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Active discovery of organic semiconductors
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The versatility of organic molecules generates a rich design space for organic semiconductors

(OSCs) considered for electronics applications. Offering unparalleled promise for materials

discovery, the vastness of this design space also dictates efficient search strategies. Here, we

present an active machine learning (AML) approach that explores an unlimited search space

through consecutive application of molecular morphing operations. Evaluating the suitability

of OSC candidates on the basis of charge injection and mobility descriptors, the approach

successively queries predictive-quality first-principles calculations to build a refining surro-

gate model. The AML approach is optimized in a truncated test space, providing deep

methodological insight by visualizing it as a chemical space network. Significantly out-

performing a conventional computational funnel, the optimized AML approach rapidly

identifies well-known and hitherto unknown molecular OSC candidates with superior charge

conduction properties. Most importantly, it constantly finds further candidates with highest

efficiency while continuing its exploration of the endless design space.
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T
he sheer vastness of chemical spaces1 has long motivated
prior-to-synthesis virtual discovery. In corresponding
work, promising candidate molecules or materials for

refined study are often searched and identified on the basis of a
small number of quantities that are deemed representative for the
targeted application2–4. Prevalent for first-principles computa-
tional screening approaches is to calculate such descriptors at
predictive quality through electronic structure theory for every
candidate in a somehow enumerated chemical space or otherwise
given database. Initially performed for small focused libraries, the
screening is now extended to search spaces of ever increasing size
and—since discovery is limited to the explicitly considered
molecules or materials—to ever more systematic and exhaustive
enumerations within these spaces.

Unfortunately, the combinatorial explosion characteristic for
chemical versatility quickly leads to intractable numbers of can-
didates for such exhaustive first-principles screenings, even if
based on computationally comparably undemanding descriptors.
A common strategy to tackle this problem is a computational
funnel5. Here, the exhaustive screening is only performed for
computationally least-demanding descriptors or even less
demanding estimates thereof. Subsequently, the large candidate
set is narrowed in staged filtering and the calculation of other
descriptors is only performed for smaller and smaller subsets
which appear promising in terms of the previously calculated
descriptors. Unfortunately, chemical diversity suggests the multi-
objective (descriptor) landscape spanned over the search space to
be quite rugged6, with molecular or materials sub-classes likely
constituting separate funnels and related analogs leading to
multiple local minima. This raises concerns whether the true
optimum candidates can reliably be identified through such
computational funneling.

An ever more appealing alternative is therefore to completely
abandon the original idea to exhaustively screen a once defined
chemical space or database. Instead, the explicit first-principles
computation of the descriptors is restricted to candidates emer-
ging in an iteratively refining search7–9. In the context of data
science, this is afforded by several learning concepts, which
additionally allow to even avoid predefining or a priori enumer-
ating the search space itself. Examples include (semi-)supervised
learning, meta-, transfer-, or few-shot learning and generative
models10,11. For drug-discovery tasks12,13, such concepts have
already been successfully employed to further accelerate molecular
de novo design14 and drive autonomous discovery15. For materials
discovery based on first-principles descriptors, in particular active
machine learning (AML)16 has been explored as a most data-
efficient method17–22.

In AML, the acquired knowledge in form of explicitly calcu-
lated descriptors is used to successively establish a surrogate
model of larger and larger regions of the rugged descriptor
landscape. In an iterative procedure, the predictive-quality cal-
culations for new candidates can then also be balanced between
exploitation and exploration. In exploitation, the global insight
provided by the current surrogate model is used for a targeted
identification of new promising candidates. In exploration,
descriptors for new candidates are specifically calculated to refine
and extend the surrogate model. For this, we here employ
Gaussian Process Regression (GPR) and use high values of its
inherent Bayesian uncertainty estimate to flag candidates (or
regions in chemical space) for which an explicit descriptor cal-
culation will maximally contribute new information.

We pursue this concept for the efficient virtual discovery of
organic semiconductors (OSCs) for electronic applications. Used in
organic field effect transistors (OFETs),23 photovoltaics (OPVs),24

or light emitting diodes (OLEDs),25 OSCs offer great versatility and
novel materials’ properties, paired with a low ecologic and economic

footprint. Typical OSC-constituting molecules are, however, of
considerable size (e.g., 22 or 42 non-hydrogen atoms in the classic
examples pentacene or rubrene, respectively) and the spanned
electronic property landscapes are known to be highly sensitive even
to small molecular substitutions.26–28 A vast number of ~1033

similar-sized molecules is estimated to be synthesizable1, raising the
suspicion that presently known well-performing OSC molecular
materials are not even the tip of the iceberg. This has motivated a
number of preceding exhaustive screening or virtual discovery stu-
dies in more or less restricted closed subspaces.3,5,29–34.

