
Active Disks: Programming Model, Algorithms and Evaluation

Anurag Acharya Mustafa Uysal

Dept. of Computer Science Dept. of Computer Science

University of California University of Maryland

Santa Barbara College Park

Joel Saltz
Dept. of Computer Science

University of Maryland

College Park

Abstract

Several application and technology trends indicate that it
might be both profitable and feasible to move computa-
tion closer to the data that it processes. In this paper,
we evaluate Active Disk architectures which integrate sig-
nificant processing power and memory into a disk drive and
allow application-specific code to be downloaded and exe-
cuted on the data that is being read from (written to) disk.
The key idea is to offload bulk of the processing to the disk-
resident processors and to use the host processor primarily
for coordination, scheduling and combination of results from
individual disks. To program Active Disks, we propose a
stream-based programming model which allows disklets to
be executed efficiently and safely. Simulation results for a
suite of six algorithms from three application domains (com-
mercial data warehouses, image processing and satellite data
processing) indicate that for these algorithms, Active Disks
outperform conventional-disk architectures.

1 Introduction

Several application and technology trends indicate that it
might be profitable and feasible to move data-intensive com-
putation closer to the data that it processes. At the ap-
plication end, the rate at which new data is being placed
online is outstripping the growth in disk capacity as well
as the improvement in performance of commodity proces-
sors. Furthermore, there is a change in user expectations
regarding large datasets - from primarily archival storage to
frequent reprocessing in their entirety. Patterson et al [25]
quote an observation by Greg Papadopolous - while proces-
sors are doubling performance every 18 months, customers
are doubling data storage every five months and would like
to “mine” this data overnight to shape their business prac-
tices [24]. Jim Gray argues that satellite data repositories
will grow to petabyte size over the next few years and will re-
quire a variety of processing ranging from reprocessing the

Permtssion to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advan-

tage and that copies bear this notice and the full citation on the first page

To copy otherwise, to republish. to post on servers or to

redistribute to ksts, requires prior specific permission and/or a fee.

ASPLOS VIII 10198 CA.USA

0 1998 ACM l-58113-107.0/98/0010...$5.00

entire dataset to take advantage of new algorithms to re-
projection and composition to suit different display require-
ments [12, 131. These trends have two implications: first,
large data warehouses will always have a large number of
disks and, second, architectures that do not scale the pro-
cessing power as the dataset grows may not be able to keep
up with the processing requirements.

At the technology end, the disk transfer rate has been
increasing rapidly. The Cheetah 18 drives from Seagate are
capable of delivering up to 21 MB/s [6]; faster drives are
on the horizon. In addition, the power of cheap processors
and the size of cheap memory is increasing rapidly. Cur-
rently, a 200 MHz Cyrix/IBM 6x86 processor and 16 MB of
SDRAM can be purchased for about $100 [7, 281. If current
trends continue, by the end of the decade, the same $100
will be able to buy a 266-300 MHz processor with 32 MB
of memory. In comparison, the prices of leading-edge disk
drives (which would be used in a high-performance data cen-
ter) are in the $1100-1750 range.’ These trends have two
implications. First, given the improvements in data transfer
rates, even a state-of-the-art processor can keep only a small
number of drives busy. Second, given the relentless drop in

the price of powerful processors and large memory chips, it
is becoming economically feasible to place substantial com-
putational capability on individual disks. It is important to
note that disk drives already have embedded processors (for
servo control) and memory (for disk cache). Current trends
indicate that both these components are already scaling up
- e.g. disk caches are already up to 4 MB [S].

In this paper, we evaluate Active Disk architectures which
integrate significant processing power and memory into a
disk drive and allow application-specific code to be down-
loaded and executed on the data that is being read from
(written to) disk. To utilize Active Disks, an application is
partitioned between a host-resident component and a disk-
resident component. The key idea is to offload bulk of the
processing to the disk-resident processors and to use the host
processor primarily for coordination, scheduling and combi-
nation of results from individual disks.

Active Disks present a promising architectural direction
for two reasons. First, since the number of processors scales
with the number of disks, active-disk architectures are bet-
ter equipped to keep up with the processing requirements
for rapidly growing datasets. Second, since the processing

‘The 9.1 GB, 16 MB/s Cheetah 9 [6] is currently available for
about $1100 [21], the 16.2 GB, 21 MB/s Cheetah 18 [6] is available
for about $1750 [17].

81

components are integrated with the drives, the processing
capacity will evolve as the disk drives evolve. This is similar
to the evolution of disk caches -- as the drives get faster, the
disk cache becomes larger.

The introduction of Active Disks raises several questions.
First, how are they programmed? What is disk-resident
code (i.e., a disklet) allowed to do? How does it communi-
cate with the host-resident component? Second, how does
one protect against buggy or malicious programs? Third, is
it feasible to utilize Active Disks for the classes of datasets
that are expected to grow rapidly - i.e. commercial data
warehouses, image databases and satellite data repositories.
To be able to take advantage of processing power that scales
with dataset size, it should be possible to partition algo-
rithms that process these datasets such that most of the
processing can be offloaded to the disk-resident processors.
Finally, how much benefit can be expected with current tech-
nology and in foreseeable future?

We address these questions in three ways. First, we pro-
pose a stream-based programming model for disklets and
their interaction with host-resident peers. Disklets take
streams as inputs and generate streams as outputs. Files
(and ranges in files) are represented as streams. Streams
are accessed using a standard interface which delivers the
data in buffers whose size is known apriori. A disklet can be
written in any language. However, it is required to adhere to
certain guidelines. A disklet can not allocate (or free) mem-
ory. It is sandboxed [32] within the buffers corresponding to
each of its input streams, which are allocated and freed by
the operating system, and a scratch space that is allocated
on its behalf when it is initialized. A disklet is also not al-
lowed to initiate I/O operations on its own. However, it is
allowed to skip parts of its input streams. These restrictions
limit the amount of damage that can be done by a disklet.
They also simplify the operating system support required
on disk-processors.

Second, we present partitioned versions of a suite of al-
gorithms that process the datasets of interest. We present
six algorithms: SQL select,SQL group-by, external sort,
the datacube operation for decision support [14], image con-
volution and generation of earth images from raw satel-
lite datax. The first four algorithms are used in relational
databases, the remaining two are used in image databases
and satellite data repositories respectively. For each ap-
plication, we started with well-known algorithms from the
literature [3, 4, 111 and tried to keep the modifications to
the minimum.

