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Abstract

Today’s commodity disk drives, the basic unit of storage for computer systems large

and small, are actually small computers, with a processor, memory, and ‘network’ connec-

tion, along with the spinning magnetic material that permanently stores the data. As more

and more of the information in the world becomes digitally available, and more and more

of our daily activities are recorded and stored, people are increasingly finding value in

analyzing, rather than simply storing and forgetting, these large masses of data. Sadly,

advances in I/O performance have lagged the development of commodity processor and

memory technology, putting pressure on systems to deliver data fast enough for these

types of data-intensive analysis. This dissertation proposes a system called Active Disks

that takes advantage of the processing power on individual disk drives to run application-

level code. Moving portions of an application's processing directly to the disk drives can

dramatically reduce data traffic and take advantage of the parallelism already present in

large storage systems. It provides a new point of leverage to overcome the I/O bottleneck.

This dissertation presents the factors that will make Active Disks a reality in the not-

so-distant future, the characteristics of applications that will benefit from this technology,

an analysis of the improved performance and efficiency of systems built around Active

Disks, and a discussion of some of the optimizations that are possible with more knowl-

edge available directly at the devices. It also compares this work with previous work on

database machines and examines the opportunities that allow us to take advantage of these

promises today where previous approaches have not succeeded. The analysis is motivated

by a set of applications from data mining, multimedia, and databases and is performed in

the context of a prototype Active Disk system that shows dramatic speedups over a system

with traditional, “dumb” disks.
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Chapter 1: Introduction and Motivation

The cost and silicon real estate needed for any particular computational need is con-

tinually dropping. At some point, additional processing power can be had at negligible

cost. The question then becomes simply where to place this computation power in a sys-

tem to support the widest range of tasks efficiently. The contention of this work is that pro-

cessing power is already moving into peripheral devices and that applications can achieve

significant performance gains by taking advantage of this trend. Specifically, this work

focuses on how data-intensive applications can directly exploit the processing power of

the controllers in individual commodity disk drives to improve both individual application

performance and system scalability.

The same trends in chip technology that are driving microprocessors toward ever-

larger gate counts drive disk manufacturers to reduce cost and chip count in their devices

while simultaneously increasing the total amount of local processing power available on

each device. One use for this increasing computation power on disk controllers is to enrich

their existing interface. For example, recent advances in network-attached storage are

integrating storage devices into general-purpose networks and offloading a range of high-

level functions directly to the devices. This eliminates servers as a bottleneck for data

transfers between disks and clients and promises significant improved scalability through

higher-level interfaces.

At the same time, as systems get faster and cheaper, people compute on larger and

larger data sets. A large server system today will easily have a hundred disk drives

attached to it. This large number of drives is necessary either to provide sufficient capacity

or sufficient aggregate throughput for the target application. Taking this trend and extrapo-

lating to future drive capabilities gives a promising picture for on-drive processing.

A pessimistic value for the on-drive processing already in today’s commodity SCSI

disk controllers is 25 MHz, with perhaps 15 MB/s of sustained bandwidth in sequential

access. This means that a system with one hundred disks has 2.5 GHz of aggregate pro-

cessing power and 1.5 GB/s of aggregate bandwidth at the disks. There are not many

server systems today that can provide this level of computation power or I/O throughput.

A typical multiprocessor system with one hundred disks might have four processors of

400 MHz each and 200 MB/s of total I/O throughput, much less than the aggregate 100-
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disk values. Further extrapolating today’s figures to next generation disks with 200 MHz

processors and 30 MB/s transfer rates in the next few years, the potential power of a large

disk farm is more than an order of magnitude more than the server system.

In addition, as storage is connected to a large collection of hosts by taking advantage

of network-attachment and storage area networks, the interconnection network will rap-

idly become a principle bottleneck in large-scale applications. If data can be processed

directly by the devices at the “edges” of the network, then the amount of data that must be

transferred across this bottleneck can be significantly reduced.

This work proposes Active Disks, next-generation disk drives that provide an envi-

ronment for executing application code directly at individual drives. By partitioning pro-

cessing across hosts and storage devices, it is possible to exploit the cycles available at

storage, reduce the load on the interconnection network, and perform more efficient

scheduling. For example, an application that applies selective filters to the stored data and

only ships summary information across the network, or that makes scheduling decisions

based on local information at the individual drives can make more effective use of net-

work and host resources. This promises both improved individual application performance

and more scalable systems.

The thesis of this work is that:

A number of important I/O-intensive applications can take advantage of
computational power available directly at storage devices to improve their
overall performance, more effectively balance their consumption of system-
wide resources, and provide functionality that would not otherwise be
available.

which will be supported in detail by the arguments in the chapters that follow.

This work addresses three obstacles to the acceptance of Active Disks within the

storage and database communities. One objection that has been made to this work is that

Active Disks are simply a reincarnation of the database machines that were studied exten-

sively in the mid 1970s and 1980s that never caught on commercially and will not catch

on now. A second objection is that the performance benefits possible through the use of

Active Disks are too small to warrant wide interest. Finally, the third widely-heard objec-

tion is that the programming effort required to take advantage of Active Disks is too large,

and that users will not be willing to make the necessary modifications to their code. This

dissertation responds to each of these objections in turn.

The concept of Active Disks is very similar to the original database machines, but

this dissertation will argue that the technology trends since then make this a compelling

time to re-examine the database machine work and re-evaluate the conclusions made at

the time. Active Disks are not special-purpose architectures designed for only a single

application, but a general-purpose computing platform uniquely positioned within a sys-
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tem architecture - close to the stored data on which all applications operate and at the edge

of the interconnection network that binds storage, computation, input, and output devices.

The core of this dissertation presents a model for the performance of applications in

an Active Disk system, motivates a number of important data-intensive applications for

further study, and presents the measured performance of a prototype Active Disk system

with these applications. These chapters show both that dramatic benefits are possible in

theory and are realistically achievable on a range of applications, including all the core

functions of a relational database system.

Finally, the chapter on software structure will outline the basic structure of on-disk

code in an Active Disk system and discusses the modifications made to a relational data-

base system to allow it to take advantage of Active Disks. This answers the final objection

and shows that the changes are straightforward and that extracting a “core” portion of

data-processing code for execution on Active Disks can be accomplished with a reason-

able amount of effort.

The dissertation commences with a study of background material in Chapter 2 and

identifies the technology trends that make this work possible. Chapter 3 discusses the

potential benefits of Active Disks and provides a model for estimating the speedups possi-

ble in an Active Disk environment. Chapter 4 discusses a number of compelling applica-

tions and describes their structure in an Active Disk context, including all the basic

functions of a relational database system. Chapter 5 discusses the impact on performance

and scalability of systems with Active Disks and provides results from a prototype system

on this same set of applications. Chapter 6 describes the software structure of on-disk code

and the changes necessary to allow an existing system to take advantage of Active Disks.

Chapter 7 addresses a number of additional issues, including the details of how to effi-

ciently support applications inside Active Disks. Chapter 8 revisits the work on the data-

base machines that were extensively studied a decade and a half ago, but did not have the

technology drivers to make them successful at the time. Chapter 9 discusses additional

areas of related and complimentary work. Finally, Chapter 10 concludes and discusses

areas of, and challenges for, future work.
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Chapter 2: Background and Technology Trends

A proposal to perform data-intensive operations using processing elements directly

attached to disk drives may seem familiar to anyone who has worked in the database area

as the database machines that dominated database research in the 70s and 80s. The con-

cept of Active Disks is close to the ideas pursued in the work on database machines and

many of the lessons from that work are applicable today. Since that time, technology

trends in several areas have shifted the picture considerably, providing an opportunity to

revisit the arguments explored in these projects.

The major changes since the time of the original database machines are the perfor-

mance of individual disks (which has increased thirty-fold), the cost of integrated circuits

(which has decreased by several orders of magnitude), and the availability of mobile code

(that allows the motion of not just data, but also code and “function” among the compo-

nents of a computer system). What has not changed is the desire of users to store and oper-

ate on more and more data. The capacity of individual devices has increased 200-fold, but

the desire of users and applications for more storage space has not abated.

This chapter outlines the database machine architectures proposed years ago to set

the stage for their rebirth as Active Disks. Then it examines the trends in technology that

have made storage fast and processing power cheap. Next, it details the trends in user

requirements and applications that call for higher data rates and more data-intensive pro-

cessing. Finally, it surveys the state of mobile code technology and the crucial role that it

will play in making high-function devices widely applicable.

2.1 Database Machines

This section provides a brief tour of some of the database machine technology stud-

ied during the mid-70s to the late 80s. More detailed discussion of specific projects and

how their results may aid the design of Active Disk systems is provided in Chapter 7.

2.1.1 Specialized Hardware

The database machines proposed and developed in the 70s and 80s consisted of spe-

cialized processing components that performed portions of the function of a database sys-

tem. These devices were custom-designed to implement a particular algorithm and

assumed a particular set of queries and a particular data layout. There are several classes
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of machines, with differing levels of complexity. The full taxonomy is presented in

Chapter 7; the intent of this section is simply to give a brief overview of a sampling of

machines.

A survey paper by David DeWitt and Paula Hawthorn [DeWitt81] divided the space

into several architectures based on where the processing elements were placed relative to

the data on the disk, as illustrated in Figure 2-1. The processing elements could be associ-

ated with each track of the disk in a fixed-head device (processor-per-track, or PPT), with

each head in a moving-head system (processor-per-head, or PPH), with the drive as a

whole (processor-per-disk, PPD), or without any special processing elements (conven-

tional system, CS). Each of these architectures depended on a control processor that acted

as a front-end to the machine and accepted queries from the user. In the conventional sys-

tems, the front-end performed all the processing while in all the other systems processing

was split between the front-end and the specialized database machine logic attached

directly to the disk.

As an example of how these architectures operate, Figure 2-2 illustrates a select

operation in the RAP database machine. A select searches for records that match a par-

ticular condition (e.g. state = PA, to find all customers in Pennsylvania). In order to

perform a select using RAP, the search condition is loaded into the logic, which consists

of k comparators at each track. This means that k comparisons are performed in parallel

and the entire database can be searched in one revolution of the disk. If a record on a par-

ticular track matches the search condition, it is output to the front-end. However, since the

output channel has a limited capacity, it may not be possible for multiple tracks to report

their matches at the same time. In the case of contention for the output channel, the match-

ing recorded is marked, using mark bits on the disk, for output on a future revolution. This

...
...

...

Figure 2-1 Architectural diagram of several database machine architectures. The diagram illustrates the three
most popular database machine architectures over a decade of database machine research.

...

Processing Element

Read/Write Head Output Channel

Fixed Arms

Moving Arms

Data Tracks

Processor Per Track (PPT) Processor Per Head (PPH) Processor Per Disk (PPD)
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means that a condition with many matches (i.e. low selectivity1), it may require several

revolutions before all of the matching records are output.

In addition, if more than k conditions are required for a particular query, multiple

passes across the data must be made. This is particularly complex in the case of joins,

where the length of the search condition is determined by the keys of a second relation.

The straightforward procedure for joins is to load the first k keys of the inner relation and

1. This dissertation will use the term selectivity in a way that is different than normal usage in the database literature. As 
a parameter of an Active Disk application, selectivity will mean the amount of data reduction performed by the appli-
cation, with higher values meaning greater reductions. Applications with the highest selectivities will perform the 
greatest data reductions, and applications with low selectivities will transfer the most data on the interconnect. In 
other contexts, selectivity is expressed as a percentage of data transferred, with lower values being better. Apologies 
for any confusion.

......

Figure 2-2 Select operation in the RAP machine. The diagram at the top illustrates the format of a data
track in RAP. The lower diagram shows two passes of a select operation. All the records are searched in
parallel on the first pass across the track, and matching records are output. If there is contention for the
output channel, additional matching records are marked, and output on the second pass.
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search, then replace them with the next k, and so on. This means it will require n/k revolu-

tions to search for a total of n keys.

The primary difficulty with the processor-per-track system is that it requires a huge

number of processing element, along with a huge number of read/write heads to operate

on all the tracks in parallel. This is what makes a processor-per-head system much more

attractive, for the same reason that fixed-head disks were quickly replaced by mov-

ing-head disks. The cost of the read/write element can be amortized over a much larger

amount of data, at the expense of having to seek to reach different locations on the disk.

Processing can still be done in parallel as data is read from the disk platters, but there are

many fewer processing elements. The disk gives up the ability to read any track with equal

delay, in order to greatly reduce the total cost. Disk drives at the time these systems were

proposed contained hundreds of tracks per surface while drives today contain several

thousand. The processor-per-track technology clearly depended on the rapid development

of bubble memory or other, similarly exotic technologies (see Chapter 8 for additional

examples), that have not come to pass.