In this work we first analyze a diverse set of OSC molecules to
derive clear molecular-construction rules that allow to generate an
in principle unlimited OSC chemical space. This space is then
successively explored by the AML discovery strategy, rapidly
identifying molecular candidates that are superior to well-known
OSC materials in terms of their molecular electronic descriptors
assessing efficient charge injection and charge mobility. Deep
methodological insight is gained by analyzing and visualizing the
AML exploration inside a chemical space network (CSN) con-
taining only a subset of the design space, limited to allow its full
enumeration. Even inside this truncated chemical space the AML-
discovery clearly outperforms a conventional funnel approach.

Results
Morphing based generation of an unlimited OSC search space.
The basis for our efficient AML exploration of an a priori
unlimited molecular search space is the development of a concise
set of molecular construction rules that allow to generate this
space by iterative application. To establish a diverse, but problem-
specific chemical space, we resort to existing domain knowledge
and analyze the building blocks and motives contained in
molecules constituting a number of well-performing crystalline
OSC molecular materials. For this analysis, we exploit the fact
that most functionalized organic molecules can be unambigu-
ously fragmented into a molecular backbone (of one or more
cores), linkers (that connect cores) and side groups (attached to
cores) as illustrated in Fig. 1. Without loss of generality, we
correspondingly fragment 30 prominent π-conjugated molecules
that belong to a variety of important molecular families23

(Acenes, Thienoacenes, TTF-derivatives, Carbazoles, Tripheny-
lamines, Diimides, Quinacridones and Azaacenes) and consist of
the most common organic elements C, H, N, O and S. Figure 1
highlights some of these peer molecules and the full set is given in
the SI in Supplementary Fig. 1. Intriguingly, the richness of
chemical building blocks identified in this way can be exhaus-
tively generated by a set of only 22 simple molecular morphing
operations starting from the smallest aromatic building block
benzene. As illustrated in Fig. 1 these morphing operations each
act on a molecule’s individual atomic sites or fragments, each
time adding, modifying or removing fragments. These morphing
operations should be seen as alchemical transformations to
navigate between molecules, while applying organic synthesis
steps could be a viable alternative.35 Even though at a first glance
rather unintuitive for the generation of successively larger or
complex molecules, we also note that the inclusion of every
morphing operation in a backwards step, i.e., resubstituting a
fragment substructure, is crucial to increase the interconnectivity
of the forming chemical space, see Supplementary Fig. 3.

The generic nature of the morphing operations identified
through the fragmentation ansatz is not only a stepping stone for
the efficient AML exploration. It also provides a blueprint for
future variations of the present search space or the generation of
different search spaces for other applications. Additional morph-
ing operations will lead to more general search spaces and could
be automatically extracted from a diverse chemical database36,
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while deliberate suppression of morphing operations can be used
to focus on molecular sub-classes. Ring-annelation type morph-
ing operations as well as biphenylic addition are for example
essential for the iterative construction of core Acene fragments,
such as in Pyrene or DPA. To build structures like Thienoacenes,
Azaacenes or Carbazoles, ring contractions that lead to 5-
membered rings are included as intermediates for heteroaromatic
ring construction. This, though, comes at the cost of potentially
yielding pericyclically reactive molecules, as discussed further
below. Similarly, two types of linker operations are included to
access the family of Triphenylamines. Further examples together
with a detailed description of every morphing operation are
provided in Supplementary Note 1. Considering their known
OSC tuning potential,28,37,38 we note that in particular the
augmentation of the present backbone-oriented set of construc-
tion rules by specific morphing operations for side groups or
additional functional groups is expected to lead to an important
extension of the here showcased search space.

The construction rules may also be modified to incorporate
further prior knowledge about the OSC design problem. Here, we
notably include constraints on molecular symmetry. Molecular
symmetry may be beneficial for synthetic accessibility. Further-
more, it can mitigate mobility reducing charge localization27 and
in particular in monomolecular crystals often favors charge
percolation pathways3,39,40 (albeit its role can be intricate41). We
correspondingly prune the construction rules for the present OSC
context to enforce 2D graph symmetries expected to provide a
prosymmetry for the 3D case. Specifically, generated molecules
are only considered for further morphing, if they fall into three
types of symmetry classes as explained in Fig. 1d, e: They (1)
exhibit a full graph-symmetry, with all atomic environments
appearing at least twice. (2) An asymmetric part in the molecule

made of one or more fragments is symmetrically substituted by
an even number of similar fragments, or (3) a molecule is
prosymmetric such that it has atomic sites on which a single
substitution operation could lead to a molecule of class (1) or (2).
Further details on symmetry detection are provided in Supple-
mentary Note 2. As always, incorporation of any such domain-
specific heuristics like symmetry is thereby a double-edged sword,
possibly generating more meaningful search spaces as much as
introducing a limiting bias. AML is particularly appealing in this
respect. Any such rules can readily be added or dropped without
incurring excessive computational costs as in exhaustive screen-
ings of predefined search spaces.