Third, we compare the performance of the partitioned al-
gorithms running on Active Disks to the performance of the
original algorithms running on conventional disks. Our com-
parisons use two configurations, one corresponding to cur-
rent technology and economics and the other corresponding
to what is likely to be available by the end of the decade. In
addition, we evaluate the sensitivity of these results to large
variations in the interconnect bandwidth and host proces-
sor speed. These experiments help identify the bottlenecks.
They also help understand the impact of unbalanced up-
grades. Given the long life of large datasets and cost of
replacing a large number of disks, it is possible that other
parts of the system are upgraded more frequently than the
disks.

Our results are encouraging. For all the algorithms used
in our evaluation, active-disk architectures
outperformed conventional-disk architectures. Our results
indicate that active-disk architectures scale well with the

number of disks. In comparison, conventional-disk archi-
tectures are able to achieve very small improvements from
larger disk farms. However, for algorithms that redistribute
all or most of their input data, routing all data through the
host (in active-disk architectures) could become a bottle-
neck for large configurations, Finally, we have shown that
active-disk architectures retain most of their advantage even
if the host processor is upgraded more frequently than the
disks.

2 Programming model

We propose a stream-based programming model for disklets
and their interaction with host-resident peers. Disklets take
streams as inputs and generate streams as outputs. Streams
can be of three types - &&-resident streams which are files
(or ranges in files), host-resident streams which are used by
host-resident code to interact with disklets, and pipe streams
which are used to pipe results of one disklet into another.
Streams are accessed using a standard interface which de-
livers the data in buffers whose size is known a priori.

Each disklet must have at least one input stream and
at least one output stream. In addition, each disklet must
have an initialization function which is run when the disklet
is installed. Finally, each disklet must contain a processing
function (read/write) which is run as data is read/written.
A disklet may, optionally, contain long-term scratch space
(which is allocated on its behalf before it is installed and is
automatically reclaimed after it exits), a set of parameters
that can be used to customize its behavior, and a finalization
function which is run when the disklet terminates (either by
consuming the data on all its input streams or by calling
exit).

A disklet is not allowed to initiate I/O operations on its
own. All I/O operations are initiated by the host-resident
program and are checked for validity by the host-resident
file-system. This has two advantages. First, disklets can
not corrupt the file-system. Second, the operating-system
layer on the disk need not provide file-system functionality.
While a disklet is not allowed to initiate I/O operations, it is
allowed to skip subranges in an input stream by notifying the
operating-system layer on the disk. The skipped subranges
are not delivered to the disklet. This allows disklets to safely
implement algorithms in which future I/OS depend on data
from previous I/OS. For example, an algorithm that uses
a disk-resident index to decide which chunks of data are to
be read can be implemented by a disklet with two input
streams - one corresponding to the index file and the other
corresponding to the data file. It uses the data delivered on
the index stream to decide which parts of the data stream
are to be read and which are to be skipped.

A disklet cannot allocate or free memory. All memory
management is done by the operating-system layer on the
disk. Furthermore, all memory accesses by a disklet must
be within a sandbox defined by the buffers for its input
stream(s) and the long-term scratch space (if any). The
disklet binary is analyzed at download-time (as in software
fault-isolation [32]); disklets that may violate memory-safety
are rejected. The stream-based programming model simpli-
fies the analysis as it defines a natural sandbox for disklets.

Communication between a disklet and its environment is
restricted to its input and output streams. The sources and
sinks for these streams are specified by the host-resident pro-
gram as a part of the installation of the disklet. A disklet is

82

not allowed to determine (or change) where its input stream
comes from or where its output stream goes to. This has
two advantages. First, a disklet does not handle buffering
and scheduling for its communication, the operating-system
layer does. This reduces the complexity of disklets. Sec-
ond, in a heterogeneous environment with both Active Disks
and conventional disks, this allows disklets that process data
from conventional disks to be transparently executed on the
host itself.

Figure 1 presents pseudo-code for a disklet that performs
image convolution and the corresponding host-resident code.
Note that installation and invocation of disklets are separate
operations. This decision is based on the expectation that
once downloaded, disklets will be used repeatedly. A disklet
can be written in any language. However, it is required
to adhere to the safety constraints described above. These
constraints are enforced by a combination of download-time
analysis and a restricted runtime environment.

3 Operating-system support

Active Disks require operating system support both at the
host and on the disk. Design of the OS layer at the disk (or
the DiskOS) has conflicting requirements. On one hand, we
would like the DiskOS to be as thin as possible so that the
disklets can make full use of the limited resources. On the
other hand, we would like to move as much as possible of the
common functionality into the DiskOS so that disklets can
be small and easy to analyze. Our design takes advantage of
the stream-based programming model to provide the needed
functionality and yet keep the footprint of the DiskOS small.

DiskOS: the DiskOS provides three services - memory man-
agement, stream communication and disklet scheduling. The
stream-based model simplifies memory management as all
memory is allocated in contiguous blocks whose size is known
a priori and the lifetime of all blocks is known. The stream-
based model also simplifies the communication support re-
quired as all stream buffers are allocated and managed by
the DiskOS. Depending on the amount of memory avail-
able, it can allocate multiple buffers and overlap data move-
ment and computation. The desire for coarse-grain par-
titioning results in long I/O requests (e.g., see Figure 1)
which take the guesswork out of prefetching and allow the
DiskOS to make efficient use of the limited memory. The
stream-based model also simplifies scheduling for disklets.
A disklet is ready to run whenever there is new data avail-
able on one or more of its input streams. Currently, we
assume that the scheduling discipline is run-to-completion
and that at any given time, only one host-resident program
can download disklets. We don’t expect the second assump-
tion to be a problem as the applications under consideration
are extremely large and usually run on dedicated machines.
The run-to-completion scheduling, however, could become
a problem for large installations that run multiple concur-
rent jobs, e.g. multiple decision-support queries. We are
currently investigating ways to relax this restriction.