This leaves the processor-per-head and processor-per-disk systems as viable

options. Since the time of the database machines, disk drives have evolved to a point

where they still have multiple heads (one for each recording surface), but only one head

can be actively reading or writing at a time. The increasing density and decreasing

inter-track spacing makes it necessary to perform a significant amount of micro-actuation

to correctly position the head even as data is being read. This means that the arm can “fol-

low” only one track at a time, making it infeasible to read from multiple heads at the same

time.

The proposal for Active Disks creates what is essentially a processor-per-disk

machine, but is more comparable to the processor-per-head design because systems today

contain many individual disk drives operating in parallel, while the original database

machines were based on single disks. This evolution is traced in Figure 2-3. Each individ-

Figure 2-3 Evolution of database machines to Active Disks. The proposal for Active Disks is most similar to the
Processor-Per-Head database machines, but using multiple commodity disks, each a single Processor-Per-Disk
design instead of a processor per head on each disk.

Database Machine (mid-1980s)

Processor Per Head,

Multiple Heads
Processor Per Disk, Many Parallel Disks

Active Disks (late-1990s)
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ual disk has only a single head (and processor) operating at a time, but all the heads (and

processors) in a group of disks can operate in parallel.

The processor-per-disk design was dismissed out-of-hand by Hawthorn and DeWitt

since it used a single, less powerful processing element to perform functions that could be

done much more efficiently in the front-end. It is true that, in a system with a single disk,

there is no parallelism benefit, and use of the additional logic has only minor benefits.

Chapter 3 will show that this is also true for Active Disk systems. If there is only a single

disk, the performance benefits are relatively small. However, storage systems today con-

tain tens to hundreds of disk drives, as shown in Table 2-1.

There are many additional database machines discussed in Chapter 8, but the most

interesting and long-lived is probably CAFS (content-addressable file store) and SCAFS

(son of CAFS) from ICL, which provide search acceleration for relational database sys-

tems. SCAFS went through several generations of technology and was being sold, in a

3.5” form factor that looked very much like a disk drive, plugged into a drive cabinet, and

communicated through a SCSI interface into the mid-90s. These devices were available as

optional components on Fujitsu, ICL, and IBM mainframes. A report from ICL estimates

that at one point up to 60% of these systems shipped with the accelerators installed

[Illman96]. The accelerator was a specialized processor in the same cabinet as a number of

commodity SCSI disk drives and was addressed as if it were a disk itself. Several versions

of the INGRES, Informix, and Oracle database systems had extensions that allowed them

to take advantage of the accelerator when appropriate. The accelerator was primarily used

for large scans, and provided significant gains across a range of workloads [Anand95].

This architecture is similar to the proposal for Active Disks, but Active Disks go further

by providing computation power on each individual disk drive, rather than across a num-

ber of disks in an array, and by allowing full, general-purpose programmability of the

additional logic.

Table 2-2 traces the evolution of database machine architectures. We see that the

amount of storage and amount of logic increased with trends in silicon and chip integra-

tion. Also note the change from specialized processing elements to general-purpose pro-

cessors in the mid-1980s.

System Use Processor Memory I/O System Disks

Compaq ProLiant 5500 6/400 TPC-C, OLTP 4 x 400 MHz Xeon 3 GB 32-bit PCI 141 disks = 1.3 TB

Digital AlphaServer 4100 Microsoft TerraServer, 

Satellite Imagery

8 x 440 MHz Alpha 4 GB 2 x 64-bit PCI 324 disks = 1.3 TB

Digital AlphaServer 1000/500 TPC-C, OLTP 500 MHz Alpha 1 GB 64-bit PCI, 61 disks = 266 GB

Digital AlphaServer 8400  TPC-D 300, DSS 12 x 612 MHz Alpha 8 GB 2 x 64-bit PCI 521 disks = 2.2 TB

Table 2-1 Example of several large database systems. We see that these systems have only a small number of
processors, but a large number of individual disk drives. Data from [TPC98] and [Barclay97].
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2.1.2 Performance

A performance evaluation by DeWitt and Hawthorn [DeWitt81] compares the rela-

tive performance of the various architectures for the basic database operations: select, join

and aggregation. In their comparison, the PPT and PPH systems performed significantly

better on searches with high selectivities, where contention for the output channel was not

an issue, and on non-indexed searches where the massive parallelism of these systems

allowed them to shine. When indexed searches were used, the benefit was not as large.

The systems with less total processing power were able to “target” their processing more

effectively. They had a smaller number of more powerful processing elements that could

be applied more selectively, while the PPT and PPH systems simply had an excess of

computation power “lying around” unused. For join operations, the key parameter is the

number of keys that the PPT and PPH machines can search at a time. For large relations

and small memory sizes, this can require a significant number of additional revolutions.

Similar characteristics apply to Active Disk processing and are discussed in more

detail in the subsequent chapters. The full details of the performance study conducted by

DeWitt and Hawthorn, as well as modifications to some of the pessimistic assumptions

they made with respect to the PPT and PPH architectures, are discussed in Chapter 8.

2.2 Changes Since Then

In a paper entitled “Database Machines: An Idea Who’s Time Has Passed?”, Haran

Boral and David DeWitt proclaimed the end of database machines on the following set of

objections:

• that a single host processor (or at most two or three) was sufficient to

support the data rate of a single disk, so it was unnecessary to have tens

(in PPH) or thousands (in PPT) of processors

Architecture Year Disk Memory Logic Size Nodes Network Notes

RAP.2 1977 4 Mbits 1 K x 16 bits 64 ICs 412 ICs 2 “disk” is CCD

CASSM 1976 220 ICs 1 prototype development sus-

pended, simulation only

CAFS 198x 50,000 

transistors

first in VLSI technology

DIRECT 198x 32x16K 28K words lsi 11/03 8 6 MB/s “disk” is CCD, has additional 

mass storage

GAMMA 1.0 1985 333 MB 2 MB vax 11/750 17 80 Mbit/s

GAMMA 2.0 1988 330 MB 8 MB i386 ~300,000 

transistors

32

SCAFS 1994 10 MB/s “son of CAFS”

Active Disk 1999 18 GB 32 MB StrongARM 2.5 million 

transistors

100 MB/s proposed system

Table 2-2 Sizes and functionalities of various database machine architectures. The chart shows the size and
functionality of several database machine architectures from the original RAP in 1977 to Active Disks today.
Data from [Schuster79], [Su79], [DeWitt79], [DeWitt90], and [Illman96].
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• that the specialized database machine hardware elements were difficult

to program, requiring specialized microcode which was difficult to

develop, and 

• that the simplest database machines, while good for simple scans, did

not efficiently support the more complex database operations such as

sorts or joins [Boral83]

The next several sections will explore each of these arguments in turn and explain how 

technology has changed to overcome these objections. First, disks are much faster, and 

there are a lot more of them than there were in 1983. Second, there is now a compelling 

general-purpose mechanism for programming devices. Finally, many of today’s most pop-

ular applications require data-intensive scans over more complex sorts or joins and mod-

ern processing elements can support joins and sorts as well as simple scans, although the 

speedups are indeed less dramatic than for scans.

2.2.1 Disk Rates

The speed of a single disk drive has improved considerably since the days of the

database machines, as shown in Table 2-3. Bandwidth from a top-of-the-line disk is now

more than 30 times that of the disk used in the [DeWitt81] study to conclude that database

machines were past their time. Seek time and overall latency for small requests has not

increased nearly as much as sequential bandwidth or the latency for large requests. In

addition, capacity has increased by a factor of 200.

The most noticeable disparity in Table 2-3 is that read bandwidth is increasing much

more slowly than the media capacity. This divergence occurs because increases in areal

density occur in two dimensions while linear read rate increases in one dimension with the

decreasing size of magnetic domains on the media. This means that bandwidth will

increase less quickly than areal density. In fact, increases in density of tracks per inch

actually decreases bandwidth somewhat due to the increased complexity of micro-actua-

tion and track-following required during track and head switches. The overall trend is

illustrated graphically in Figure 2-4 which shows the diverging capacity and bandwidth

1980 1987 1990 1994 1999 80-99 80-87 87-90 90-94 94-99

Model IBM

3330

Fujitsu

M2361A

Seagate

ST-41600n

Seagate

ST-15150n

Quantum

Atlas 10k Annualized Rate of Improvement

Average Seek 38.6 ms 16.7 ms 11.5 ms 8.0 ms 5.0 ms 11%/yr 13%/yr 13%/yr 9%/yr 10%/yr

Rotational Speed 3,600 rpm 3,600 rpm 5,400 rpm 7,200 rpm 10,000 rpm 6%/yr 0%/yr 15%/yr 7%/yr 7%/yr

Capacity 0.09 GB 0.6 GB 1.37 GB 4.29 GB 18.2 GB 32%/yr 30%/yr 32%/yr 33%/yr 34%/yr

Bandwidth 0.74 MB/s 2.5 MB/s 3-4.4 MB/s 6-9 MB/s 18-22.5 MB/s 20%/yr 19%/yr 21%/yr 20%/yr 20%/yr

8 KB Transfer 65.2 ms 28.3 ms 18.9 ms 13.1 ms 9.6 ms 11%/yr 13%/yr 14%/yr 10%/yr 6%/yr

1 MB Transfer 1,382 ms 425 ms 244 ms 123 ms 62 ms 18%/yr 18%/yr 20%/yr 19%/yr 15%/yr

Table 2-3 Disk performance parameters. The table compares a number of parameters of commodity disk drives
from 1987 to 1999. We see that the rate of improvement is relatively constant across the periods listed, and
consistent across the entire period. Data for 1980 is from [DeWitt81], data for 1987 and 1990 from [Gibson92],
and data for 1994 from [Dahlin95a].
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lines over the last 20 years. We see that capacity has increased 200-fold while bandwidth

has increased only 30-fold. If we consider a metric of scan time (how long it takes to read

the entire disk), we can calculate that it took only two minutes to read the 1980 disk,

whereas it takes more than fourteen minutes for the 1999 disk. This assume that we are

reading sequentially using large requests, if we instead read the entire disk in small, ran-

dom requests, it would have taken thirteen minutes in 1980, but would take more than

six hours today.

While this analysis paints a bleak picture for disk drive technology, there is one fac-

tor that is omitted from Table 2-3 but which is near and dear to the heart of almost any sys-

tem designer, and that is cost. Figure 2-5 illustrates the trend in the cost of storage, plotting

the cost per megabyte of disks over the period from 1982 to today. The cost has gone from

$500 per megabyte to about 1.5 cents per megabyte in the space of 17 years - a

Figure 2-4 Trends in disk capacity and bandwidth.
The chart compares the capacity and read bandwidth
of the disks listed in the table above, spanning
20 years of disk technology. We see that the
capacity of the disks increases much faster than the
bandwidth. Although much more data is stored on a
single disk, it takes progressively longer to read it. If
we consider the time it takes to read the entire disk,
this was just over 2 minutes in 1980, and is almost
14 minutes in 1999. Note that this is reading
sequentially, reading in random 8 kilobyte requests
is much worse, taking 13 minutes in 1980 and more
than 6 hours in 1999.
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Figure 2-5 Trends in disk and memory costs. Figures before 1998 are from [Dahlin95], advertised prices in
Byte magazine in January and July of the year listed. Byte ceased publication in 1998, so figures for 1998
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previous trend lines.
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30,000-fold reduction. This means that much larger database can be built today than were

even dreamt of in the 1980s. As we will see in the discussion of specific application areas

below, some of the specific dreams of the time are becoming reality today, and are driving

the requirements for storage system design.

It is, however, important to remember the trend of Figure 2-4 which makes it clear

that there are now two parameters to consider when purchasing a disk system 1) how

much capacity is required to store the data and 2) how much bandwidth is required to

practically make use of the data. In many cases, as we will see, it is necessary to purchase

more disks than what is required simply for capacity in order to get the necessary level of

aggregate bandwidth (and performance). This is true for sequential workloads, where

absolute bandwidth is the primary metric, and even worse for random workloads where

seek time and small request latency dominates.

2.2.2 Memory Sizes

There is a second piece of good news for disk technology in the data of Figure 2-5

and that is the data at the top of the graph showing the cost per megabyte of commodity

memory chips. Computer architects have often proclaimed the imminent replacement of

disks by large memories, but the chart shows that disk technology has consistently been

able to stay ahead on the cost curve.

However, even with this fixed separation, the lines do show the same trend, the price

of memory is falling at roughly the same rate as the price of disks. This growth rate in

amount of memory per dollar cost has led many to proclaim the advent of main memory

databases to take over many of the functions that traditionally required the use of disk

storage [Garcia-Molina92, Jagadish94]. This trend has clearly helped transaction process-

ing workloads with relatively small working sets - proportional to the number of “live”

customer accounts or the number of unique items in a store’s inventory, for example - but

does not address the data growth when historical records - all transactions since a particu-

lar account was opened or a record of every individual sale made by a large retail chain

over the course of a year - are taken into account.