Charge-conduction based fitness. In the spanned search space,
we assess the suitability of candidate molecules for OSC applica-
tions by two descriptors known to probe two important and
complementary aspects related to the conduction of charge. One
concerns the efficient injection of charge from a contacting elec-
trode into the OSC material. The other assesses the required high
charge mobility inside the OSC bulk. For predominantly p-type
OSC materials23 a detrimentally high barrier for a corresponding
hole injection from a standard gold electrode is readily probed by
a level-alignment descriptor ϵalign= ∣ϵHOMO−ΦAu∣,42 which
evaluates the energetic mismatch between the Au work function
ΦAu=− 5.1 eV43 and the energetic position of the highest occu-
pied molecular orbital (HOMO) ϵHOMO as a common approx-
imation of the material’s ionization potential.44,45 Adapting this
descriptor to other electrode materials or to n-type OSC materials
(then involving the energetic position of the lowest unoccupied
molecular orbital, LUMO) is straightforward. As an equally
established descriptor for the bulk charge mobility we employ the

Fig. 1 Molecular construction approach to generate an unlimited OSC chemical space. a Important π-conjugated molecular families and examples of well-

performing OSC-molecules therein. Molecular morphing operations are designed such that the generated OSC space includes these families. b Schematic

overview of the molecular generation process. Starting from benzene, diverse molecules are created by iterative application of up to 22 morphing

operations. The first generation resulting from the 8 morphing operations applicable to benzene is fully shown. Molecules in further generations are only

shown as examples, but every operation type is depicted at least once, see also Supplementary Fig. 2 for an extended depiction. c Fragment-definitions

used throughout the text exemplified for the molecule BDTTE. Connected aromatic ring structures are cores. Linkers and sidegroups both branch from a

core structure with a single bond, but are either connecting to at least two core structures or only bonded to one core fragment. d Concepts for symmetry

detection used throughout the molecular generation process. e Modified molecular morphing step, adapted to the symmetry constraints imposed on

candidate molecules.
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intra-molecular (hole) reorganization energy λh, which measures
the cost of accommodating a new charge state after the carrier has
moved to the next molecular site.46,47 As molecular properties,
both ϵHOMO and λh can be determined by efficient first-principles
calculations as detailed in Supplementary Note 2, where the
density-functional theory (DFT) B3LYP48–50 level of theory con-
stitutes a well established accuracy standard27,31,39,40,51, matching
experimental data44,52. We emphasize though that using the
lowest-energy gas-phase conformer for the descriptor calculation
disregards packing-effects in the molecular crystal53–55 and we
further discuss the influence of conformers on descriptor values in
Supplementary Note 3.

To evaluate molecular fitness and prioritize candidates during
AML discovery, both objectives are combined in a scalarized
fitness function

F ¼ �
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which an ideal candidate molecule will maximize.56 Here, the
weight vector w= (1.0, 0.7)⊤ accommodates the generally
different absolute scales of the two descriptors, with the value
of 0.7 chosen to yield an essentially Ohmic alignment with the
electrode of ∣ϵalign∣ < 0.3 eV if λh falls into the range of commonly
known OSCs. We note, though, that the exact choice of weights is
rather unimportant for the performance of the AML search, as it
only linearly biases F towards either of the descriptors, as further
detailed below. With the currently chosen weight and at the DFT-
B3LYP level of theory, pentacene and rubrene – materials that
have been contacted by gold electrodes before57,58 – will feature F
values of −0.16 and −0.2, respectively. A threshold F ≥−0.2 will
therefore later on be used to measure discovery success of
the AML.

AML: design and search strategy. By successively querying the
explicit first-principles calculation of the descriptors for identified
candidate molecules, the AML algorithm establishes an ever
improving surrogate model of the fitness function F over the
search space. Out of a manifold of in principle possible surrogate
models, we found GPR to already achieve outstanding perfor-
mance at very moderate amounts of data. In brief, the employed
model uses circular Morgan fingerprints59 to compare the
structural similarity of not yet explicitly calculated molecules with
the hitherto acquired ones. Specifically, counts of substructures
that can be extracted by moving up to two bonds away from each
central atom are generated. The similarity between two molecules
is then measured with a substructure count kernel. A full account
of the GPR learning through log-marginal likelihood maximiza-
tion is provided in Supplementary Note 2. A central advantage of
GPR for the AML context is that it not only provides a prediction
for the targeted fitness function F, but also the corresponding
predictive uncertainty σ from the Gaussian variance. Balancing
between exploitation and exploration, the AML algorithm can
thus query new candidate molecules either because they are
highly promising in terms of a maximum predicted fitness F or
because they exhibit a high uncertainty σ such that their explicit
calculation will maximally improve the surrogate model. Practi-
cally, molecules are thereby chosen according to an upper con-
fidence bound acquisition function

Facq ¼ F þ κσ: ð2Þ

This represents a simple, well-tested strategy in Bayesian
optimization60–62 or active-search63,64 with GPRs, which contains
only one hyperparameter κ to balance exploration and exploitation.