Host-level OS support: limited new host-level OS func-
tionality is needed - support for installation of disklets and
management of host-resident streams. Disklet installation
requires analysis of disklet code to ensure memory safety [32],
linking against the DiskOS environment and downloading
the code to the disk. Creation and management of host-
resident streams is relatively simple. The notion of streams

is already being used for I/O in current operating-systems.
The primary difference between the semantics of streams
currently used in operating-systems and the semantics pro-
posed for Active Disk streams is that the latter deliver data
in a quantized manner - in a sequence of buffers whose
size is known a priori. These buffers are allocated by the
operating-system and are freed implicitly. A buffer for a
read stream “s” is allocated using getNextBuffer(s) and
is freed (implicitly) by the next call to getNextBuffer(s),
close-stream(s) or program exit. Buffers for write streams
have similar semantics.

4 Algorithms

In this section, we describe conventional-disk and active-disk
versions of the algorithms in our suite. We present six algo-
rithms from three application domains - relational database
processing, image processing and satellite data processing.
The conventional-disk algorithms are optimized for I/O per-
formance. All algorithms except external sort stripe the
data across all disks with 256 KB chunks per disk per stripe.
For external sort, the data is striped on half of the disks for
reading and the other half for writing. In addition, all algo-
rithms use aggressive prefetching issuing up to eight ssyn-
chronous I/O requests (two for sort phase one), each re-
quest being for a complete stripe across all disks (half of the
disks for sort). The combination of large requests and deep
request-queues allows these algorithms to take full advan-
tage of the aggressive I/O subsystem.

SQL SELECT: SELECT filters tuples from a relation based
on a user-specified predicate [20]. Database administra-
tors can build indices on one or more attributes to speed
up SELECTS; SELECTS on non-index attributes, however,
are fairly frequent and require scanning the entire relation.
We focus on such operations. SELECT applies the filter-
ing predicate independently to each tuple and, therefore,
is amenable to coarse-grain parallelization. The active-disk
algorithm applies the SELECT predicate at the disk and
forwards only the successful tuples to the host. The input
stream for the downloaded disklet consists of the entire file
on its disk (as in Figure 1). The scratch-space consists of a
large buffer that is used to collect tuples that are to be sent
to the host. The disklet applies the predicate to each tuple
in an input buffer and copies it to the outbound buffer if it
satisfies the predicate. When the outbound buffer is full, it
is shipped to the host. At the host, data from different disks
is concatenated in preparation for transfer to the requesting
client.

SQL group-by: The group-by operation allows users to
compute a one-dimensional vector of aggregates indexed by
a list of attributes [20]. It partitions a relation into disjoint
sets of tuples based on the value(s) of index attribute(s)
and computes an aggregate value for each set of tuples.
The SQL standard provides five aggregation functions: MIN
MAX, SUM, AVG and COUNT. Aggregation functions are order-
independent and need only a small amount of intermediate
storage. Graefe [ll] shows that hashing-based techniques
out-perform sort-based and nested-loop-based techniques for
implementing group-bys. Accordingly, we used the hashing-
based algorithm from [ll] as our conventional-disk algo-
rithm. The active-disk algorithm performs the group-by in
two steps. The downloaded code performs local group-bys
as long as the number of aggregates being computed fits in

83

disklet convolve(instream in,
outstream out)

integer kernelC31[3], sidelen;
integer i,j,k,l,m,tsmp;
buffer buffer ;

function init (integer filter C31 C31 ,
integer imgside) {

copy(filter,kernel);
sidelen t imgsida;

1

function read {
/* get next buffer */
buffer e getNextBuffer(in);

I* perform convolution */
for (i t 0; i < sidelen; i++) {

for (j t 0; j < sidelen-3; j++) {
for (k t 0; k < sidelen-3; k++) {

t t 0;
for (1 t 0; 1 < 3; l++) {

for Cm t 0; m < 3; m++) {
t += (buffer[j+ll Ck+ml *

kernel Cl1 Cm1 1;

11
bufferCj][kl +- t;

end

integer filterC31C31 = ((-1, -2, -l},
0, 0)

[iI 2. ljj;

for (i t 0; i < NDISKS; i++) {

/* open image file on every disk */
sprintf(fname,“/disks%/ifile”,i);
fd[i] = open(fname,OJlDONLY);
flenCil = flength(fdCi1);
/* create a stream for every disk.

* output from disklet; 256K buffer */
sprintf(sname,“/stream/str%“,i);
stream[il = open_str(sname,READ,262144);

/* install the disklet */
install convolve(filter.512);
/* invoke disklet; whole file as input

* input stream spec has descriptor,
* offset and length; 256K buffer */

run convolve(mkStr(fdCi1 .O,flenCil,262144),
streams [il) ;

1

/* while not all streams have terminated.
* str-select blocks, returns a stream
* that has new data */

while ((s t str-select (streams)) != NULL) {
buf t getNextBuffer(s);
processBuffer(buf);

1

for (i t 0; i < NDISKS; i++) {
close(fdCil);
close-stream(streamCi1);

1

Figure 1: Pseudo-code for partitioned version of convolution filtering. The filter used in this example detects horizontal lines
in images.

the disk-memory. When it runs out of space, it ships the

partial results to the host and reinitializes the disk-memory.
The host accumulates the partial results forwarded by all
disklets.

External sort: We used NOWsort [4] as the starting point

for both versions of external sort. NOWsort is based on a
long history of external sorting research in the database com-
munity (e.g. [2] and [22]) and currently holds the record for
the fastest external sort (the Indy MinuteSort record [16]).
We used the pipelined version of the two-pass single-node
sort [4] for the conventional-disk version. The first phase
uses a reader-thread to read data and move tuple point-
ers to buckets and a writer-thread to sort each bucket with
partial-radix sort’ and write the bucket. The second phase
uses three threads to merge the sorted partitions created in
the first phase. A reader reads one block from each sorted
partition into one of eight3 sets of merge buffers; a merger
selects the lowest-valued key from the current block of each
partition and copies it to one of eight write buffers; a writer
writes buffers to disk.

'Making two passes over the keys with a radix size of ll-bits [2]
plus a cleanup.

'Two buffers in the original algorithm.