This means that in the context of a transaction processing workload, disk storage is

no longer the primary driver of performance. If a large fraction of the live database can be

stored in a very large memory system (systems with up to 64 gigabytes of main memory

are available today [Sun98]), then the disks are necessary only for cold data and perma-

nent storage, to protect against system failures. This means that optimizations in this area

are primarily focussed on write performance and reliability. Optimizations such as imme-

diate writes [Wang99] or non-volatile memory for fast write response [Baker92] are the

most helpful1. These types of optimization can also benefit from increased intelligence at

the individual devices to implement a variety of application-optimized algorithms (such as

1. but not for individual disk drives, where the performance benefits of non-volatile memory do not yet justify the 
increase in cost [Anderson99].
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the one discussed in Section 5.4), but not from the same parallelism and bandwidth reduc-

tion that are the focus here and in the following chapters.

2.2.3 Aggregation/Arrays

When a database fits on a single disk, the general-purpose processor in front of it

can easily keep up, but systems today require multiple disks for several reasons. The first

is simply capacity: if your database does not fit on one disk, you have to wait until the

areal density increases, or buy additional disks. The second reason was discussed above:

the need to use multiple disks to provide higher bandwidth access to the data. The third

reason has not been mentioned yet, but comes up as a consequence of the first two, and

that is reliability.

The reason that the use of multiple disks to form a single coherent store is wide-

spread today is as a result of the development of disk array hardware and software

[Livny87, Patterson88]. The core idea of this work is to replace a single large disk (with

the best, fastest, and densest technology money can buy) with a number of smaller, less

expensive disks (that are manufactured in larger quantities and benefit from economies of

scale, but are individually slower or less dense). Or less reliable. This last point was the

key insight of using a redundant array of inexpensive disks (RAID). Using a variety of

techniques for error correction and detection, RAID provides a way to make a large num-

ber of individual disks, with perhaps low individual reliabilities, into a coherent storage

sub-system with a much higher aggregate reliability. Through the use of a variety of

encoding schemes, some amount (up to 50%) of the disks’ capacity is given up to keep

redundant copies of the user data. Depending on the design of the system, this means that

the failure of any single disk (or even a small subset of the disks), does not cause user data

to be lost. The failed disk is then replaced and the damaged information reconstructed

without user intervention and without stopping the system. This mechanism provides the

benefits of increased overall capacity and increased bandwidth, while retaining a high

level of reliability. RAID technology is now sufficiently well understood and established

that it comes standard with many classes of computer systems and that software RAID is

packaged as a basic service in some operating systems (e.g. Windows NT 4.0).

The simplest form of array uses two disks, with one operating as a mirror copy of

the other. This is the most expensive in terms of space, since twice the disk capacity must

be used for any given amount of user data. The mechanism is straightforward, in that each

write is simply duplicated on the mirror disk, and a read can be serviced by either disk in

the pair [Bitton88]. The prevailing disk trends make the capacity overhead less critical,

and make mirroring an attractive solution for fault-tolerance, although larger numbers of

disks must still be combined to provide the aggregate capacity necessary to store today’s

large data sets.
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2.2.4 Silicon

The second objection to database machines was the cost and complexity of the spe-

cial-purpose hardware used in these machines. Here again technology trends have

changed the landscape. The increasing transistor count in inexpensive CMOS is driving

the use of microprocessors in increasingly simple and inexpensive devices. Network inter-

faces, digital cameras, graphics adapters, and disk drives all have microcontrollers whose

processing power exceeds the most powerful host processors of 15 years ago. Not to men-

tion the cellular phones, microwave ovens, and car engines that all contain some type of

microprocessor completely outside the realm of the traditional computer system

[ARM99]. A high-end Quantum disk drive of several years ago contains a Motorola

68000-based controller that is solely responsible for managing the high-level functions of

the drive. This is the same microprocessor that Boral and DeWitt suggested in 1983 would

be sufficient to handle all of the database processing in several years time [Boral83]. If we

consider this change with respect to the machines in Table 2-1, and assume a modest

25 MHz of processing power at the individual disk drives, we see that these large data sys-

tems already have more than two or three times as much aggregate processing power at

the disks as at the hosts, as shown in Table 2-4.

2.2.5 Drive Electronics

Figure 2-6 shows the effects of increasing transistor density and integration on disk

drive electronics. In Figure 2-6a, we see that the electronics of a disk drive include all the

components of a simple computer: a microcontroller, some amount of RAM, and a com-

munications subsystem (SCSI), in addition to some specialized hardware for drive control.

Figure 2-6b shows how a number of these special-purpose control chips have been inte-

grated into a single piece of silicon in current-generation drives. The figure then extrapo-

lates to the next generation of process technology (from .68 micron to .35 micron CMOS

in the ASIC). The specialized drive control hardware now occupies about one quarter of

the chip, leaving sufficient area to integrate a powerful control processor, such as a

200 MHz StrongARM [Turley96], for example. Commodity disk and chip manufacturers

System Processor
Host

Processing
Disks

On-DIsk
Processing

Today

Disk
Advantage

On-Disk 
Processing

Soon

Disk
Advantage

Compaq TPC-C 4 x 400 MHz 1,600 MHz 141 3,525 MHz 2.2 x 28,200 MHz 17.6 x

Microsoft TerraServer 8 x 440 MHz 3,520 MHz 324 8,100 MHz 2.3 x 64,800 MHz 18.4 x

Digital TPC-C 1 x 500 MHz 500 MHz 61 1,525 MHz 3.0 x 12,200 MHz 24.4 x

Digital TPC-D 300 12 x 612 MHz 7,344 MHz 521 13,025 MHz 1.3 x 104,200 MHz 14.2 x

Table 2-4 Comparison of computing power vs. storage power in large server systems. Estimating that current disk
drives have the equivalent of 25 MHz of host processing speed available, large database systems today already
contain more processing power on their combined disks than at the server processors. Extending this to the
200 MHz processors that will be available in the near future gives the disks a factor of 10 and 20 advantage.
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are already pursuing this type of integration. Siemens Microelectronics has produced first

silicon for a family of chips that offer a 100 MHz 32-bit microcontroller, up to 2 MB of

on-chip RAM, external DRAM and DMA controllers and customer-specific logic (that is,

die area for the functions of Figure 2-6b) in a .35 micron process [Siemens97,

Siemens98]. Cirrus Logic has announced a chip called 3Ci that incorporates an ARM core

on the same die as the drive control circuitry to provide a system-on-a-chip controller as a

single part [Cirrus98]. The first generation of this chip contains an ARM7 core, and the

next generation promises a 200 MHz ARM9 core.

VLSI technology has evolved to the point that significant additional computational

power comes at negligible cost. Table 2-5 compares the performance and size of several

generations of the ARM embedded processing core [ARM98]. We see that today’s embed-

Figure 2-6 The trend in drive electronics toward higher levels of integration. The Barracuda drive on the left contains separate
chips for servo control, SCSI processing, ECC, and the control microprocessor. The Trident chip in the center has combined many
of the individual specialized chips into a single ASIC, and the next generation of silicon makes it possible to both integrate the
control processor and provide a significantly more powerful embedded core while continuing to reduce total chip count
[Elphick96, Lammers99].

a
b

c

Chip Speed Dhrystone Cache Process Size Available Notes

ARM7TDMI 66 MHz 59 MIPS - 0.35 um 2.1 mm2 now core only

ARM710T 59 MHz 53 MIPS 8K unified 0.35 um 9.8 mm2 now simple memory protection

ARM740T 59 MHz 53 MIPS 8K unified 0.35 um 11.7 mm2 now full MMU/virtual memory

ARM940T 200 MHz 220 MIPS 8K unified 0.25 um 8.1 mm2 now MMU, 4 GB addr spc

ARM10 300 MHz 400 MIPS 32K/32K 0.25 um mid 1999 including FP unit

StrongARM 200 MHz 230 MIPS 16K/16K 0.35 um 50.0 mm2 now

Alpha 21064 133 MHz 8K/8K 0.75 um 234.0 mm2 now 75 SPECint92

StrongARM 600 MHz 750 MIPS 2000

Table 2-5 Several generations of ARM 32-bit cores. The ARM7TDMI is included in the current Cirrus Logic 3Ci
chip. ARM9 is shipping, and the ARM10 is the next generation.
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ded chips provide nearly the power of the workstations of several years ago. In terms of

raw integer instruction throughput, the embedded cores approach that of much more com-

plex workstation processors. The decreasing feature size also makes this level of process-

ing power available in ever smaller form factors, easily allowing such cores - and the

ability to execute arbitrarily complex code - to be included in a single die with the much

more specialized silicon optimized for particular functions like drive control. This combi-

nation allows the performance of specialized ASICs for those functions that are already

available in silicon, while retaining a sufficient amount of general-purpose processing

power for additional functions provided in software.

2.2.6 Database Algorithms

The final objection of Boral and DeWitt was that the simple hardware implementa-

tions in the database machines were not sufficient to support complex database operations

such as sorts and joins. As part of the work on database machines after the “time has

passed” paper, including work by Boral and DeWitt and their colleagues, many different

solutions to this have been proposed and explored. The concept of a shared nothing data-

base “machine” is now a well-established concept within the database community, and

much work has gone into developing the parallel algorithms that make this feasible. A sur-

vey paper by DeWitt and Gray [DeWitt92] discusses the trends and success of shared

nothing systems, including commercial successes from Tandem and Teradata, among oth-

ers. The authors point to the same objection from [Boral83] and provide compelling evi-

dence that parallel database algorithms have been a success.

Chapter 4 will explore the operations in a relational database system in detail, and

illustrate how they can be mapped onto an Active Disk architecture. The basic point is that

there are now known algorithms that can operate efficiently in this type of architecture. In

addition, many of the data-intensive applications that are becoming popular today rely

much more heavily on “simple” scans and require much more brute-force searching of

data, because the patterns and relationships in the data are not as well understood as they

are in the more traditional relational database systems on transaction processing work-

loads. Finding patterns in image databases, for example, is a much different task than in

structured customer records. The next sections will discuss this change in applications and

motivate the benefits to a system that can support more efficient parallel scans than

today’s systems.

2.2.7 Interconnects

There are several issues raised in the analysis of the database machines that were not

specifically addressed in most of the existing work, and are still issues today. The most

important one is contention for network bandwidth to the front-end host. This bottleneck

persists today and is a primary reason why Active Disk systems, with processing at the

“edges” of the network can be successful. Many types of data processing queries reduce a

large amount of “raw” data into a much smaller amount of “summary” data that answers a
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particular user question and can be easily understood by the human end-user. Queries such

as: How much tea did we sell to outlets in China? How much revenue would we lose if we

stopped marketing refrigerators in Alaska? How much money does this customer owe us

for goods we sent him more than two months ago? The use of indices can speed up the

search for a particular item of data, but cannot reduce the amount of data that must be

returned to the user in answer to a particular query. This is what led to the contention for

the output channel in the early processor-per-track database machines, and it is also the

bottleneck in many large storage systems today.

Instead of being limited by the bandwidth of reading data from the disk media, mod-

ern systems often have limited peripheral interconnect bandwidth, as seen in the system

bus column of Table 2-6. We see that many more MB/s can be read into the memory of a

large collection of disks than can be delivered to a host processor.

The interconnection “networks” used between storage devices and hosts and those

used among hosts have long had somewhat different characteristics. A technology survey

paper by Randy Katz [Katz92] breaks the technology into three distinct areas: backplanes,

channels, and networks. Where backplanes are short (about 1 m), with bandwidth over

100 MB/s, sub microsecond latencies, and highly reliable; channels are longer (small tens

of meters), support up to 100 MB/s bandwidth, have latencies under 100 microseconds,

and medium reliability; and networks span kilometers, sustain 1 to 15 MB/s, and have

latencies in milliseconds, with the medium considered unreliable, requiring the use of

expensive protocols above to ensure reliable messaging. These distinctions are no longer

as true as it was at the time of this survey. The need to connect larger numbers of devices

and larger numbers of hosts over larger distances, has led to the development of the much

more “network-like” Fibre Channel for storage interconnects. The growing popularity of

Fibre Channel for storage devices and packet-switched networks for local- and wide-area

networks has clouded the boundaries of peripheral-to-host and host-to-host interconnects.

Since both Fibre Channel and Fast or Gigabit Ethernet, the storage and networking inter-

connect technologies of choice respectively are based on packets, switches, and run over

the same fiber optic infrastructure. Why continue to artificially separate the two systems?