Multiple possibilities arise how to actually execute the iterative
AML process. After initializing the surrogate model by training

on a defined number Ninitial of molecules, central questions
concern the acquisition of new data before the surrogate model is
retrained. Compatible with super-computing resources that
encourage a parallel first-principles evaluation of the descriptors
for multiple molecules, we opt for a batch-based learning where
Nbatch molecules with maximum Facq are queried and the model is
then retrained on the basis of the accumulated new descriptor
data. Future improvements could include an additional enforce-
ment of diversity in the prioritized batch.18,21,65,66 In an in
principle infinite chemical space, another central AML design
choice regards the extent over which new molecules are
practically assessed with the established, conceptually global
surrogate model. Aiming for high-performance OSC molecules of
tractable size and complexity, we here opt for a single tree
expansion that limits the candidates to those in the vicinity of
already sampled ones67.

In a most straightforward realization and if all molecules for
which first-principles descriptors have already been computed
define the current population at step n of the AML search, then
the Nbatch molecules for the next step n+ 1 are identified in the
search space formed by all molecules that can be generated by
one-time application of any of the morphing operations to every
molecule in the current population. While this nicely exploits the
evolutionary pressure contained in the current population of size
Npop=Ninitial+ n ×Nbatch, the search space for step n+ 1 could
also be systematically increased by exhaustive multiple-time
application of the morphing operations. As illustrated below by
comparing a corresponding search depth of one- or two-time
application, this may help to overcome local funnels and navigate
more efficiently through chemical space. On the other hand and
regardless of the actual search depth dsearch, the continuously
growing population size will at later learning steps n inevitably
lead to a combinatorial explosion of new candidates for any such
exhaustive enumeration. Eventually, this requires to decrease the
resolution in the ever increasing search space. Note that precisely
this combinatorial explosion also precludes popular supervised
machine learning approaches that exhaustively learn molecular
properties in a closed chemical space, possibly followed by some
form of data mining3.

A decreasing resolution in the AML search space can for
instance be achieved by imposing additional heuristic selection
criteria, e.g., selectively suppressing certain morphing operations
for increasing search depths, or other more sophisticated tree-
search policies68 also employed in reinforcement learning35,69.
Here, we realize deeper partial expansions of the search tree up to
a search depth dsearch by applying the molecular morphing
operations only to a fixed number of Ndeep molecules selected first
from the current population and then subsequently from those
molecules that were created by the previous morphing operations.
By each time selecting the Ndeep molecules through fitness-rank
based roulette-wheel selection, i.e., by assigning higher selection
probabilities to molecules with high Facq values, the search tree is
thus preferentially expanded into regions of the OSC space that
the surrogate model anticipates to be rewarding (either in terms
of exploitation or exploration).

Hyperparameter optimization. The thus defined AML approach
contains a number of hyperparameters that may critically affect
its performance. Most notably, these are κ that balances
exploration and exploitation in the acquisition function, Nbatch

the size of the prioritized batch in each learning step, as well as
dsearch the depth of the search space in terms of the number of
applied morphing operations. The decreased resolution strategy
additionally requires the specification of the fixed subset size of
Ndeep molecules to which morphing operations are applied. Less
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decisive is the initial number of molecules Ninitial used for the first
training of the surrogate model, which defines only an insignifiant
part of the total executed first-principles calculations and which
should only be large enough to somehow kick-start the AML
process. Here, we suitably set Ninitial to the 179 unique molecules
that result in the first two generations when applying all
morphing operations up to two times starting from the simplest
building block benzene, cf. Fig. 1.

In order to explore the effect of the other hyperparameters and
optimize them for first-principles OSC discovery, we consider the
finite subspace formed of all molecules up to a maximum size of
4 rings, 4 heteroatoms and 2 linkers that are generated by
exhaustive application of all morphing operations up to 14 times,
see Supplementary Note 2. With 65.552 unique molecules this
subspace is already representative for the design problem and
contains many and diversely structured high-performing mole-
cules as illustrated in Fig. 2. At the same time, the still tractable
size of the finite test space allows for the exhaustive calculation of
all molecular descriptors with van der Waals (vdW) corrected
density functional tight-binding (DFTB).70 While this semi-
empirical level of theory is not fully quantitative, it provides a
sufficiently realistic account of the descriptor landscape for the
intended method testing as analyzed in detail in Supplementary
Fig. 4. Further details on molecular test space generation and
descriptor calculation are provided in the Supplementary Note 2.