The active-disk algorithm uses two disklets for the first
phase, the partitioner and the sorter. The partitioner
uses its scratch-space to form as many buckets as the num-
ber of disks. It examines each record and appends it to the
bucket corresponding to its destination disk. When one of
these buffers fills, it is forwarded to the host. The host main-
tains two global buffers for every disk and copies the for-
warded records into the appropriate buffer. When a global

buffer for a disk fills, the host sends it to the sorter disklet
on that disk. Two global buffers are used to allow progress
while one of them is being sent to the sorter. The sorter
sorts each buffer using a partial radix sort and writes it to
disk by sending it to the output stream. In the second phase,
each sorted partition created in the first phase is mapped to
a different stream; these streams are attached to a merger
disklet as its inputs. The merger selects the lowest key from
all of its input streams and copies it to its output stream
(which is mapped to the output file). Note that, no data is
sent to host in this phase; merging is done locally at each
active disk.

Datacube: data&e is the most general form of aggrega-
tion for relational databases. It computes multi-dimensional
aggregates that are indexed by values of multiple aggre-

84

\ ' I', '
'ul' '

AC
B

ABC

Figure 2: Search lattice and pipelines for the PipeHash al-
gorithm. The bold lines in the search lattice indicate the
minimum spanning tree computed by the algorithm using
estimated sizes of individual group-bys. The right hand side
shows four pipelines. In each pipeline, the data placed in a
box at the bottom is read from disk.

gates [14]. In effect, a datacube computes group-bys for
all possible combinations of a list of attributes. Several
efficient methods for computing a datacube are presented
in [3]. We use one of these algorithms, called PipeHash, as

the conventional-disk algorithm. PipeHash represents the
datacube as a lattice of related group-bys. A directed edge
connects group-by i to group-by j if j can be generated
from i and has exactly one less attribute. Each eclge has
an associated weight which reflects the estimated size of the
group-by. PipeHash determines the set of group-bys to per-
form by computing a minimum spanning tree over the lattice
(see Figure 2 for an example). It schedules the group-bys
as a sequence of pipelines; all the group-bys in a pipeline
are computed as a part of a single scan of disk-resident
data. The final results of each pipeline are stored back
on disk and are used as input for following pipelines (see
Figure 2 for examples of pipelines). For individual group-
bys, PipeHash uses a hashing-based technique [ll]. Like the
other conventional-disk algorithms in our suite, our imple-
mentation of this algorithm uses striping, large requests and
aggressive prefetching.

The active-disk algorithm uses a separate disklet for ev-
ery pipeline. Each disklet creates the hash-tables for its
component group-bys in its scratch-space. The hash-tables
for the different group-bys are allocated memory in propor-
tion to the estimated size of the group-bys. Each disklet per-
forms local group-bys as long as the number of aggregates
being computed fits in the disk-memory. When it runs out
of space, it ships the partial results to the host and reini-
tializes the disk-memory. The host accumulates the partial
results forwarded by all disklets and stores the final results
for use in later pipelines.

Image convolution: Convolution is widely used to en-
hance spatial features or subdue noise in images. Applica-
tions include edge detection, gradient detection, smoothing
and blurring, image sharpening etc. In general, it is used
to implement operators which compute the new value of a
pixel as a linear combination of its own value and the val-
ues of its neighboring pixels. The coefficients for the linear
combination are specified as a matrix (known as the ker-
nel). Convolution is performed by sliding the kernel over
the image starting at the top left corner. The new value for
each pixel is computed as the sum of the point-wise products
of the kernel values with the values of the pixels it covers.

The conventional-disk algorithm concatenates all the images
into a single file and stripes this file across all disks such
that each stripe contains an integral number of images. The
active-disk algorithm stores a sequence of images on each
disk; the buffer for the corresponding input stream is sized
to exactly fit one image. The downloaded disklet takes the
convolution kernel as an argument and performs the convo-
lution operation in-place on entire images and forwards the
processed images to the host. Note that in-place convolu-
tion only needs scratch-space proportional to the size of the
kernel (e.g., nine values for a 3x3 kernel).

Generating composite satellite images: Earth scien-
tists generate earth images by cornpositing remotely-sensed
data acquired over multiple days from satellite-based sen-
sors. Generating a composite image requires projection of
the sensor values onto a two-dimensional grid followed by
composition of all values that map onto a single grid point
to generate the associated pixel. Sensor values are pre-
processed to correct the effects of various distortions. The
conventional-disk algorithm is based on the technique used
in several programs used by NASA [8, 10, 311. It processes
sensor values in large chunks, mapping each value to the
output grid and performing the composition operation using
an accumulator for every output pixel. The active-disk algo-
rithm performs pre-processing and mapping at the disk. In
addition, it takes advantage of the fact that the composition
is order-independent (it uses a complex max-like operation)
to perform most of the composition locally as well. The size
of the output image, however, is large and cannot be ex-
pected to fit into disk-memory - e.g. even a coarse-grained
image is about 228 MB [31]. To deal with this, the down-
loaded disklet allocates space for a sub-image corresponding
to a contiguous section of the output grid that fits into the
disk-memory. As long as the sensor values being read map
into this subgrid, the composition operation is performed
locally. When it encounters a sensor value that maps out-
side this subgrid, it ships the entire sub-image to the host
and shifts the subgrid such that the new sensor value maps
into its center. The host maintains the accumulators for the
entire image. As each sub-image is received at the host, it
is composed into the final image. Both partitions of the al-
gorithm use the same per-pixel composition operation men-
tioned above. Figure 3 provides an illustration.

Figure 3: Shifting the subgrid for the earthsc disklet. In the
figure, values A, B, C, and D map into the original subgrid;
P does not. When P is processed, the original subgrid is
sent to the host and the subgrid shifted as shown.

8.5

5 Evaluation

To evaluate the utility of Active Disks, we compared the
performance of conventional-disk and active-disk versions of
the algorithms in our suite for a variety of configurations
and datasets. For the core set of experiments, we used two
configurations - one corresponding to systems that can be
purchased today and the other corresponding to systems
that are likely to be available by the end of the decade. Ta-
ble 1 describes these configurations. To explore the scalabil-
ity of the two architectures, we varied the number of disks
in each configuration from 4 to 32. In addition, we eval-
uated the sensitivity of these results to large variations in
interconnect bandwidth (40 MB-400 MB) and host proces-
sor speed (350MHz-3 GHz). These experiments help identify
the bottlenecks. They also help understand the impact of
unbalanced upgrades. Given the long life of large datasets
and cost of replacing a large number of disks, it is possible
that other parts of the system are upgraded more frequently
than the disks.