This is the contention of previous work at Carnegie Mellon on Network-Attached

Secure Disks (NASD) [Gibson97, Gibson98] and is coming close to reality by the intro-

System System Bus
Storage 

Throughput
Mismatch

Factor

Compaq ProLiant TPC-C 133 MB/s 1,410 MB/s 10.6 x

Microsoft TerraServer 532 MB/s 3,240 MB/s 6.1 x

Digital AlphaServer TPC-C 266 MB/s 610 MB/s 2.3 x

Digital AlphaServer TPC-D 300 532 MB/s 5,210 MB/s 9.8 x

Table 2-6 Comparison of system and storage throughput in large server systems. If we estimate a modest 10 MB/s
for current disk drives on sequential scans, we see that the aggregate storage bandwidth is more than twice the
(theoretical) backplane bandwidth of the machine in almost every case.
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duction of Storage Area Networks (SANs) in industry [Clariion99, Seagate98,

StorageTek99]. Industry surveys estimate that 18% of storage will be in SANs by the end

of 1999, reaching up to 70% within two years [IBM99].

Even though individual point-to-point bandwidths have increased greatly and

latency has decreased significantly, the network connectivity in a distributed system will

continue to be a bottleneck. It is simply too expensive to connect a large number of

devices with a full crossbar network. This means that systems will need to take advantage

of locality of reference in order to manage the inherent bottlenecks, but it also means that

certain access patterns will always suffer from the bottlenecks among nodes. The cost

comparison is clear when one compares the cost of a hierarchical switched system against

a full crossbar system as the number of nodes in a system is increased. For a small number

of nodes, a local switched fabric is quite effective, but as soon as the number of nodes

exceeds the capacity of a single switch, the costs of maintaining a full crossbar increase

rapidly. Switches must be deployed in a way that requires most of their ports to be dedi-

cated to switch-to-switch connectivity, rather than to support end nodes. This greatly

increases the cost of the system to the point where it becomes prohibitive to provide that

level of connectivity in systems of more than one hundred nodes. This means that net-

works must either be limited to the size of the largest crossbar switch currently available,

or must attempt to take advantage of locality in some form or another and live with certain

bottlenecks. The ability to move function as well as data throughout different parts of the

system (e.g. from hosts to disks) provides additional leverage in most efficiently taking

advantage of a particular, limited, network configuration.

2.3 Storage Interfaces

One of the major changes since the time of the database machines is the level of

interface between storage devices and the rest of the system. The advent of the SCSI stan-

dard [Schmidt95, ANSI93, Shugart87] has enabled much of the progress and performance

gains in storage systems over the last fifteen years.

2.3.1 Disk Interfaces

At the time of the database machines, hosts were responsible for much more of the

detailed control of the disk drive than they are today. The use of higher-level, more

abstract, interfaces to storage have moved much of this detailed control function (e.g. head

positioning, track following, and sector layouts) to the on-drive processors discussed

above, thereby offloading the host to perform more application-level processing tasks.

The standardization and popularity of SCSI has greatly helped the development of

storage devices by providing a fixed interface to which device drivers could be written,

while allowing devices to optimize “underneath” this interface. This is true at the individ-

ual device level, as well as in groups of devices (such as RAID arrays, for example),

which have taken advantage of the standardization of this interface to simply “act like” a

single device and provide the same interface to the higher-level filesystem and operating
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system code that are not aware that they are really dealing with a group of devices. But

this interface is specified at a relatively low level, and has not been updated in many years.

One of the contentions of previous work on Network-Attached Secure Disks

(NASD) is that the simple block-level interface of SCSI should be replaced by a richer

object interface that allows the drives to manage more of their own metadata [Gibson97a].

This allows both offloading of the host and provides additional opportunities for optimiza-

tion at the devices. In this system, a particular filesystem built on top of network-attached

disks decides how to map user-level “objects”, such as files, directories, or database tables

onto the “objects” provided by the object interface. A particular filesystem may choose to

map multiple files or directories to the same object, or it might split a particular file over

several objects, depending on particular semantics or performance characteristics, but the

most straightforward approach maps a single file to a single object at the device. The drive

is then responsible for managing the block layout of this object itself. This for the first

time gives the drive knowledge of which blocks make up a user-understood unit of access.

The drive can now understand and act on information such as “I am going to read this

entire file” because it has a notion of what underlying blocks this refers to, whereas before

only the filesystem at the host was aware of how variable-length files mapped onto

fixed-size SCSI blocks. This also improves the efficiency of the higher-level filesystem,

because it must no longer keep track of the usage and allocation of individual disk blocks.

It can now reason in terms of objects and depend on the drive to “do the right thing”

within this context. In a network-attached environment with shared storage, this means

there is much less metadata update traffic that must take place. The mapping of objects to

disk blocks is known only to the disks and must not be shared among multiple hosts that

may be accessing or updating the same filesystem. Original SCSI disks had thousands of

blocks, which were managed directly by the filesystems on the host, today’s drives have

millions and tens of millions of blocks, so offloading the management of the lowest level

of allocation to the drives is a reasonable step to take.

The object interface also provides a natural way to handle the security required by

network-attached disks. It is no longer reasonable for a device to execute any command

that is sent to it, as is true with SCSI devices today. The drive must have a way to authen-

ticate that a particular request comes from a trusted party, that the requestor has the right

to perform a particular action. Within NASD, this is done through a capability system

[Gobioff97]. The file manager responsible for a particular device or set of devices shares a

secret key with each of these devices. The file manager then hands out capabilities, which

are cryptographically protected from tampering and which identify that a particular per-

mission, or access right, could only have come from this file manager. Clients use these

capabilities to access drives directly, without having to resort to the file manager on each

access, as would be required with today’s file servers. When combined with the object

interface, this means that security is handled on a per-object basis. The file manager does
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not provide capabilities on a per-block basis, but provides a read or write capability for an

entire object, which the clients can then use to read and write at their leisure.

The use of an object interface at the drives aids the development of Active Disks

because application-level code operating at the drive can deal with an object as a whole.

The on-drive code does not have to resort to a file server for metadata mapping or to pro-

vide per-block capabilities. The on-drive code can obtain capabilities just as client code

does and these can be shipped as part of the code to the drive. The on-drive code then acts

as any other users of the drive and provides the appropriate capability whenever it wishes

to access the object. This means that the security system that already protects unauthorized

clients from destroying other users’ data also operates here. If a particular piece of

on-drive code does not have the appropriate capability, then it cannot read or write the

object. If it does have the appropriate capability, then it could just as well read or write the

object remotely, so no additional security “hole” is opened up.

2.3.2 Storage Optimizations

Processing power inside drives and storage subsystems has already been used to

optimize functions behind standardized interfaces such as SCSI. This includes optimiza-

tions for storage parallelism, bandwidth and access time, including RAID, TickerTAIP,

Iceberg [Patterson88,Drapeau94, Wilkes95, Cao94, StorageTek94] and for distributed file

system scalability, including Petal, Derived Virtual Devices, and Network-Attached

Secure Disks [Lee96, VanMeter96, Gibson97]. With Active Disks, excess computation

power in storage devices is available directly for application-specific function in addition

to supporting these existing storage-specific optimizations. Instead of etching database

functions into silicon as envisioned 15 years ago, Active Disks are programmed in soft-

ware and use general purpose microprocessors. This makes possible a much wider range

of optimizations as more vendors and users are able to take advantage of on-drive process-

ing. The types of optimizations performed in these systems - informed prefetching, trans-

parent compression, various levels of object storage - can be built on top of the simple

infrastructure of Active Disks. The real benefit comes in being able to open up this capa-

bility to the much greater number of specific applications (e.g. database systems, mail

servers, streaming video servers) that do not alone form a large enough “pull” to change

on-drive processing for their own applications individually.

2.4 Workloads

There is considerable variety among the applications that place large demands on

storage systems. If we consider the uses to which large storage systems are put, we see a

wide range of requirements, with the only common thread a continual increase in demand,

leading to the deployment of larger and larger systems as fast as the technology can

evolve.
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2.4.1 Large Storage Systems

Disk/Trend reports that the disk drive industry as a whole shipped a total of 145 mil-

lion disk drives in 1998 [DiskTrend99]. With an average drive size near 5 GB, this is a

total of 725 petabytes (1015) of new data storage added in a single year. Of this total, 75%

went into desktop personal computers, 13% into server systems, and 12% into portables.

This means over 100 petabytes of new storage found its way into data centers and servers

around the world.

There is a large variation in the types of workloads for such large data systems. The

advantage of Active Disks is that they provide a mechanism whereby a wide variety of

applications with a range of characteristics can be supported effectively and take advan-

tage of the same underlying hardware components. The increased flexibility in placing

functions allows applications to be structured in novel ways that are simply not possible in

systems with “dumb” disks, where processing can only occur after data has been trans-

ferred to a host. This provides system designers a new avenue for optimization and plan-

ning. There are also benefits in functionality and optimization that may be possible in

desktop drives with an Active Disk capability, but the focus of this dissertation is on the

benefits of parallelism and offloading in systems with multiple disks, outside of the com-

modity market for low-end single disks.

Table 2-7 provides a sample of several large storage systems in use today across a

range of organizations and applications. We see that it is quite easy to reach several ter-

abytes of data with even a modest number of users. We also see a significant variety

among the uses for large data systems, meaning that storage systems must support differ-

ent access patterns and concerns. A number of the most popular classes of usage are dis-

cussed below, along with the general trends in the demands they place on storage systems.

Site System Storage Size Software Type of Data

Motley Fool AlphaServer 1000 2 x StorageWorks 310 2 x 30 GB SQL Server message boards, financial data

Atrieva.com StorageTek 12 TB, 20 GB/week custom free Internet storage

Aramark Uniforms AlphaServer 4100 ESA 10000 1 TB Oracle sales & cust info, mining

Northrop Grumman 2 x AlphaServer 8400 StorageWorks 2 TB SAP, Oracle 100% mirrored

Lycos n x AlphaServer 8400 StorageWorks 5 TB custom web site, catalog

Mirage Resorts Tandem, NT, AS400, 

UNIX

StorageTek Powder-

Horn

450 GB/night backups

CERN various AIX, Sun storage arrays 1 TB AFS 15 servers, 3-5,000 active users

Boeing Engineering various RS/6000, Sun 50 TB DFS 3-5,000 seats

Nagano Olympics 48 SP2 web servers 2 x RS/6000 16x9 SSA 144 GB DFS/Web 4 complete replicas

Goddard SFC Cray T3E, 128 GB fibre channel disks 960 GB Unicos 650 MFLOPS, 1024 nodes

Corbis Compaq ProLiants StorageWorks 2 TB NT, IIS, 

SQL

high-resolution images

Cathay Pacific Sun Enterprise 10000 Sun storage arrays 1.5 TB data warehousing

Table 2-7 Large storage customers and systems. Data from www.storage.digital.com, www.stortek.com, 
www.transarc.com, and via www.gapcon.com.
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2.4.2 Database

Traditionally, the most important use for large data systems is to store the transac-

tion databases that form the basis of the electronic world - whether in stock markets,

banks, or grocery stores. As more and more of the world becomes computerized, more and

more of our daily actions (and transactions) are stored and tracked.

The increasing size and performance of large transaction processing systems is illus-

trated in Table 2-8 which shows the evolution of systems over the six years since the intro-

duction of the TPC-C benchmark. Three manufacturers and two product lines are shown.

For IBM and Hewlett-Packard, there is data for “enterprise” class systems and for com-

modity or “workgroup” class systems. In the later years, data for commodity class systems

from Dell is added. We see that over the six years, there is a huge increase in performance

and a huge drop in price. From over $2,000 per tpmC to $17 per tpmC for a system that

performs 200 times as many transactions. Figure 2-7 graphically illustrates the cost trend,

with the commodity machines dropping off more steeply than the high-end systems. We

also see that the amount of storage in these systems has increased significantly. In a

TPC-C benchmark, the amount of storage required is proportional to the transaction rate,

and we see that this has increased 100-fold since the first TPC-C benchmark machines.