The finite test space contains a total of 2438 top-performing
molecules with a high fitness F ≥−0.2. As a quantitative
benchmark, we thus measure the discovery success S(N) as the
fraction of these molecules that are identified after the descriptors
of N molecules have been queried. With 179 queries used for the
initialization, see above, the final measure S(5179) thus evaluates
the discovery success after n= 50 learning steps when using
Nbatch= 100. Supplementary Fig. 6 compiles the corresponding

success curves S(N), when systematically combining Nbatch= 50,
100, or 200 with κ values in half-integer steps between 0 and 5, as
well as for a search depth of one- or two-time exhaustive
application of all morphing operations. Fortunately, we find the
AML search to be highly robust with respect to the choice of
Nbatch and κ. Only a small variation of 0.71 < S(N= 5179) < 0.80
is obtained over all tested combinations for a search depth of one,
meaning that 70–80% of the top-performing molecules are
consistently found after descriptors for less than 8% of the entire
test space have actually been computed. For a search depth of
two, this success rate becomes slightly higher, reaching up to 85%
as compiled in Supplementary Fig. 7. Generally, larger batch sizes
seem to implicitly increase the explorative behavior, such that an
almost indistinguishably optimum performance is obtained for
larger Nbatch in combination with successively smaller exploration
weights κ in the acquisition function, cf. Eq. (2). For too small κ,
the success curves become stepped though, indicating that
temporarily the mainly exploitative algorithm then only mean-
ders through identified sub-pockets of the test space. Too large κ,
on the other hand, diminish the initial success of a then too
explorative algorithm in the first learning steps. Overall, an
intermediate value pair (Nbatch, κ)= (100, 2.5) thus provides a
robust setting and is henceforth employed in all AML runs. For
these values of (Nbatch, κ), we also performed a sensitivity analysis
with regard to the employed weight vector w in Eq. (1) and the
bond radius in the Morgan fingerprints used to assess molecular
similarity. The results are summarized in Supplementary Figs. 8
and 9, respectively, and again demonstrate a high robustness with
respect to these parameters.

The higher success rate for dsearch= 2 indicates that it is
generally advantageous to further expand the search space away
from the known topologies of the current population. Assessing
the dependence of the decreased resolution AML algorithm on its

Fig. 2 Finite OSC test space. Left panel: Chemical space network (CSN) representation of the finite OSC test space of 65.552 unique molecules generated

by exhaustive application of all morphing operations up to 14 times. Each molecule is surrounded by morphing-related analogs (see text). Benzene as the

smallest base molecule is colored in blue. All other molecular nodes are colored according to their fitness function F as calculated at the semi-empirical

density-functional tight-binding level. 2438 red nodes form the target discovery group of top-performing molecules with high fitness F≥−0.2. Right panel:

Example molecules from the top-performing group, chosen randomly from different areas of the CSN to illustrate the structural diversity contained in the

test space.
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two additional hyperparameters, Supplementary Table 1 sum-
marizes the corresponding discovery successes when system-
atically combining a varying subset size Ndeep = 100, 250, 500 and
1000 with search depths dsearch = 1, 2, 3, 4, 5 and 10. Again, we
find the algorithm to be quite robust, with higher dsearch
compensating smaller Ndeep. Within the finite test space, many
combinations thus saturate at success rates around 82–83%. This
is essentially as good as the best performance of the previous
exhaustive enumerations, but comes at the advantage of a
controlled growth of the search space at later learning steps. For
the first-principles AML discovery in the virtually unlimited OSC
space below we correspondingly employ this decreased resolution
search strategy with a top-performing hyperparameter combina-
tion (dsearch, Ndeep)= (3, 500).

Visualizing AML at work. The finite test space can also be viewed
as a chemical space network (CSN), in which the morphing
operations establish a total of 315.451 directed connections
between the constituting molecules. This allows us to visualize the

space in form of a 2D graph structure, in which the molecules are
mutually repelling nodes, while morphing relationships between
them lead to attractive edges71, see Supplementary Note 1 for
details. In such a representation each molecule is thus spatially
surrounded by morphing-related analogs. Figure 2 shows the
resulting graph, in which the individual nodes are colored
according to their DFTB calculated fitness. As expected, the target
group for discovery in form of the 2438 top-performing molecules
is widely scattered over disjoint parts of chemical space, with
ensembles of related molecules often clustered in sub-pockets.