Parameter Today

Host CPU 350 MHz
Host Memory 1 GB
I/O Interconnect 200 MB/s

Future

500 MHz
1 GB

300 MB/s

Table 1: Configurations for the core set of experiments.
The host processor for the Today configuration is the Pen-
tium II 350, the fastest Intel processor available when we
did these experiments; the disk processor is the Cyrix/IBM
6x86. The disk-processor and disk-memory for both config-
urations were selected with a cost constraint of $100. The
I/O interconnect is assumed to be dual FiberChannel loops
with 100 MB/s per loop for Today and 150 MB/s per loop
for Future.

5.1 Simulator

To conduct these experiments, we developed the ADsim sim-
ulator which simulates both conventional-disk and active-
dtsk architectures. ADsim contains a detailed disk model, a
preliminary implementation of DiskOS, and relatively coarse-
grain models of the processor and the I/O interconnect.
The disk model is based on the Ruemmler&Wilkes’ disk
model [30]. We used the implementation by David Kotz [19]
as the initial codebase. The disk model includes a fixed cost
for the controller overhead, a seek model that models short
seeks and long seeks separately, 4 a rotational model and a
model for disk-geometry that includes multiple zones, inline
track-sparing, track skew and cylinder skew.

The ADsim processor model characterizes user-level tasks
by the time they take to execute if running uninterrupted.
User-level tasks can be pre-empted by I/O interrupts. In
addition to execution times for user-level tasks (which are
fed in as a trace file), the model includes time to execute

4The latency of initiating the disk-head moves dominates for short
seeks whereas the time to actually move the head dominates for long
seeks.

a null system call, time to queue an I/O request in the
device-driver and time to service an I/O interrupt. The
AD&m model for the I/O interconnect has three parame-
ters, the latency to initiate a transfer, the capacity of the
interconnect and the transfer speed.

To determine the time taken for user-level tasks, we im-
plemented each of these algorithms; ran them on a DEC Al-
pha 2100 41275 workstation with 256 MB of memory; and
scaled the execution time for the processors in the experi-
mental configurations. For each of these runs, we used the
same datasets and the same buffer size as assumed in the
simulations. We used separate runs to obtain the execution
times for conventional-disk and active-disk versions of the
datacube algorithm. This was necessary as the amount of
memory allocated to hash-tables depends on the data and
on the structure of the algorithm. These runs generated an
activity trace that contained time-stamps for scanning the
base relation, filling of hash tables, executing the group-by
pipeline, and saving the results. This activity trace is re-
played by the simulator during simulation.

ADsim includes a preliminary implementation of DiskOS

which provides support for scheduling disklets as well as for
managing memory, I/O and stream communication. Disklets
are written in C and interact with ADsim using an API.
DiskOS initiates I/O operations on behalf of disklets; disk
blocks mapped to a disk-resident input stream are automat-
ically read by DiskOS and are delivered to a disklet; buffers
for disk-resident output streams are automatically written
to disk. The buffers for DiskOS-generated read operations
are automatically allocated (since stream buffer size is fixed)
and buffers for completed write operations are reclaimed by
the DiskOS. The current implementation of DiskOS over-
laps I/O and computation at the disk-processor by using
two buffers per stream. It does not yet support the skip op-
eration which allows disklets to selectively receive the data
from a stream. We plan to add this in the next version of
the simulator.

5.2 Datasets

Select, Group-by: we used two datasets for these algo-
rithms. The smaller dataset was 4 GB (67 million tuples)
and the larger dataset was 8 GB (134 million tuples). The
tuplesize for both datasets was 64-bytes. For group-by,
the smaller dataset had 3.35 million distinct values and the
larger dataset had 6.7 million distinct values. For select,
we assumed a selectivity of 1%.

Sort: we used two datasets with loo-byte tuples and lo-
byte uniformly distributed keys. We created these datasets
based on the description in [4]. The smaller dataset was
2 GB (21.5 million tuples) and the larger dataset was 4 GB
(43 million tuples).

Datacube: we used two datasets with 32-byte tuples. The
smaller dataset was 4 GB (134 million tuples) and the larger
dataset was 8 GB (268 million tuples). Each tuple has
eight 4-byte attributes. We used four attributes as group-
by attributes and the remaining four as aggregation at-
tributes with SUM as the aggregation function. The number
of distinct values for each of the group-by attributes were
1342177, 134217, 13421, and 1342 for the smaller dataset
and 2684354, 268434, 26842 and 2684 for the larger dataset.

Image convolution: we used a single dataset consisting of

86

10,000 512x512 images with one byte per pixel. We used a
16x16 convolution kernel.

Earth science: we used two datasets which correspond
to ten-day composites of low-resolution and high-resolution
AVHRR images from the NOAA polar-orbiting satellites [31].
The size of the smaller dataset was 6 GB and the size of the
larger dataset was 12 GB. The output image for the smaller
dataset was 228 MB and the output image for the larger
dataset was 556 MB.

5.3 Utility of Active Disks

Figure 4 compares the performance of all six algorithms
on conventional-disk and active-disk architectures for 4-disk
and 32-disk configurations. We note that for all algorithms
and both configurations, active disks outperform conven-
tional disks. Our results indicate that active disks achieve
performance improvements between 1.07 times and 3.15 times
for 4-disk configurations with Today’s components and be-
tween 1.18 times and 3.2 times for Future components. For
32-disk configurations, active disks outperform conventional
disks by between 3 times and 30 times with Today’s com-
ponents; and by between 2.9 times and 29 times with Future
components. For the core configurations, select and
group-by, which perform little computation per byte of data,
achieve small benefits. This is to be expected as both Today
and Future configurations have high-bandwidth I/O inter-
connects and the conventional-disk algorithms take full ad-
vantage of them.