A basic requirement embodied in the TPC-C benchmark is that the benchmark sys-

tems provide sufficient storage to maintain roughly four months of active data. If the sys-

tem were going to retain historical data beyond this time, for example to support

longer-term trend analysis or decision support queries, the storage requirements would

quickly grow. For example, the table shows that a 50,000 tpmC system is able to fill 3 TB

Year System Processor Memory Storage Cost tpmC $/tpmC

1993 IBM RS/6000 POWERserver 230 c/s 45 MHz RISC 64 MB 10.6 GB $245,273 115.83 2,118.00

1993 HP3000 Series 957RX 48 MHz PA-RISC 384 MB 32.7 GB $487,710 253.70 1,923.00

Enterprise Systems

1995 HP 9000 K410 4 x 120 MHz PA 2 GB 341.0 GB $1,384,763 3809.46 364.00

1997 IBM RS/6000 Enterprise Server J50 c/s 8 x 200 PPC 3 GB 591.5 GB $895,035 9,165.13 97.66

1997 HP 9000 V2200 Enterprise Server 16 x 200 MHz PA 16 GB 2,439.0 GB $3,717,105 39,469.47 94.18

1999 IBM RS/6000 Enterprise Server H70 c/s 4 x 340 MHz RS 8 GB 1,884.4 GB $1,343,526 17,133.73 78.50

1999 HP 9000 N4000 Enterprise Server 8 x 440 MHz PA 16 GB 3,787.0 GB $2,794,055 49,308.00 56.67

Commodity Systems

1995 IBM RS/6000 Workgroup Server E20 c/s 100 MHz PPC 512 MB 56.3 GB $278,029 735.27 378.00

1997 IBM RS/6000 Workgroup Server F50 c/s 4 x 166 MHz PPC 2.5 GB 495.8 GB $725,823 7,308.10 99.32

1997 HP NetServer LX Pro 2 x 200 MHz Pent 2 GB 512.4 GB $584,286 7,351.50 79.48

1997 Dell PowerEdge 6100 4 x 200 MHz PPro 2 GB 451.0 GB $327,234 7,693.03 42.53

1999 IBM Netfinity 7000 M10 c/s 4 x 450 MHz Xeon 4 GB 1,992.9 GB $577,117 22,459.80 25.70

1999 HP NetServer LH 4r 4 x 450 MHz PII 4 GB 1,310.0 GB $440,047 19,050.17 23.10

1999 Dell PowerEdge 6350 4 x 500 MHz Xeon 4 GB 1,703.0 GB $404,386 23,460.57 17.24

Table 2-8 Comparison of large transaction processing systems over several years. The table compares the size,
performance, and cost of large transaction processing systems - as given by TPC-C benchmark results - over the
six year period. Data from [TPC93], [TPC97], and [TPC99]. No attempt has been made to adjust the dollar
figures for inflation, such an adjustment would only raise the costs of the older systems and make the
improvements more striking.
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of storage in only four months. If a customer were to continue to collect that data and store

it for further analysis, this system would grow at a rate of over 10 TB per year. If we look

to process data of this size in a decision support system, we find that 3 TB is already the

largest scale factor available for a TPC-D decision support benchmark [TPC98]. This

means that the fastest transaction systems of today are rapidly swamping the largest deci-

sion support systems. Soon it may be necessary to add 30 and 300 TB scale factors to the

TPC-D benchmark as such database sizes become commonplace.

2.4.3 Data Mining

In data mining, basic tasks such as association discovery, classification, regression,

clustering, and segmentation are all data-intensive. The data sets being processed are often

quite large and it is not known a priori where in a particular data set the “nuggets” of

knowledge may be found [Agrawal96, Fayyad98]. Point-of-sale data in retail organiza-

tions is collected over many months and years and grows continually [Agarwal95]. Tele-

communication companies maintain tens of terabytes of historical call data that they wish

to search for patterns and trends. Financial companies maintain decades of data for risk

analysis and fraud detection [Senator95]. Airlines and hotels maintain historical data as

input for various types of yield management and targeted marketing [Sun99a]. The poten-

tial list of data sources and potential uses is endless.

Many of the statistical and pattern recognition algorithms used in data mining have

been developed with small data sets in mind and depend on the ability to operate on the

data in memory, often requiring multiple passes over the entire data set to do their work.

This means that users must either limit themselves to using only a subset of their data, or

must have more efficient ways of operating on them out-of-core.

The primary difference between “traditional” database operations and data mining

or data warehousing is that on-line transaction processing (OLTP) systems were designed

to automate simple and highly structured tasks that are repeated all day long - e.g. credit

card sales or ATM credits and debits. In this case the reliability of the system and consis-

Figure 2-7 Trends in transaction
processing performance and cost.
The chart shows price/performance
ratios for TPC-C machines from the
introduction of the TPC-C benchmark
in 1993 to 1999. There are two sets of
plots, one for enterprise class and one
for commodity or workgroup class
machines across three different
manufacturers. Note the log scale.
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tency of the data are the primary performance factors [Chaudhuri97]. The historical data

sets that form the basis for data mining are the accumulated transactions of (often) several

OLTP systems that an organization collects from different portions of its daily business.

The goal of data mining is to combine these datasets and look for patterns and trends both

within and among the different original databases (imagine, for example, combining gro-

cery store receipts with customer demographics and weather reports to determine that few

people in Minneapolis buy charcoal briquets in December). As a result, data mining sys-

tems will often contain orders of magnitude more data than transaction processing sys-

tems. In addition, the queries generated in a data mining system are much more ad-hoc

than those in an OLTP system. There are only so many ways to debit a bank account when

a withdrawal is made, while there are an infinite number of ways to summarize a large col-

lection of these transactions based on branch location, age of the customer, time of day,

and so on. This means that the use of static indices is significantly less effective than in

OLTP workloads, particularly as the number and variety of attributes and dimensions in

the data increases (due to the curse of dimensionality, discussed in more detail in the next

section). The use of materialized views and pre-computed data cubes [Gray95,

Harinarayan96] allows portions of the solution space to be pre-computed in order to

answer frequently-asked queries without requiring complete scans, although these mecha-

nisms will only benefit the set of queries and aggregates chosen a priori and must still be

computed (using scans) in the first place.

These characteristics mean that data mining tasks are not well-supported by the

database systems that have been optimized for OLTP workloads over many years

[Fayyad98]. There are several efforts underway to identify a basic set of data mining prim-

itives that might be added as extensions to SQL and used as the basis of these more com-

plex queries. The field is relatively new, so many of the basic tasks are still being

identified and debated within the community. One of the major factor in determining what

these primitives should be is how they can be mapped efficiently to the underlying system

architectures. In particular, what sorts of operations will be quick and which more cum-

bersome. There is as yet no “standard” way to do data mining, and there is great variance

across disciplines and data sets. This means there is room for novel architectures that pro-

vide significant advantages over existing systems to make inroads before particular ways

of doing things are set in stone (or code1).

2.4.4 Multimedia

In multimedia, applications such as searching by content [Flickner95, Virage98]

place large demands on both storage and database systems. In a typical search, the user

might provide a single “desirable” image and requests a set of “similar” images from the

1. To further illustrate this point, there are over 200 companies of varying sizes currently developing and providing data 
mining software [Fayyad99], whereas the number of companies that provide “standard” OLTP database management 
software can be counted on the fingers of one hand. This means there is much more scope for novel architectures or 
ways of developing code than there might be in the “traditional” database systems.
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database. The general approach to such a search is to extract a set of feature vectors from

every image, and then search these feature vectors for nearest neighbors in response to a

query [Faloutsos96]. Both the extraction and the search are data-intensive operations.

Extracting features requires a range of image processing algorithms. The algorithms

used and features extracted are also constantly changing with improvements in processing,

or as the understanding of how users classify “similarity” in multimedia content such as

images, video, or audio changes. The state of the art is constantly evolving, so workloads

will require repeated scans of the entire data sets to re-extract new features. Since the

extraction of features represents a lossy “compression” of the data in the original images,

it is often necessary to resort to the original images for re-processing. This is true in data

sets of static images that may be available for searching on the web [Flickner95], as well

as in image databases used to find patterns in the physical world [Szalay99].

Once a fixed set of features has been identified and extracted from an image data-

base, it is no longer necessary to resort to the original images, which may be measured in

terabytes or more, for most queries, but the extracted data is still large. The Sloan Digital

Sky Survey, for instance, will eventually contain records for several hundred million

celestial objects [Szalay99]. The Corbis archive maintains over 2 million online images

[Corbis99]. The dimensionality of these vectors will often be high (e.g. moments of inertia

for shapes [Faloutsos94] in the tens, colors in histograms for color matching in the hun-

dreds, or Fourier coefficients in the thousands). It is well-known [Yao85], but only

recently highlighted in the database literature [Berchtold97], that for high dimensionali-

ties, sequential scanning is competitive with indexing methods because of the curse of

dimensionality. Conventional database wisdom is that indices always improve perfor-

mance over scanning. This is true for low dimensionalities, or for queries on only a few

attributes. However, in high dimensionality data and with nearest neighbor queries, there

is a lot of “room” in the address space and the desired data points are far from each other.

The two major indexing methods for this type of data, grid-based and tree-based, both suf-

fer in high dimensionality data. Grid-based methods require exponentially many cells and

tree-based methods tend to group similar points close together, resulting in groups with

highly overlapping bounds. One way or another, a nearest neighbor query will have to

visit a large percentage of the database, effectively reducing the problem to sequential

scanning.

There is a good deal of ongoing work in this area to address indexing for this type of

data, including X-trees [Berchtold96], but there are some recent theoretic results to indi-

cate that this is actually a structural problem with these types of data and queries, rather

than simply due to the fact that no one has found the right indexing scheme “yet”.

In addition to requiring support for complex, data-intensive queries, the sheer size of

these databases can be daunting. One hour of video requires approximately one gigabtye

of storage and storing video databases such as daily news broadcasts can quickly require

many terabytes of data [Wactlar96]. Increasingly, users are maintaining such databases
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that can be searched by content (whether as video, as text, or as audio), using many of the

methods discussed above to find a particular piece of old footage or information. Medical

image databases also impose similarly heavy data requirements [Arya94].

2.4.5 Scientific

Large scientific databases often include image data, which has already been men-

tioned, as well as time series data and other forms of sensor data that require extensive and

repeated post-processing. These data sets are characterized by huge volumes of data and

huge numbers of individual objects or observations. The Sloan Digital Sky Survey

projects will collect 40 TB of raw data on several hundred million celestial objects to be

processed into several different data products totalling over 3 TB. This data will be made

available for scientific use to a large number of organizations, as well as to the public via a

web-accessible database [Szalay99]. The dozens of satellites that form NASA’s Earth

Observing System will generate more than a terabyte of data per day when they become

fully operational [NASA99].

2.4.6 File Systems

The workloads for distributed filesystems are likely to be as varied as the number of

organizations that use them, but the trend toward an ever-increasing amount of stored data

is constant [Locke98].

There have been a variety of published filesystem sizing and performance studies

over the years, and each has used a slightly different methodology to illustrate different

points. The results of a number of these studies are presented in Table 2-9. These results

Site Year Data Files Users (MB/user) (files/user) Comments Reference

Carnegie Mellon 1981 1.6 GB 36,000 200 8 180 single system [Satya81]

Berkeley 1985 331 three servers [Ousterhout85]

Carnegie Mellon 1986 12 GB 400 30 100 workstations [Howard88]

Carnegie Mellon 1987 6 GB 1,000 6 400 clients, 16 servers, server data only [Howard88]

Berkeley 1991 70 four servers, 40 diskless clients [Baker91]

Western Ontario 1991 304,847 200 1,524 three servers, 45 diskless clients [Bennett91]

HP Labs 1992 10.5 GB 20 537 single server [Ruemmler93]

Berkeley 1992 3 GB 200 15 single server, nine dataless clients [Ruemmler93]

AFS 1994 217 GB 4,750 47 900 clients, 70 servers, server data only [Spasojevic96]

HP 1994 54 GB 2.3 million 527 105 4,363 46 machines [Sienknecht94]

Harvard 1994 23 GB 75 314 four machines [Smith94]

Carnegie Mellon 1996 8 GB 25 328 single server, server data only [Riedel96]

Carnegie Mellon 1998 26.5 GB 40 671 single server, server data only

Microsoft 1998 10.5 TB 140 million 4,418 2,492 31,689 4,800 machines [Douceur99]

Table 2-9 Amount of storage used in an organization. The table compares the amount of data and the total number
of users across several years of filesystem studies. All the studies are from university, research or commercial
software development environment. These studies may not necessarily be representative in that they are usually the
researchers studying themselves, but this does give a rough indication of how things have changed over the years.
The figure for Users is the number of active users, this number is an estimate for both of the 1994 results as those
papers only give the total number of registered users (based on the ratio of registered to active users in the 1987
AFS study). Note that several of the AFS studies contain data from the shared servers only, so the total amount of
data (if users’ workstations were included, as they were in some of the older studies) would be significantly higher.
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were gathered from a number of different environments, but focussed on university

research or software development organizations (as researchers in this area have a ten-

dency to study themselves). The older studies report on entire systems, including servers

and clients, while the more recent studies usually focus on shared server usage, ignoring

local client storage. The most recent study at Microsoft, on the other hand, reports only

client storage. All this means that the numbers among the various studies are not directly

comparable, but the intent of the table is simply to show a trend. The storage per user

numbers show a definite upwards trend. Looking at the only very roughly comparable data

among similar systems (comparing the 1998, 1996, 1994 and 1987 AFS systems to each

other, and the commercial environments of HP and Microsoft to each other) gives average

growth rates of between 30% and 165% per year in megabytes per user. A recent survey

on storage consolidation also identifies increased pressure to re-centralize storage, thereby

increasing the both the amount of data and the amount and extent of sharing among multi-

ple systems, putting increased pressure on distributed filesystems.