Apart from providing a bird’s eye view of the design problem,
the CSN representation also affords a direct visual access to the
AML process. Plotting the evolving population N over subsequent
learning steps n reveals how much a chosen AML strategy is able
to focus its exploration onto the interesting regions of chemical
space and how efficiently it prioritizes OSC molecules with
desired properties. Figure 3 illustrates this for the determined
optimum hyperparameters and contrasts the learning for
exhaustive searches with depths of one or two, with the decreased
resolution strategy where the searches partially expand subsets of

Fig. 3 AML exploration of the finite test space. The same CSN representation of the OSC test space as in Fig. 2 is shown in gray. Superimposed are the

target group of 2438 top-performing molecules in red. Each panel shows the discovery success after n learning steps with the color of all identified top-

performing molecules changed to blue and the search space for the next learning step n+ 1 colored in dark gray. Left upper panels: Steps n= 10, 30, 50 for

an exhaustive search with search depth of one. Left middle panels: Steps n= 10, 30, 50 for an exhaustive search with search depth of two. Left lower

panels: Steps n= 10, 30, 50 for a decreased resolution search (Ndeep= 500) with search depth of three (see text). Supplementary Movies 1–3 provide the

detailed, full trajectory of all three AML discovery runs over learning steps 1–50. Right centered panel: Discovery success of a conventional computational

funnel after computing an equal number of descriptors (5179) as after 50 learning steps, and anticipating that knowledge of 13.755 molecules with

optimum ∣ϵalign∣ < 0.3 eV is present (see text).
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Ndeep= 500 molecules at search depth three. For the exhaustive
search with dsearch= 1, the discovery is centered to more
morphing-related top-performing molecules all more or less
located in the core region of the CSN. In contrast, for the deeper
exhaustive search, the algorithm also successfully identifies top-
performing molecules in the periphery of the network that are
topologically quite disconnected from the initial population. The
downside is a rapidly increasing size of the search space that in
the present case is only bounded by the finiteness of the
considered test space. This is largely mitigated by the decreased
resolution search, which nevertheless equally successfully identi-
fies top-performing molecules at the CSN periphery.

To put this performance of the AML searches into perspective,
we also contrast them in Fig. 3 with the result of a conventional
computational funnel. For the latter we pretend that the
calculation of ϵHOMO has a negligible computational cost and
the value of this descriptor is known for every molecule in the test
space. This allows to identify a subset of 13.755 promising
molecules for which ∣ϵalign∣ < 0.3 eV and which contains all
previously considered 2438 top-performing molecules. The
computational funnel approach would then focus the explicit
calculation of the more demanding λh descriptor to molecules in
this subset. To enable a direct comparison with the preceding
AML assessment, a random selection of 5179 molecules out of
this subset would then lead to a success rate of S(5179) ≈ 0.4. Even
in this finite test space, where the AML algorithm can not even
unfold its real strength, less than half of the top-performing
molecules are thus found by this prevalent computational
screening strategy after spending the same amount of CPU time
(assuming that the exhaustive calculation of 65.552 ϵHOMO

descriptors for the entire test space would constitute an
insignificant computational effort).

First-principles AML discovery in a virtually unlimited OSC
chemical space. Based on the gathered methodological under-
standing and optimized algorithmic settings (Nbatch= 100, κ=
2.5, dsearch= 3,Ndeep= 500) we now proceed to first-principles
AML discovery at the vdW-corrected DFT-B3LYP level of theory.
This is a truly challenging endeavor, considering the vastness of
the OSC design space. While the space of molecules that can be
generated through the morphing operations is in principle
unbounded, we here restrict it to the realm of “small molecules”
containing a maximum of 100 atoms (including H atoms). This
realm appears as a first, more practical target for synthesis and
crystallization, also considering that essentially all known top-
performing OSC molecules to date fall into this size range. Esti-
mated to surpass a size of 1030 molecules, see Supplementary
Note 2, the corresponding chemical space is nevertheless virtually
unlimited for all practical purposes and would defy any con-
ventional exhaustive computational screening. While an iterative
search as with AML is thus the only tractable means to explore
this space at predictive quality, an additional technical aspect
emerges that did not yet play a role in the analysis of the finite test
space at the semi-empirical level before. It concerns the typically
massively parallel processing on the required high-performance
computing (HPC) infrastructure. As a result of queuing or down-
times, as well as convergence behavior of the first-principles
calculations, the results for the Nbatch descriptor calculations can
become available at quite different times (or in rare cases of failed
convergence or system instabilities may not become available at
all). A practical way to avoid long waiting times before the last
calculations are ready is to initially select a larger batch size for
descriptor calculation and then continue with the forthcoming
learning steps whenever the desired number of Nbatch molecules
has been processed (successfully or unsuccessfully). We found

this strategy to afford an efficient and continuous HPC workflow,
here initially submitting the 200 molecules with highest Facq
values for descriptor calculations. These are continuously pro-
cessed on the HPC system by 40–100 parallel worker processes, to
reach the targeted batch size Nbatch= 100, while for a retraining
of the surrogate model only successfully processed cases are
included. In this respect, the above determined robustness of the
AML performance with regard to the exact batch size also con-
stitutes an important asset for such HPC operation.