To determine the impact of variation in interconnect
bandwidth, we repeated the experiments for the Today con-
figuration replacing the 200 MB/s FiberChannel loops with:
(1) 40 MB/s Ultra-SCSI and (2) a hypothetical 400 MB/s
interconnect. Figure 5 presents the results for 4-disk and 32-
disk configurations. It shows that in the presence of a low-
bandwidth I/O interconnect, active-disk architectures out-
perform conventional-disk architectures by a factor of 1.27-
3.15 for 4-disk configurations and by a factor of 8.7-30 for
32-disk configurations. This figure also shows that: (1) for
all algorithms and both configurations, active-disk architec-
tures with a 40 MB/s interconnect outperform conventional-
disk architectures with much faster interconnects; and (2)
for algorithms with significant computation per byte trans-
ferred (cube, sort, conv and earth), conventional-disk ar-
chitectures cannot take advantage of high-bandwidth inter-
connects. The range in Figure 5(b) is too large to show
the impact of variation in interconnect bandwidth on the
performance of active-disk architectures for 32 disks. Fig-
ure 6 presents the same information in greater detail. It
shows that the performance of for conventional-disk archi-
tectures, the interconnect bandwidth is important only for
algorithms that perform little computation per byte whereas
for active-disk architectures, the interconnect bandwidth is
important only for algorithms that redistribute their dataset
(e.g., sort).

The execution time for all algorithms in our suite in-
creased linearly with an increase in dataset size. This is to
be expected as all of the algorithms, except sort, are linear.
For sort, the contribution of the log n factor is small as the
size of the datasets size differ only by a factor of two.

5.4 Scalability

To explore the scalability of the two architectures, we com-
pared the performance of each algorithm on varying number
of disks for Today configurations. Figure 7 presents the re-
sults. We note that increasing the number of disks beyond
four (or eight for select and group-by) for conventional-
disk architectures provides little or no advantage. That is,
given applications that have been optimized for I/O perfor-
mance and an aggressive I/O subsystem, a small number
of fast disks can keep the processor busy for the algorithms
in our suite. Other researchers have reached similar conclu-
sions [27]. On the other hand, active-disk architectures scale
perfectly up to 16 disks. Other than sort, other algorithms
scale well even up to 32 disks.

5.5 Impact of upgrading the host processor

Given the long life of large datasets and cost of replacing
a large number of disks, it is possible that the host sys-
tem may be upgraded more frequently than the disks. In
order to explore the impact of more frequent upgrades to
the host processor, we repeated the experiments for the
Today configuration replacing the host processor with: (1)
a 1 GHz processor and (2) a 3 GHz processor. Note that
the disk processor in active-disk architectures for the Today
configuration is assumed to be 200 MHz. These experi-
ments also allow us to determine if the host processor be-
comes a bottleneck for active-disk architectures. Figure 8
present the results. It shows that for large configurations,
active-disk architectures outperform conventional-disk ar-
chitectures for “reasonable” relationships between the host
processor and the disk processor (a 3 GHz host processor
is 15 times faster than the 200 MHz disk processor). We
note that a faster host processor allows sort to improve its
performance on a 32-disk active-disk configuration. This in-
dicates that for large configurations, the host processor can
become a bottleneck for algorithms like sort which redis-
tribute disk-resident datasets.

6 Discussion and related work

The fact that we were able to easily convert several I/O-
intensive algorithms to a stream-based programming model
should not come as a surprise. Given the volume of data
processed and the cost of fetching data from disk, optimiz-
ing I/O-intensive algorithms often is matter of setting up
efficient pipelines where each stage performs some process-
ing on the data being read from disk and passes it on to
the next stage [l, 41. The SQL standard already supports a
simpler version of the stream-based model proposed in this
paper via the cursor interface [20]. This interface allows a
client application to ship a query to the server and receive
the results of the query one tuple at-a-time. The model pro-
posed in this paper, however, provides greater functionality
than SQL cursors as the downloaded code is not restricted
to relational queries, multiple disklets can be downloaded
and can act in concert and the buffer size can be adjusted
to meet the needs of the application.

The Active Disk architecture proposed in this paper as-
sumes that disks can communicate only with the host and
that all communication between the disks happens via the
host. On large configurations, this can lead to the host
becoming a bottleneck for algorithms that redistribute their
datasets. In our experiments, only sort shows this effect for

87

(a) 4-disks

E
i= 1

s
‘5 0.6

Y
3 0.6

F
.rj 0.4
i6
e 0.2

r”
0

WZD-Today

n CD-Future L OAtSToday

q AD-Future

Figure 4: Comparison of Active Disks with conventional disks. The legend indicates the architecture type (CD/AD) and the
configuration (Today/Future). These results are for the smaller datasets.

(a) 4-disks

r

i

Figure 5: Impact of variation in the interconnect bandwidth
datasets.

the 32-disk configuration. Note, that since it redistributes
almost its entire dataset, sort is a worst-case example of
such algorithms. It is reassuring that such an algorithm can
derive a significant performance benefit from Active Disks
even for low-bandwidth I/O-interconnects (with an Ultra-
SCSI interconnect, sort on Active Disks is 2.3 times faster
for 4 disks and 4.2 times faster for 32 disks). Other algo-
rithms that redistribute data (e.g. join, materialized view,
etc) usually redistribute only a part of the dataset (depend-
ing on the selectivity and the kind of join operation). We
plan to evaluate the performance of more such algorithms.

The idea of embedding a programmable processor in a
disk is not new. In fact, the I/O processors in the IBM 360
allowed users to download channel programs that were able
to make I/O requests on behalf of the host programs [26].
One of the ISAM implementations on the IBM 360 used
channel programs to traverse disk-resident linked lists. What
is different today is the power of the processor and the
amount of memory that can be economically integrated into
disk drives.

(b) 32-disks

These results are for Today configurations and the smaller

As a part of the Network-attached Storage Devices effort,5
several researchers are exploring the use of processors that
are integrated with disk drives. Borowsky et al [5] are in-
vestigating the use of disk-processors to implement quality-
of-service guarantees for data retrieval. Gibson et al [9] are
investigating the use of disk-processors for performing file-
system and security-related processing on network-attached
disks.