2.4.7 Storage Systems

A recent trend in storage devices is the increased availability of “value added” stor-

age systems that provide a higher level of functionality than the disks themselves. This

trend began with disk arrays that combine a set of disks into a single logical “device” and

has continued to higher-level protocols as more “intelligence” moves into the storage sys-

tems themselves, a trend that bodes well for the acceptance of Active Disk technology.

Table 2-10 considers a sampling of such systems, along with the premium that these ven-

dors are able to charge above the cost of the storage itself.

2.5 Downloading Code

Downloading application code directly into devices has significant implications for

language, safety, and resource management. Once there is an execution environment at the

drive for user-provided code, it is necessary to provide mechanisms that protect the inter-

nal drive processing from the user code, as well as protecting different user “applications”

from each other. This is necessary to safeguard the data being processed by the user code,

System Disks Function Cost Premium Other Source

Seagate Cheetah 18LP LVD 18 GB disk only $900 - lvd, 10,000 rpm warehouse.com

Seagate Cheetah 18LP FC 18 GB disk only $942 5% FC, 10,000 rpm harddisk.com

Dell 200S PowerVault 8 x 18 GB drive shelves & cabinet $10,645 48% lvd disks dell.com

Dell 650F PowerVault 10 x 18 GB dual RAID controllers $32,005 240% full FC, 2x 64 MB RAID dell.com

Dell 720N PowerVault 16 x 18 GB CIFS, NFS, Filer $52,495 248% ethernet, 256/8 MB cache Dell

EMC Symmetrix 3330-18 16 x 18 GB RAID, management $160,000 962% 2 GB cache EMC

Table 2-10 Value-added storage systems. A comparison of several value-added storage systems and their price
premium over the cost of the raw storage. Note that the PowerVault 650 is an OEM version of a Clariion array from
Data General and the PowerVault 720 is a version of the NetApp Filer from Network Appliance. All the costs
shown are street prices as of September 1999.
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as well as the state of drive operation. Resource management is necessary to ensure reli-

able operation and fairness among the requests at the drive.

Given the increased sophistication of drive control chips as discussed in

Section 2.2.5, it may be possible to simply use the standard memory management hard-

ware at the drive and provide protected address spaces for applications as in standard mul-

tiprogrammed systems today. For the cases where efficiency, space or cost constraints

require that application code be co-located with “core” drive code, recent research in pro-

gramming languages offers a range of efficient and safe remote execution facilities that

ensure proper execution of code and safeguard the integrity of the drive. Some of these

mechanisms also promise a degree of control over the resource usage of remote functions

to aid in balancing utilization of the drive between demand requests, opportunistic optimi-

zations such as read-ahead, and demand requests.

There are two issues for code operating at the drive: 1) how is the code specified to

the drive in a manner that is portable across manufacturers and operating environments

and 2) how is safety and resource utilization of the code managed. The next sections dis-

cuss potential solutions in these two areas.

2.5.1 Mobile Code

The popularity of Java (from zero to 750,000 programmers in four years [Levin99])

makes it a promising system for doing mobile code. A survey quoted in the Levin article

reports that 79% of large organizations have active projects or plans to pursue Java-based

applications [Levin99]. This popularity, and the wide availability of development tools

and support, makes Java a compelling choice as a general execution environment. The

availability of a common, community-wide interface for specifying and developing

mobile code makes it possible for individual device manufacturers to leverage their

investment in a single computation environment or “virtual machine” across a wide range

of applications. It is no longer necessary to produce a custom device or custom firmware

to support a large variety of different higher-level software layers. The device manufac-

turer can create a single device that is programmed in Java, and that can then be used by

Microsoft and Solaris and Oracle and Informix in the same basic way. The development of

systems such as Jini [Sun99] for managing and configuring devices builds on this same

advantage to address a particular part of the problem, mediating the interaction among het-

erogeneous devices. There are a number of additional domains where a general-purpose

mobile code system would be applicable [Hartman96].

2.5.2 Virtual Machines

The use of a virtual machine provides two complimentary benefits, the first is the

ability to use the same program on a variety of underlying machine and processor archi-

tectures, the second is the greater degree of controlled provided in a virtual machine, when

the code does not have direct access to the hardware. The downside of virtual machines is

the performance impact of “virtualized” hardware. The extent of the performance differ-
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ence across several types of interpreted systems was explored in a study by Romer, et al.

[Romer96]. This study concluded that although their measurements showed interpreted

Java running roughly 100 times slower than the corresponding C code, that there were a

range of optimizations that should improve this performance, particularly if code could be

compiled before execution. They also cite the ability to interface with efficient native code

implementations of “core” functions as a way to achieve performance while maintaining

the flexibility of the virtual machines - essentially taking advantage of the 80/20 rule (20%

of the code takes 80% of the execution time).

Since the Romer study, a number of efforts have concentrated on improving the per-

formance of Java, incorporating many of the techniques from traditional compiler optimi-

zation [Adl-Tabatabai96], and there are now commercial products that claim parity

between the performance of Java and the corresponding C++ code [Mangione98].

Another advantage to Java over more traditional systems languages such as C or

C++ is that the stronger typing and lack of pointers make Java code easier to analyze and

reason about at the compiler level. This allows compilers to be more efficient and aids

efforts in code specialization [Volanschi96, Consel98] that could also significantly benefit

Active Disk code, as discussed in Section 6.4.

2.5.3 Address Spaces

The most straightforward approach to providing protection in a multi-programmed

drive environment is through the use of hardware-managed address spaces, as found in

conventional multi-user workstations. The current crop of drive control chips is already

beginning to include this functionality. For example, the ARM7 core shown in Table 2-5

above contains a full memory management unit (MMU) and virtual memory support and

is only marginally more complex than the same chip with only a simple memory system

[ARM98].

The main tradeoff to this approach is the cost of performing context switches among

the drive and user code, and of copying data between the two protection domains

[Ousterhout91]. Since the on-drive code will be primary concerned with data-processing

(i.e. primarily low cycles/byte computations) this overhead must be low enough to not

negate the benefits of on-drive execution.

2.5.4 Fault Isolation

Work in safe operating system extensions, software fault isolation, and proof-carry-

ing code [Bershad95, Small95, Wahbe93, Necula96] provides a variety of options for

safely executing untrusted code. The SPIN work depends on a certifying compiler that

produces only “safe” object code from the source code provided by the user. The down-

side is that this requires access to the original source code and depends heavily on mainte-

nance of the compiler infrastructure. Software Fault Isolation (SFI) provides a way to

“sandbox” object code and perform safety checks efficiently. Early measurements

[Adl-Tabatabai96] indicate that this can be done with 10-20% runtime overhead for sim-
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ple safety checks, without access to the original source code. Proof-Carrying Code (PCC)

takes a different approach and moves the burden of ensuring safety to the original com-

piler of the code. The system requires that each piece of code be accompanied by a proof

of its safety. This means that the runtime system is only responsible for verifying the proof

against the provided code (which is a straightforward computation), rather than proving

the safety of the code (which is a much more complex computation that must be done by

the originator of the code at compilation time).

The common theme that each of these systems stress is that while safety is an impor-

tant concern for arbitrary, untrusted code, the design of the “operating system” interfaces

and APIs by which user code accesses the underlying system resources is the key to ensur-

ing dependable execution [McGraw97]. This design will vary with each system within

which code is executed and will require careful effort on the part of the system designers,

beyond the choice of a mechanism for ensuring safety.

2.5.5 Resource Management

The primary focus of these methods has been on memory safety - preventing user

code from reading or writing memory beyond its own “address space”, but some of these

mechanisms also promise a degree of control over the resource usage of remote functions.

This is important within an Active Disk in order to balance resources (including processor

time, memory, and drive bandwidth) among demand requests, opportunistic optimizations

such as read-ahead, and remote functions.

The simplest approach is to use scheduling algorithms similar to those currently

employed in time-sharing systems that depend on time slices and fairness metrics to allo-

cate resources among concurrent processes, as in traditional multi-user operating systems.

There is also work in the realtime community on scheduling and ensuring resource

and performance guarantees. The main difficulty with the scheduling methods in this

domain is that they require detailed knowledge of the resource requirements of a particular

function in order to set the frequency and periods of execution. They also usually requires

that resources be allocated pessimistically in order to ensure that deadlines are met. This

generally leads to excess resources going unused, a situation that may not be acceptable in

the low resource environment at individual disk drives. There has been some recent work

to address this problem by allowing feedback between applications and the operating sys-

tem to make this tradeoff more easily [Steere99].

All of the technologies discussed allow for control over user-provided code, the

main tradeoff among them is the efficient utilization of resources at the drives (in terms of

safety and “operating system” overheads) against the amount of infrastructure required

external to the drive and in the runtime system to support each method (compilers,

proof-checkers, and so on). The availability of mobile code opens a compelling opportu-

nity, and there are a variety of options for managing the code that implementors of an

Active Disk infrastructure can choose from.



32



33

Chapter 3: Potential Benefits

This chapter introduces a model for determining the potential benefits in the perfor-

mance of an application in a system using Active Disks. This analytic model compares the

performance of a server system with a number of “dumb” disks against the same system

with the traditional disks replaced by Active Disks. The model makes a number of simpli-

fying assumptions to keep the analysis straightforward, but the model validation discussed

in Chapter 5 will show that the performance of the prototype system closely matches the

results predicted by the model.

The intent of this chapter is to outline the potential benefits of using an Active Disk

system over a system with traditional disks, the following chapters will describe a set of

applications and how they map to Active Disks and show the performance of these appli-

cations in a prototype system.

3.1 Basic Approach

The basic characteristics of remote functions that are appropriate for executing on

Active Disks are those that:

• can leverage the parallelism available in systems with large 

numbers of disks,

• operate with a small amount of state, processing data as it 

“streams past” from the disk, and 

• execute a relatively small number of instructions per byte.

The degree to which a particular application matches these three characteristics will deter-

mine its performance in an Active Disk system.

This chapter presents an analytic model for the performance of such applications in

order to develop an intuition about the behavior of a system with Active Disks relative to a

traditional server. To keep the model simple, it assumes that 1) applications have the three

characteristics mentioned above, and 2) that disk transfer, disk computation, interconnect

transfer and host computation can be pipelined and overlapped with negligible startup and

post-processing costs.
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We will see that the first assumption simply encompasses the application character-

istics that determine the performance of a particular application on Active Disks, these

will be the input parameters to the model, and are discussed in more detail below. The sec-

ond assumption is addressed in the section on Amdahl’s Law at the end of the chapter,

which discusses the effect of relaxing the requirement of perfect overlap among pipelined

phases, as well as how to include the startup overhead of Active Disk processing into the

model.

Starting with the traditional server, the overall run time for a simple non-interactive

data-processing application is the largest of three individual pipeline stages: the time to

read data from the disk, the time to transfer the data on the interconnect, and the time to

process the data on the server, which gives:

for the elapsed time, and: 

where each term is parameterized by the number of bytes of data being processed, which

can then be factored out to obtain a throughput equation independent of data size. For the

Application Parameters System Parameters

Active Disk Parameters

Nin number of bytes processed=

Nout number of bytes produced=

w cycles per byte=

t run time for traditional system=

tactive run time for active disk system=

scpu CPU speed of the host=

rd disk raw read rate=

rn disk interconnect  rate=

scpu' CPU speed of the disk=

rd' active disk raw read rate=

rn' active disk interconnect rate =
Traditional vs. Active Disk Ratios

αN Nin Nout⁄= αd rd' rd⁄= αn rn' rn⁄= αs scpu' scpu⁄=

t max
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d rd⋅
------------

Nin
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----------------, ,
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Active Disks system, the comparable times for disk read, interconnect transfer, and

on-disk processing are:

for the elapsed time, and:

for the throughput. Both of the throughput equations are a minimum of the three possible

bottleneck factors: the aggregate disk bandwidth, the storage interconnect bandwidth, and

the aggregate computation bandwidth.

Rewriting the equation for throughput with Active Disks in terms of the parameters

of the traditional server and the ratios between the traditional and the Active Disk parame-

ters - the total data moved (the selectivity ), the disk bandwidth ( , which should be 1,

since the use of Active Disks should not impact the raw disk bandwidth1), the interconnect

bandwidth ( , which should also be 1 in the normal case, as the use of Active Disks does

not change the raw networking bandwidth2), and the relative CPU power ( , which will

be the key system parameter when comparing the two types of systems) - we have:

This equation captures the basic advantages of Active Disks. Applications with high selec-

tivity (large ) make more effective use of limited interconnect bandwidth, and configu-

rations with many disks ( ) can achieve effective parallel processing and overcome 

the processing power disadvantage (small ) of the individual Active Disks.