Figure 4 summarizes the results of the AML discovery run over
its first 15 learning steps. Gratifyingly, the algorithm quickly
stabilizes into a highly efficient mode of operation while
simultaneously meandering deep into unknown chemical space.
Already after five learning steps even the median fitness of the
entire prioritized batch exceeds the threshold value F ≥−0.2 for
the first time, reflecting top-performing molecules. However, as
clearly seen from the violin plots of the F distribution over the
batches in Fig. 4b, this high efficiency does not simply result from
the algorithm just exploiting its established knowledge. Even at
later learning steps, the algorithm steadily queries quite unfavor-
able molecules with a fitness worse than F <−0.3. While such
exploratory queries can either be based on high model
uncertainty or induced by model prediction errors, they serve
to continuously improve the surrogate model also outside the
already considered search space. As a result, at each later learning
step, the algorithm keeps on identifying top-performing mole-
cules at a stable, high rate.

After 15 learning steps and a corresponding calculation of first-
principles descriptors for 1680 molecules (and only 35 unsuccess-
fully terminated calculations), a total of 900 molecules with
molecular fitness F ≥−0.2 have been found. A relative success
rate of 54%, i.e., essentially every second first-principles
calculation yields a promising molecule and this without any a
priori knowledge of the vast OSC space. A second AML discovery
run described in Supplementary Note 4 confirms the robustness
of this high performance. Notably, due to the random nature in
our search strategy, significantly different, but equally favorable
molecules are identified in this run. This performance becomes
even more impressive from the viewpoint that these molecules are
true discoveries, as essentially none of them are contained in
existing focused libraries assembled in previous screening
studies3,31–34. With typically ~105− 106 entries, these data sets
reflect the wealth of our existing knowledge and synthesis efforts,
but simply do not even scratch the surface of the true OSC design
possibilities. To this end, the negligible overlap with the top-
performing molecules identified in these previous studies also has
to do with molecular size. Within the first learning steps, the
average size in the prioritized batch quickly rises to around 90
atoms, which is at the edge of the limit currently imposed on our
search and in a size regime that could barely be addressed by the
previous exhaustive enumeration studies. At the same time, even
archetypical and acclaimed molecular OSC materials like DNTT
(C22H12S) or rubrene (C42H28) approach this size regime, with
many other experimentally tested candidates falling right into
it23. The preferred prioritization of such larger molecules is
thereby to some extent likely simply a result of the combinato-
rially exploding phase space. On the other hand, another physical
factor could be that the AML algorithm learns and exploits
the tendency of λh to decrease with increasing molecular size3

as a consequence of a larger hole delocalization (which even
at the hybrid DFT-B3LYP level of theory may be slightly
overestimated72). The inclusion of molecular coupling-sensitive
descriptors into the fitness function is therefore certainly a
promising topic for future studies.

The discovered molecules exhibit a diverse set of structures,
incorporating distinct core fragments and the full set of allowed
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heteroatoms and linkers. Figure 4c illustrates this with the best-
performing molecules identified at selected learning steps, and an
extended list being compiled in Supplementary Fig. 11. This
diversity indicates that the AML algorithm successfully explored
topologically widely differing areas of the OSC space and did not
get stuck in one or a few subpockets. Nevertheless, some
commonalities can be spotted, like the recurrent presence of
phenylamine linker motifs (marked in orange in the best-
performing molecule of learning step 1 in Fig. 4c). Similarly, more
complex ring systems emerged at later learning stages (marked in
blue and green in the most favorable molecule of step 3 and 9,
respectively) and are from thereon quite pronounced among well-
performing molecules. While a diverse molecular space is
searched, the AML discovery thus automatically identifies and
prioritizes privileged design motifs. After harvesting a larger
number of molecules in further learning steps, an exciting
prospect for future studies is therefore to mine the accumulating
data set and systematically extract this implicit knowledge for
rational design. To this end, the trained surrogate model can also
be used to quickly assess the suitability of such manually
constructed molecules or of deliberate modifications of the here
identified ones. The latter could be particularly appealing in view
of long-term device-stability or synthetic accessibility. We note
that certainly not all identified molecules are suitable in this
regard. For instance, the 5-membered unsaturated rings of the
displayed compound of learning step 1 (marked in red) in Fig. 4c
could be problematic as they might undergo Diels-Alder type
reactions, and we attribute the appearance of such ring motives as
the algorithm’s intent to provide intermediates on the way to the
later explored, more stable 5-membered heterocycles. None-
theless, multiple of the favorable molecules are symmetric and
composed of standard building blocks that should be easily
accessible through short and reliable synthesis routes, with the
surrogate model furthermore available to gauge the effect of
stabilizing modifications.