This paper presents one of several independent propos-
als for architectures whose goal is to scale processing power
with dataset size by embedding programmable processors
into disk units. Riedel et al [29] propose a model much sim-
ilar to ours and evaluate its performance for data-mining
and image-processing algorithms. They show that these al-
gorithms can achieve significant gains from the use of Active
Disks. Keeton et al [18] propose an architecture (IDISK) in
which a processor-in-memory chip (IRAM [25]) is integrated
into the disk unit and the disk units are connected by a cross-
bar. They compare this architecture with a conventional

’ http://utww.nsic.org/nasd/

88

Select Gmupby Cube SOtl CO”” Earth

(a) Conventional disks (b) Active disks

Figure 6: Impact of variation in interconnect bandwidth for 32 disks. These results are for Today configurations and the
smaller datasets. These graphs are a more detailed version of Figure 5(b). Note that the graphs are separately normalized to
better show the impact of interconnect bandwidth. Graph (a) is normalized with respect to a conventional-disk architecture
with a 200 MB/s interconnect whereas graph (b) is normalized with respect to an active-disk architecture with a 200 MB/s
interconnect.

1.2

1

0.6

0.6

0.4

0.2

0

Select Groupby Cube sorl COW Earth
I

(a) Conventional disks (b) Active disks

if 1 F
.i 0.6
a
$ 0.6

F

Q o.4

g 0.2
z

0

Select Groupby Cube SOrt COllV Earlh

Figure 7: Scalability of conventional disks and Active Disks. These results are for Today configurations and the smaller
datasets.

(a) 4-disks (b) 32-disks

(,2 ~” ..I.........^_...............X.........” -...... ̂ .” .._.. ..- 1

B 1 i= .g 0.8
b:
3 0.6

.$j 0.4

e
0 0.2
z

0

Figure 8: Impact of variation in the central processor. These results are for Today configurations and the smaller datasets.

89

high-end SMP using analytic techniques. Their results sug-
gest that for a set of database operations, an IDISK-based
architecture can be significantly faster than a high-end SMP-
based server. Jim Gray [15] proposes an architecture which
contains no front-end host and which integrates a state-of-
the-art processor, a large memory and a network interface
into the disk unit. We plan to evaluate the proposed archi-
tectural alternatives and compare their performance in near
future.

The growing processor-memory gap [33] has lead several
proposals for integrating processing logic into DRAM [23,
251. Chong et al [23] have proposed that data-intensive
programs should be partitioned and their data manipula-
tion component should be offloaded into logic placed in the
memory system.

In this paper, we have assumed a traditional processor-
memory organization for the processor and the DRAM that
is integrated into the disk drive. While this may be the
fastest way to achieve this integration in the short term, we
believe that, in the long run, integrated processor-memory
chips like the IRAM [25] will probably be the most suitable
way of embedding processing power in disk drives.

7 Conclusions and future work

In this paper, we evaluate Active Disk architectures which
integrate significant processing power and memory into a
disk drive and allow application-specific code to be down-
loaded and executed on the data that is being read from
(written to) disk. To utilize Active Disks, an application is
partitioned between a host-resident component and a disk-
resident component. The key idea is to offload bulk of the
processing to the disk-resident processors and to use the host
processor primarily for coordination, scheduling and combi-
nation of results from individual disks.

To program Active Disks, we have proposed a stream-
based programming model. Disklets take streams as inputs
and generate streams as outputs. A disklet can be written
in any language. However, it is required to adhere to certain
guidelines. A disklet can not allocate (or free) memory. It is
sandboxed within the buffers corresponding to each of its in-
put streams, which are allocated and freed by the operating
system, and a scratch space that is allocated on its behalf
when it is initialized. A disklet is also not allowed to initi-
ate I/O operations on its own. However, it can skip parts
of its input streams. These restrictions limit the amount of
damage that can be done by a disklet. They also simplify
the operating-system support required on disks.

To demonstrate that the Active Disks are suitable for
rapidly growing datasets we have presented partitioned ver-
sions of several algorithms that process such datasets. We
have compared the performance of the partitioned algorithms
running on Active Disks to the performance of the original
algorithms running on conventional disks.

Our results are encouraging. For all the algorithms used
in our evaluation, active-disk architectures outperformed
conventional-disk architectures. This performance advan-
tage had two contributing factors: parallelism and avoid-
ing the I/O interconnect. Algorithms that perform large
amounts of computation per byte and deliver their data to
the host (such as image convolution, datacube and satel-
lite data processing) derive their advantage primarily from
parallelism. This is true for algorithms that achieve no
data-reduction (e.g., image: convolution) or significant data-

reduction (e.g., satellite data processing). Algorithms that
perform little computation per byte and achieve significant
reduction in the data delivered to the host (such as select
and group-by) derive their advantage primarily from avoid-
ing the interconnect. Algorithms that redistribute most of
their dataset (such as sort) derive their advantage from a
combination of the two factors - after redistribution, such
algorithms (e.g., sort, database join, materialized views) can
usually localize the computation to data on individual disks
and can avoid the I/O interconnect completely.

Our results indicate that active-disk architectures scale
well with the number of disks. In comparison, conventional-
disk architectures are able to achieve very small improve-
ments from larger disk farms. However, for algorithms that
redistribute all or most of their input data, routing all data
through the host can become a bottleneck for large config-
urations. Finally, we have shown that active-disk architec-
tures retain most of their advantage even if the host proces-
sor is upgraded more frequently than the disk processors.

We plan to extend this work in four ways. First, we plan
to investigate other data-intensive algorithms such as data
mining, database join, materialized views and transcoding
images. Second, we plan to extend our suite to include
index-based algorithms (such as indexed joins and nearest-
neighbor search). Third, we plan to evaluate alternative ar-
chitectures including a network of cheap PCs, IDISKs and
the architecture proposed by Jim Gray [15]. Finally, we plan
to investigate ways to allow concurrent execution of multiple
disklet-groups.

Acknowledgments

We would like to thank Jim Gray for asking us to think What
Happens When Processors Are Infinitely Fast and Storage
Is Free? We would also like to thank him for detailed com-
ments on a previous version of this paper and for pushing
us to look further into the future. We would like to thank
Huican Zhu for helping us with the graphs. We like to thank
Sanjeev Setia, Guy Edjlali and anonymous referees for their
comments on different versions of this paper.

References

PI

[21

[31

[41

A. Acharya, M. Uysal, R. Bennett, A. Mendelson,
M. Beynon, J. Hollingsworth, J. Saltz, and A. Suss-
man. Tuning the performance of I/O-intensive parallel
applications. In Proceedings of the Fourth ACM Work-
shop on I/O in Parallel and Distributed Systems, May
1996.

