focus, and binocularly,  using dispar i ty  or vergence angles. 

Fig .  6. Illustration of the effect of varying the focal distance at two T-junctions corresponding to  

a depth discontinuity and a surface marking respectively. In the upper left image the camera was 

focused on the left part of the approximately horizontal edge while in the upper middle image 

the camera was focused on the lower part of the vertical edge. In both cases the accomodation 

distance was determined from an auto-focusing procedure, developed by Horii [8], maximizing 

a simple measure on image sharpness. The graphs on the upper right display how this mea- 

sure varies as function of the focal distance. The lower row shows corresponding results for a 

T-junction due to a surface marking. We observe that in the first case the two curves attain 

their maxima at clearly distinct positions (indicating the presence of a depth discontinuity), 

while in the second case the two curves attain their maxima at approximately the same position 

(indicating that the T-junction is due to a surface marking). 

In Figure 6(a)-(b) we have zoomed in to a curvature blob associated with a scale- 

space blob corresponding to the bright toy block. We demonst ra te  the effect of varying 

the focal distance by showing how a s imple measure on image sharpness (the sum of the 

squares of the gradient  magnitudes in a small  window, see Horii [8]) varies with the focal 

distance. Two curves are displayed in Figure 6(c); one with the window posi t ioned at  

the left par t  of the approximate ly  horizontal  edge and one with the window posi t ioned 

at  the lower par t  of the vertical edge. Clearly, the two curves a t ta in  their  m a x i m a  for 

different accomodat ion distances. The distance between the peaks gives a measure  of the 
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relative depth between the two edges, which in turn can be related to absolute depth 

values by a calibration of the camera system. For completeness, we give corresponding 

results for a T-junction due to surface markings, see Figure 6(d)-(e). In this case the two 

graphs attain their maxima at approximately the same position, indicating that  there is 

no depth discontinuity at this point. (Note that  this depth discrimination effect is more 

distinct at a small depth-of-focus, as obtained at high zoom rates). 

In Figure 7 we demonstrate how the vergence capabilities of the head-eye system can 

provide similar clues for depth discrimination. As could be expected, the discrimination 

task can be simplified by letting the cameras verge towards the point of interest. The 

vergence algorithm, described in Pahlavan et al [18], matches the central window of one 

camera with an epipolar band of the other camera by minimizing the sum of the squares 

of the differences between the grey-level data  from two (central) windows. 

Fig. 7. (a)-(b) Stereo pair for a T-junction corresponding to a depth discontinuity. (c) Graph 
showing the matching error as function of the baseline coordinate for two different epipolar 

planes; one along the approximately horizontal line of the T-junction and one perpendicular to 

the vertical line. (d)-(e) Stereo pair for a T-junction corresponding to a surface marking. (f) 
Similar graph showing the matching error for the stereo pair in (d)-(e). Note that in the first 

case the curves attain their minima at different positions indicating the presence of a depth 

discontinuity (the distance between these points is related to the disparity), while in the second 
case the curves attain their minima at approximately the same positions indicating that there 

is no depth discontinuity at this point. 

Let us finally emphasize that  a necessary prerequisite for these classification methods 

is the ability of the visual system to foveate. The system must have a mechanism for 

focusing the attention, including means of taking a closer look if needed, that  is acquiring 

new images. 

6 S u m m a r y  and Discuss ion  

The main theme in this paper has been to demonstrate that  feature detection and classi- 

fication can be performed robustly and by simple algorithms in an active vision system. 

Traditional methods based on prerecorded overview pictures may provide theoretical 

foundations for the limits of what can be detected, but  applied to real imagery they 

will generally give far too many responses to be useful for further processing. We argue 

that  it is more natural to include attention mechanisms for finding regions of interest 
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and follow up by a step taking "a closer look" similar to foveation. Moreover, by looking 

at the world rather than at prerecorded images we avoid a loss of information, which is 

rather artificial if the aim is to develop "seeing systems". 

The particular visual task we have considered to demonstrate these principles on is 

junction detection and junction classification. Concerning this specific problem some of 

the technical contributions are: 

- Candidate junction points are detected at adaptively determined scales. 

- Corners are detected based on blobs instead of points. 

- The classification procedure is integrated with a head-eye system allowing the algo- 

r i thm to take a closer look at interesting structures. 

- We have demonstrated how algorithmic control of camera parameters can provide 

additional cues for deciding about the physical nature of junctions. 

In addition, the classification procedure automatically verifies the hypotheses it generates. 
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