Discussion
In our view, active machine learning based on first-principles
descriptors constitutes a most promising route to prior-to-synthesis
virtual discovery. Its iterative refinement allows to most efficiently
focus the data-generating calculations and meaningfully explore the

vastness of chemical spaces at predictive quality and without a
priori specifications, enumeration or reliance on empirical
descriptors with limited validity range. In this work we have
established such an AML discovery approach for molecular OSC
materials through versatile molecular morphing operations and
based on charge injection and conduction querying descriptors.
Fortunately and with a view on explainable ML models, our sys-
tematic assessment within a finite test space suggests the approach
to be quite robust with respect to the algorithmic hyperparameters.
Most promising to further increase its already high efficiency and
prevent an over-exploitation of particular structural motifs, is likely
to additionally enforce structural diversity among the Nbatch mole-
cules selected at each learning step, instead of the present purely
fitness-ranked roulette-wheel selection.

Central to assess this performance and enable an unbiased and
systematic comparability of different AML approaches will be the
establishment of well-designed, balanced and freely available
benchmark platforms for unlimited search spaces. As clear from
the present work, already within the here pursued single-tree
expansion there are multiple design strategies and concomitant
algorithmic parameters. While we have explored these in a
truncated test space, AML only unfolds its full potential in the
exploration of unlimited spaces. Representative and standardized
benchmark platforms as already available for drug-design tasks13

will therefore be pivotal to truly compare various learning con-
cepts that work without a priori enumeration or pre-definition of
the search problem.

Further challenges and advancements in the physico-chemical
domain comprise the adaption and extension of the molecular
morphing operations to tailor the OSC search space. The present
set derived from literature domain knowledge spans a design space
geared towards flexible, π-conjugated molecules. Ultimately, a
generic, but chemically-valid creation of morphing operations
could drive discovery of many novel structural motives. Heavier
requirements on the surrogate GPR-model in such cases could
then be tackled with improved covariance functions for 2D
molecular graphs73 or conformer-specific 3D coordinates74, while
alleviating the limited scaling by sparse approximations75, or
application of alternative models76–79.

Another major area for development concerns the first-
principles descriptors entering the employed multi-objective fit-
ness function. Devising such suitable descriptors has evolved into

Fig. 4 First-principles AML discovery in a virtually unlimited space. a Median values of molecular fitness F over the prioritized Nbatch molecules at the

different learning steps (step 0 shows the median of the initial population Ninitial). b Corresponding violin plot showing the (kernel-density estimated)

distribution of molecular fitness F over the batch. These smooth kernel-density estimated distributions can slightly extend beyond the true range of F values

as indicated by the explicit values marked by blue crosses. The number of queries leading to favorable and unfavorable molecules is indicated next to each

violin. Due to descriptor calculation failures (see text) these numbers do not always add up to Nbatch= 100. c Examples of top-performing molecules

identified at various learning steps (see text for an explanation of the different color-highlighted geometric motifs). An extended list of the 4 top-

performing molecules of each learning step is shown in Supplementary Fig. 10.
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an important research area of its own80–83, independent of the
present AML and OSC context. With the presently employed level-
alignment descriptor ϵalign and the hole reorganization energy λh

our search readily identified a diverse range of hitherto unknown
molecular candidates. Just as in conventional computational
screening, there are numerous possibilities to refine the underlying
candidate evaluation through additional (or alternative) descrip-
tors. In the exemplified OSC context, obvious avenues could be to
explicitly consider synthetic accessibility84, electronic coupling and
charge-transport networks in the molecular solid46,51,85,86 or
electron-phonon coupling87. In view of the high data efficiency of
the AML approach, one may also drop the present focus on
computationally least-demanding descriptors, originally dictated
by the excessive queries in conventional exhaustive screening work.
More elaborate descriptors like structural interfacing with electrode
materials88 could therefore routinely (or at least occasionally) be
requested. Eventually, one could even think of incorporating
experimental feedback from self-driving laboratories89. The pro-
spects are thus as manifold as exciting. Regardless of the specific
road chosen, it is conceptually clear that autonomously operating
workflows like the present AML approach offer an unparalleled
means to accelerate the discovery and design of viable future
materials like the high-mobility organic semiconductors featured in
this work.

Data availability
The source data necessary to reproduce the main figures of the manuscript is provided in
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