R. Agarwal. A super scalar sort algorithm for RISC
processors. In Proceedings of 1996 ACM SIGMOD In-

ternational Conference on Management of Data, pages
240-6, 1996.

S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta,
J. Naughton, R. Ramakrishnan, and S. Sarawagi. On
the computation of multidimensional aggregates. In
Proceedings of the 22nd International Conference on
Very Large Databases, pages 506-21, 1996.

A.C. Arpaci-Dusseau, R.H. Arpaci-Dusseau, D.E.
Culler, .J.M. Hellerstein, and D.A. Patterson. High-
performance sorting on networks of workstations. In
Proceedings of 1997 ACM SIGMOD International Con-
ference on Management of Data, Tucson, AZ, 1997.

90

[51

PI

[71

PI

PI

WI

Pll

PI

P31

1141

P51

P31

1171

WI

[I91

E. Borowsky, R. Golding, A. Merchant, L. Schrier,
E. Shriver, M. Spasojevic, and J. Wilkes. Using
attribute-managed storage to achieve &OS. In Proceed-

ings of the 5th International Workshop on Quality of
Service, 1997.

Cheetah Specifications. http://www.seagate.com/disc/-
cheetah/cheetah.shtml, Feb 1998.

Custom Network Technologies Product Catalog.
http://www.cntwv.com/catalog.htm, Feb 1998. Follow-
ing link from http://www.lowerprices.com.

Jeff Eidenshink and Jim Fenno. Source code for LAS,
ADAPS and XID, 1995. Eros Data Center, Sioux Falls.

G. Gibson et al. File server scaling with network-
attached secure disks. In Proceedings of the ACM In-

ternational Conference on Measurement and Modeling
of Computer Systems (Sigmetrics ‘97), 1997.

Gene Feldman. Source code for the SeaWIFS ocean
data processing system, 1995. SeaWIFS group (NASA
Goddard).

G. Graefe. Query evaluation techniques for large
databases. ACM Computing Surveys, 25(2):73-170,
Jun 1993.

J. Gray. Some Challenges in Building Petabyte Data
Stores. Distinguished Lecture, University of California,
Santa Barbara, Ott 1997.

J. Gray. What Happens When Processors Are Infinitely
Fast and Storage Is Free? Keynote Speech at the Fifth
Workshop on I/O in Parallel and Distributed Systems,
Nov 1997.

J. Gray, A. Bosworth, A. Layman, and H. Pirahesh.
Data cube: A relational aggregation operator general-
izing group-by, cross-tab, and sub-totals. In Proceedings
of the 12th International Conference on Data Engineer-
ing, pages 152-9, New Orleans, February 1996.

Jim Gray. Put EVERYTHING in the Storage De-
vice. Talk at NASD workshop on storage embedded
computing6, June 1998.

Jim Gray. The Sort Benchmark Home Page. Avail-
able at http://research.microsoft.com/research/barc/-
SortBenchmark/, 1998.

HyperMedia Communications Inc., 901 Mariner’s Is-
land Blvd, San Mateo CA 94404. The 1998 New Media
Hyper Awards. http://newmedia.com/NewMedia/98/-
03/feakre/storage.html/, March 1998.

K. Keeton, D. Patterson, and J. Hellerstein. The in-
telligent disk (IDISK): A revolutionary approach to
database computing infrastucture. Unpublished White
paper.7, Feb 1998.

D. Kotz, S. Toh, and S. Radhakrishnan. A detailed
simulation model of the HP97560 disk drive. Technical
Report PCS-TR94-220, Dartmouth College, 1994.

[201

WI

[221

1231

1241

[251

WI

P71

[281

WI

1301

[311

[321

[331

J. Melton and A. Simon. Understanding the New SQL:

A Complete Guide. Morgan Kaufman, 1993.

The MicroWarehouse Online Fixed Drive Catalog.
http://www.microwarehouse.com/Micro Warehouse/-
Storage/Fixed-Drives/, Feb 1998.

C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and
D. Lomet. AlphaSort: a RISC machine sort. In Proceed-

ings of 1994 ACM SIGMOD International Conference
on Management of Data, Minniapolis, May 1994.

M. Oskin, F. Chong, and T. Sherwood. Active Pages: A
computation model for intelligent memory. In Proceed-

ings of the 25th International Symposium on Computer
Architecture, 1998.

G. Papadopolous. The future of computing. Unpub-
lished talk at NOW Workshop, July 1997.

D. Patterson et al. Intelligent RAM (IRAM): the In-
dustrial Setting, Applications, and Architectures. In
Proceedings of the International Conference on Com-
puter Design, 1997.

D. Patterson and J. Hennessey. Computer Architecture:

A Quantitative Approach. Morgan Kaufman, 2nd edi-
tion, 1996.

R. Patterson, G. Gibson, E. Ginting, D. Stodolsky, and
J. Zelenka. Informed prefetching and caching. In Pro-

ceedings of the 15th ACM Symposium on Operating Sys-
tem Principles, pages 79-95, 1995.

PC Progress - Memory for the Next Generation.
http://www.pcprogress.com/simms.htm, 1998. Follow-
ing link from http://www.lowerprices.com.

E. Riedel, G. Gibson, and C. Faloutsos. Active stor-
age for large scale data mining and multimedia applica-
tions. In Proceedings of 24th Conference on Very Large

Databases, 1998. To appear.

C. Ruemmler and J. Wilkes. An introduction to disk
drive modeling. IEEE Computer, 27(3):17-29, March
1994.

Peter Smith and Bin-Bin Ding. Source code for the
AVHRR Pathfinder system, 1995. Main program of the
AVHRR Land Pathfinder effort (NASA Goddard).

R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Ef-
ficient software-based fault isolation. In Proceedings of
the 14th ACM Symposium on Operating System Prin-
ciples, pages 203-16, 1993.

W. Wulf and S. McKee. Hitting the memory wall: Im-
plications of the obvious. Computer Architecture News,
23(l), 1995.

‘http://www.nsic.org/nasd/l998-jun/gray.pdf

‘http://wWW.cg.berkeley.edu/ kkeeton/Papers/idisk98-draft.ps

91