1. the only reason this parameter is included is because the prototype system described in the next chapter will have an

 larger than one. The raw disk bandwidth in the prototype Active Disk is less than that of the competing “dumb”

disks, so the results given in the prototype comparison will always be pessimistic to the Active Disk case.

2. this ratio could also be greater than 1.0 if disk-to-disk communication is used, in which case the interconnect band-

width of the Active Disk system ( ) will be the aggregate backplane bandwidth of the network switch connecting

the drives, instead of the bandwidth into the single server node.
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3.1.1 Estimating System Ratios

The applications discussed in the next chapter exhibit selectivities ( ) of 100 to

108 or more, providing throughput possible only with extremely high interconnect band-

width in the traditional system1. In practical terms, this means that a system can obtain

high application-level throughput without requiring the use of the highest bandwidth (and

most expensive) interconnects, thereby keeping down the overall system cost.

This effect was discussed in the Interconnects section of the previous chapter to

argue that network technology will need to continue to take advantage of locality in net-

work traffic patterns, as full crossbar interconnects across a large number of nodes are

simply too expensive. A reduction in the amount of data to be moved directly at the drive,

before any bytes are even placed on the interconnect, can be highly effective in maintain-

ing low interconnect requirements “upstream”, as we will see. To take into account the use

of a less expensive interconnect, the model allows for slower Active Disk interconnects in

the range of .

The final and critical system parameter is the ratio of Active Disk to server proces-

sor performance. The Silicon section in the previous chapter argued that we can expect

processing rates of 100 and 200 MHz microprocessor cores in next generation disk drives.

With individual server CPUs of 500 to 1,000 MHz processing rates in the same time

frame, a ratio of about  should be realistic. In this case, the aggregate Active Disk

processing power exceeds the server processing power once there are more than five disks

( ) working in parallel. If there are multiple processors, in an SMP system for example,

then the crossover point will shift, as discussed in the Processing section below.

3.1.2 Implications of the Model

Figure 3-1 illustrates the basic trade-offs for Active Disk systems. The slope of

line A represents the raw disk limitation in both systems. If we assume that the Active

Disk processor will not be able to keep up with the disk transfer rates for many applica-

tions ( ), then the aggregate throughput for these applications will have the

somewhat lower slope shown by line B on the chart. Applications with a low enough

cycles per byte ( ) will be able to keep up with the raw bandwidth of the disk and operate

at line A (i.e. the raw disk bandwidth will be the limiting factor, the application cannot

process data faster than the disk can provide it), but most applications will operate at the

lower line B and no application can operate faster than line A consistently.

With a sufficiently large number of disks, Active Disks saturate their interconnects

at line C, with . Since  and intercon-

1. The parameter to compare is the total amount of disk bandwidth to get bytes off the disk against the aggregate inter-
connect bandwidth to deliver those bytes to a host or hosts. As we will see, there are two types of limits here, the
interconnect limit of getting to data into any single host, and the aggregate interconnect bandwidth across a fabric
containing a number of disks and hosts. In most cases, the throughput possible with Active Disks will exceed both.

αN
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nect bandwidth can be assumed to be greater than a single disk’s bandwidth ( ), the

number of disks must be larger than the selectivity of the application ( ) before

this limit sets in. This is shown to the right of point Z in the figure. With the large selectiv-

ities of the applications discussed in the next chapter, the perfect overlap assumption

would most likely fail (Amdahl’s Law, as discussed below) before this point is reached.

There are two ways in which the traditional server system can be limited, either a

network or CPU bottleneck, represented by line D in the figure. The point X in the figure,

at which the Active Disk throughput exceeds the traditional server system is determined

by , so .

Figure 3-1 Performance model for an
application in an Active Disk system. The
diagram shows an abstract model of the
performance of an Active Disk system
compared to traditional single server system.
There are several regions of interest,
depending on the characteristics of the
application and the underlying system.

The raw media rate of the disks in both cases is
plotted as line A. The raw computation rate in
the Active Disk system is line B, which varies
with the cycles/byte cost of each application
and the power of the Active Disk processors.
Line C shows the saturation of the interconnect
between the Active Disks and host, which
varies with the selectivity of the application
and can easily be at 1000s of MB/s of
application-level throughput. Line D
represents the saturation of the server CPU or
interconnect in the traditional system, above
which no further gain is possible as additional
disks are added. This limit is often less than
100 MB/s in today’s large database systems.
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To the left of point Y, the traditional system is disk-bound.
Below the crossover point X, the Active Disk system is slower
than the server system due to its less powerful CPU. Above
point Z, even the Active Disk system is network-bottlenecked
and no further improvement is possible.
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Combining all of the above analysis and defining speedup as Active Disk through-

put over server throughput, we find that for , the traditional server is faster and at

the other points in the chart, the speedup is:

which should hold for at least the first generation of Active Disks.

Considering for a moment the “slowdown” due to using Active Disks when 

(the area to the left of point X in the figure), we see that this condition is independent of

the application parameters, so a query optimizer or runtime system can determine a priori

when to prefer traditional execution of the scan for a particular system configuration,

rather than executing at the drives. This parameter will be determined at the time the sys-

tem is built, and would only vary across different applications if the declustering of differ-

ent objects in the system were allowed to vary.

The charts in Figure 3-2 show concrete numbers for a number of real systems and a

particular set of application parameters. The chart shows the performance of two of the

large database systems from the previous chapter. The Compaq ProLiant system is a

TPC-C benchmark system designed for a transaction processing workload [TPC98b]. The

top charts show the performance of this system on a Data Mining application representa-

tive of the ones discussed in the next chapter. The first chart compares the predicted per-

formance of the server system and a hypothetical system that could take advantage of the

processing power already available on today’s disk drives. The chart assumes a disk pro-

cessor of 25 MHz ( ), a raw disk rate of 15 MB/s ( ), and a computation

requirement of 10 cycles/byte ( ) for the Data Mining application. The server con-

tains four 400 MHz processors ( ) and a total of 141 disk drives ( ). We see
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that with less than 64 disks, the server system is faster than the system that allows on-disk

processing, but that when all 141 disks are used, performance when using the on-disk pro-

cessing is about 2.5 times that of running the computation at the host. The chart on the

right extends this comparison to a next generation system with Active Disks of the power

suggested in the previous chapter ( ). In this case, as soon as there are ten disks in

the system, the combined processing power of the disks exceeds the host. When using all

141 disks, the Active Disk system exceeds the performance of the traditional system by

close to a factor of 15.

The lower charts show the same comparison using the details of the Microsoft Ter-

raServer system described in the previous chapter. It contains eight 440 MHz processors

( ) and a total of 324 disk drives ( ). Using the hypothetical system with

today’s disk drives, we see that with less than about 140 disks, the server system is again

faster than the system that allows on-disk processing. When all 324 disks are used, the

system with on-disk processing is again more than twice as fast as the server system. The

chart on the right again extends this comparison to a next generation system and shows

Figure 3-2 Predicted performance of several real systems. The charts show the performance predicted by the
model for two of the large database systems introduced at the beginning of the previous chapter. The application
shown for Data Mining is an average-cost function from those described in the next chapter and has a computation
requirement of 10 cycles/byte. The Image Processing application is similar to those discussed in the next chapter
and has a computation requirement of 300 cycles/byte. Note that with a cycles/byte of 10 on a 200 MHz disk
processor and a 15 MB/s disk, the next generation Data Mining system is disk-bound, while the Image Processing
at 300 cycles/byte is CPU-bound in both cases, as is the ProLiant system in both cases.
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that as soon as there are about 20 disks in the system, the combined power of the Active

Disks exceeds the host. At 324 disks, the Active Disk system is almost 20 times faster than

the traditional system. This clearly demonstrates the potential of Active Disks in large sys-

tems, even with relatively low-powered Active Disks.

3.1.3 Trends

Taking a look at Figure 3-1 and considering the prevailing technology trends, we

know that the processor performance (line B) improves by 60% per year and disk band-

width (line A) by 20% to 40% per year [Grochowski96]. This will cause the ratio of pro-

cessing power to disk bandwidth in both systems to increase by 15% per year. This will

continue to narrow the gap between line A and B and bring the performance of Active

Disks closer to the maximum possible storage bandwidth (the raw disk limitation) as the

processing power available on the disks catches up to the raw disk bandwidth. This means

that more and more applications, with higher cycles/byte, can be supported effectively.

3.1.4 Application Properties

The basic characteristics of an application that determine its performance in an

Active Disk system is the cycles per byte cost of its basic computation and the selectivity

of its processing. A secondary parameter is the memory requirements of the computation,

although we will see that this can often be folded into a change in the selectivity, with

proper partitioning and choice of the algorithms. Table 3-1 shows the values for several of

the applications discussed in the next chapter. The Throughput column shows the maxi-

mum possible throughput of the application based on the cycles per byte in the Computa-

tion column and assuming a 133 MHz Active Disk processor. In the cases where this

throughput is higher than the raw bandwidth of the disk, the performance will be disk-lim-

ited. If this throughput is lower than the disk bandwidth, then the performance is com-

pute-limited at the drives, although it may still be network limited at the server. The

Bandwidth column shows the bandwidth required per Active Disk assuming a 10 MB/s

raw disk bandwidth, the computation rate shown in the Throughput column and the selec-

tivity factor given in the Selectivity column. As we will see in Chapter 5, an Active Disk

system with sufficient parallelism can outperform a server system even if the drive proces-

Application Input
Computation

(instr/byte)
Throughput

(MB/s)
Memory 

(KB)
Selectivity

(factor)
Bandwidth

(KB/s)

Select m=1% 7 28.6 - 100 290

Search k=10 7 28.6 72 80,500 0.4

Frequent Sets s=0.25% 16 12.5 620 15,000 0.8

Edge Detection t=75 303 0.67 1776 110 6.1

Image Registration - 4740 0.04 672 180 0.2

Table 3-1 Costs of the applications presented in the text. Computation time per byte of data, memory
required at each Active Disk, and the selectivity factor in the network. The parameter values are variable
inputs to each of the applications.
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sors cannot keep up with the raw disk bandwidth. This is not the most efficient regime for

the disks, but still provides better overall performance than the server system with its more

limited aggregate computational resources.

We see that the data mining operations have very low cycle per byte costs and high

selectivities. The multimedia applications are significantly more costly in cycles, lowering

the aggregate throughput possible with these applications. The details of these costs and

how they might vary across applications, or across data sets, are discussed further in the

next chapter. This table only outlines the basic parameters to provide a level set of the val-

ues expected in practice.

3.1.5 System Properties

The basic properties of the system include the raw disk data rate of the Active Disks,

the processing power of the individual Active Disks, the processing power of the host to

which they are attached, and the network speeds between the disks and the host. Table 3-2

shows the system parameters used in the model and gives realistic values for what is avail-

able in current generation systems, the details of what the prototype system in the follow-

ing chapters has, and what is expected for next generation systems.

3.2 Bottlenecks

Depending on the characteristics of the application, there are three areas where a

system might become bottlenecked. The throughput of the disks, the network, or the pro-

cessing elements may all be the limiting factor in overall performance. Active Disks

address each of these areas.

Parameter Symbol Today Prototype
Next 

Generation

host processor 500 MHz 500 MHz 750 MHz

disk processor 25 MHz 133 MHz 200 MHz

disk rate 10.0 MB/s 11.0 MB/s 20.0 MB/s

network rate 40.0 MB/s 45.0 MB/s 200.0 MB/s

active disk rate - 7.5 MB/s 20.0 MB/s

active net rate - 12.0 MB/s 100.0 MB/s

scpu

scpu’

rd

rn

rd’

rd’

Table 3-2 System parameters in today’s, tomorrow’s, and the prototype system. The chart shows the setting of
the system parameters in the prototype, as well as for a typical system in use today and a prediction for the first
generation of Active Disk sytems. Today’s system assumes a SCSI disk drive of average performance and two
Ultra Wide SCSI adapters at the host (20.0 MB/s each). The next generation system assumes a first generation
Active Disk with 200 MHz of processing and a Fibre Channel storage interconnect. The host again has two Fibre
Channel adapters (100.0 MB/s each). Values for today’s and the next generation system are rated maximums,
while the values for the prototype are measured achievable maximums.
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3.2.1 Disk Bandwidth

In an application with a low cycle per byte cost, the overall throughput is indeed

limited by the throughput of the underlying disks. This is true in both the Active Disk and

server case, as shown in Figure 3-1. In a sense, this is the best possible situation for a stor-

age system. If the raw disk bandwidth (i.e. physical performance of the disk assembly and

density of the media) is the limiting performance factor, this means the disk is essentially

operating at maximum efficiency. In the limit, it is simply not possible to process data

faster than the disk media can provide it.

In this case, the benefit of Active Disks is in providing the possibility of better

scheduling of requests before they go to the disk internals, to make more efficient use of

the underlying bandwidth. With additional higher-level knowledge [Patterson95,

Mowry96], overall throughput of the disk can be increased. The work of Worthington and

Ganger [Worthington94] shows that with more sophisticated scheduling, the performance

for random requests can be increased by up to 20%. These types of benefits will be less

dramatic for large, sequential requests, which already use the disk very efficiently. There

may be a benefit with the use of extended interfaces that allow more flexible reordering of

requests. One possible way to take advantage of this is by allowing a “background” work-

load that can take advantage of idleness in a “foreground” workload to opportunistically

improve its performance, as illustrated in Section 5.4.

The far bigger effect on disk throughput comes from the addition of extra disks

across which data is partitioned. If the data rates of particular applications are known, then

disks can be added to provide the appropriate level of performance [Golding95]. Active

Disks will not help this directly, but will allow more efficient use of the disk resources that

are available. Active Disks can also aid in the collection of statistics and performance met-

rics of individual devices and workloads. This information can then be used by a

higher-level management system to optimize the layout and placement of the workload

[Borowsky96, Borowsky98]. This makes possible systems with a much greater amount of

self-tuning and self-management that typical storage systems today. In order to scalably

perform such monitoring and control, it is necessary to have control and computation at

the end devices, rather than attempting to monitor everything centrally.

3.2.2 Processing

An application that is limited by the CPU processing rate, such as the multimedia

applications discussed in the next chapter, benefits from the inherent parallelism in the

Active Disk system. Where the server is limited by it’s single CPU, the processing power

of the Active Disks scales with the number of disks available.

Of course, it is also possible to add additional processing capability to a server sys-

tem, for example by using an SMP architecture rather than a single-processor machine.

This is not precluded by an Active Disk system, nor does it change the basic model. This

simply replaces the processing rate ( ) with a higher value. For example, Figure 3-3scpu
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shows the expected performance if the number of processors in an SMP is scaled as addi-

tional disks are added. The chart considers the details of the AlphaServer 8400 system

from the previous chapter, and assumes that the number of disks is balanced with the num-

ber of processors in that system, i.e. both increase linearly. One processor is added for

approximately every 45 disks. This shows a step function in the host processing power,

with a large boost whenever another processor is added. This still does not scale nearly as

far as the Active Disk system at the high end, because there are still many more disks and

processors. The chart assumes the comparison in today’s system, using the 25 MHz value

for on-disk processing power. The benefit would be even greater with the 200 MHz

on-disk processors. The line for Active Disks is much smoother because processing power

is added in much smaller increments - for each 4 GB of additional storage, another

25 MHz of processing power is added.

Also note the much bigger performance gap at the very high end. It is simply not

possible to add processors beyond twelve in this AlphaServer system, which is still one of

the largest SMP systems available. This is true in most SMP systems sold today. This lim-

itation comes primarily from physical limitations of building a system of that size, includ-

ing the basic speed of the memory bus connecting all the processors and the single shared

memory. The Active Disk system, on the other hand, will continue to scale as additional

disks are added (to over 10,000 disks for this particular application, at which point the sys-

tem is network bottlenecked).

3.2.3 Interconnect

Applications that are network-limited benefit from the filtering of Active Disks

(leaving data on the disks, if it doesn’t have to move) and the scheduling that can be done

with intelligence at the edges of the network. In a traditional disk system, a set of bytes

must be moved from the disk, across the interconnect, and through the host memory sys-

Figure 3-3 Performance of an SMP system. The chart shows the performance of a multi-processor system as
processors and disks are added. We see a coarse step function as additional processors are added, but a much
smoother increase with additional Active Disks. This is the model prediction for the AlphaServer 8400 system
introduced in the previous chapter. The application parameters assume an average-cost Data Mining
application with a computation requirement of 10 cycles/byte. The disks have 25 MHz processors and the host
has up to twelve 612 MHz processors. Note that the Active Disk system would continue to scale as additional
disks are added, while the SMP system cannot support more than 12 processors.
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tem before the CPU can operate on it and make a decision (e.g. “take or leave”, “where to

route”). In an Active Disk, these decisions can be offloaded to the devices and bytes will

never have to leave the device if they will not be used in further processing.

Additional pressure is placed on storage interconnects by the introduction of Storage

Area Networks (SANs) and the increased sharing demanded by today’s applications and

customers [Locke98].

The data in Table 3-3 shows the interconnect limitations in a number of today’s

TPC-D systems. The table lists the theoretical and the actual throughput of delivering data

to the processors in these large SMP systems. The throughput values are obtained by using

the time to complete Query 6 in the benchmark, which must sequentially scan 1/7 of the

lineitem table, and uses very little cycles/byte (so it should be interconnect limited in all

cases).

3.3 Amdahl’s Law

The model presented above assumes that computation, network transfer, and disk

access can be completely overlapped. This ignores Amdahl’s Law, which can be expressed

using the parameters of the model as:

where p is the parallel fraction of the computation, the portion that can be performed in 

parallel at the Active Disks. This equation also assumes that CPU processing is the bottle-

neck, although a similar calculation would apply for an interconnect bottleneck as well.

We see that even if there is no parallel fraction ( ), the system with Active Disks

is never slower than the system without. On the other hand, for applications such as the

example Data Mining application shown for the AlphaServer 8400 system in the previous

System Disks SCSI PCI Actual (Q6)

AlphaServer 8400 5,210 MB/s 120x20=2,400 MB/s 266x3=798 MB/s 446 MB/s

AlphaServer GS140 5,640 MB/s 96x40=3,840 MB/s 12x266=3,192 MB/s 684 MB/s

Sun Enterprise 4500 990 MB/s 6x100=600 MB/s 2x1000=2,000 MB/s 180 MB/s

Table 3-3 Interconnect limitations in today’s database systems. The table shows the theoretical and achieved
bandwidth of a number of large database systems executing the TPC-D decision support benchmark. Query 6 is a
simple aggregation, so the primary cost should be the reading of the data from disk. The query is a scan based on
the shipdate attribute in the table. All of the system use a layout that range-partitions the table based on shipdate.
This optimizes performance for this particular scan on shipdate, but would be useless for another query that used
orderdata, for example. It does provide a surrogate for determining the raw disk performance possible with the
system.
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section, the parallel fraction is close to 100% ( ), meaning a speedup of 1.75, close

to twice as fast even with the low processing power of today’s disks. With next generation

Active Disks at 200 MHz, the ratio would be 13.9. Even if the parallel fraction were only

50% ( ), the speedup would still be 7.6.

We see that the non-parallel fraction of a computation will definitely affect an appli-

cation’s performance in an Active Disk system, but if we view the Active Disks as simply

an “accelerator” on the host system, overall system performance will never be worse with

Active Disks than without, while in many cases it will be many times better.

3.3.1 Startup Overhead

The serial fraction of the computation ( ) can be an inherent property of the com-

putation, but it may be due simply to the overhead of starting up the parallel computation

at the disks. The Validation section in Chapter 5 discusses the startup overheads seen in

the prototype system and their impact on performance. In general, this will be the time to

send the necessary code to the drives, initialize the execution environment on each disk,

and begin execution on a particular data object or set of objects. In applications that oper-

ate on very small data sets spread across a large number of disks, this could become a sig-

nificant fraction of the overall execution time. However, given the applications and data

sizes discussed in the previous chapter and the prototype applications illustrated in the

next chapter, this overhead should easily be overcome by the amount of data being pro-

cessed, resulting in a very low serial fraction and good speedups. In addition, many of the

factors that contribute to the startup overhead will be static properties of the application or

the Active Disk system, meaning that a query optimizer or runtime system could take this

overhead into account and not initiate an Active Disk computation if it would be over-

head-dominated. It could them proceed simply with the host processor and not take advan-

tage of the extra power available at the drives.

3.3.2 Phases of Computation

The final property of an application that will work against the fully overlapped

assumption of the model is synchronization between different phases of a computation.

For example, the frequent sets application discussed in the next chapter proceeds in sev-

eral stages and requires synchronization among all the disks and the host at the end of each

stage, as illustrated in Figure 3-4. In this computation, the host sets the initial parameters

for the computation and starts parallel execution at the disks. The disks then perform their

computation locally and determine the results for their own data. These results are passed

to the host and combined for the start of the second phase. This process is repeated

through several more phases, until the host determines that the results obtained are com-

plete and computation ends.

This type of synchronization among processors operating in parallel is the bane of

all parallel programmers and system designers. There are several reasons to believe that

this effect will be less severe in the case of Active Disk computations than in general par-

p 0.98=

p 0.50=

1 p–
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allel programs. For one, the types of computations performed at the Active Disks will usu-

ally be data parallel, since the basic point of executing function at the disks is to move

function and processing power where the data is - and distribute it in the same way that

data is distributed. In addition, the disks will be largely homogeneous, eliminating some of

the imbalances seen in general parallel systems.

In a sense, one of the degrees of freedom available in a general parallel program-

ming system - the ability to move data to the place where there are available computing

resources - is removed with Active Disks. The most successful Active Disk applications

will operate on the data at the disk where it already resides. By computing on the data

before it is placed on the network, Active Disks eliminates one of the phases of parallel

computation that proceeds in three steps:

1) read data into the memories of the processing elements (whether into 

distributed memories or into a single, shared memory)

2) rearrange the data to the most appropriate node for processing, and

3) perform the processing

With perhaps a fourth phase:

4) rebalance the data (and work) among the processors

This process is simplified for Active Disks because the basic tenet is to compute on the 

data where it is stored, and then send it onto the network. The most effective Active Disks 

applications will perform the largest portion of their processing on the disks, before data is 

ever put onto the network. This does not mean that it is not possible to move data among 

computation elements, but it does lead to a different cost/benefit tradeoff for doing such a 

move, when compared to a traditional parallel processing system. More details on this, 

Figure 3-4 Synchronization in a multiple phase computation. The diagram shows several stages of the
frequent sets application introduced in the next chapter. The host initiates the computation at all the disks,
the disks proceed in parallel computing their local results. The results are then gathered at the host which
combines the individual disk results and prepares the parameters for the second phase. This continues
through several phases, requiring synchronization among all the drives and the host at the end of each.
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and a further discussion of the differences between Active Disks and general parallel pro-

gramming are provided in Chapter 7.

3.4 Modified Model

Combining the discussion of the previous sections with the original performance

model, gives a modified model that takes into account both Amdahl’s Law and multi-

ple-phase computations.

From before, we have:

(1)

which applies for the parallel portion of the computation, with the assumption of a 100% 

parallel fraction ( ). If we now add a serial fraction as:

(2)

then we have an equation that holds for an arbitrary computation step and takes into 

account any startup overhead and any computation that cannot be performed in parallel as 

the serial fraction ( ).

If we then also take into account multiple phases of computation, each of which is

subject to the same equation, we have:

(3)

as the time for the entire application, which gives the throughput of the Active Disk sys-

tem as:

(4)

for the total amount of data processed.
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For an application with only a single phase, this simplifies to:

(5)

where we still see the basic benefit of Active Disks. If the serial fraction is sufficiently 

small, then the terms on the right will scale linearly with the number of disks until it 

becomes network bottlenecked (the  term) at some point.

As a modification to the original model, this means that the Active Disk line in

Figure 3-1 will have a lower slope than the linear scaling shown there, with the amount of

reduction proportional to the size of the serial fraction.
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Chapter 4: Applications and Algorithms

This chapter describes a number of data-intensive database, data mining, and multi-

media applications and details the changes required for them to efficiently leverage an

Active Disk system. It discusses the partitioning of function between the host and the

Active Disks for standalone applications from data mining and multimedia, and for all the

core functions of a relational database systems. The chapter introduces the structure of

these applications, and the following chapter presents the measured performance of these

applications in a traditional system, and in an Active Disk system.

4.1 Scans

The most compelling applications for Active Disks are the “embarrassingly paral-

lel” scan operations that can be easily split among a set of drives and that perform highly

selective processing before the data is placed on the interconnection network.

The basic processing in an Active Disk system compared to a traditional host-based

system is illustrated in Figure 4-1. Instead of running all application processing at the host,

and forcing all the raw data to move from the disk drives, through the storage intercon-

nect, and to the host before processing, Active Disk applications execute on both the host

and the disks. The “core” portion of the applications’ data-intensive processing is

extracted and executed in parallel across all the disks in the system. The diagram in

Figure 4-1 shows the Active Disks as an extension of NASD (Network-Attached Secure

Disks), which means they are network-attached, present an object- instead of a block-level

interface, and contain provisions for a robust security system enforced directly at the

drives. These three characteristics are not strictly necessary for Active Disks, one could

imagine providing execution functionality in more traditional SCSI disks, but there are

several advantages, discussed in Section 2.3.1 and Section 6.2.1 to building on the NASD

model. The addition required for Active Disks, then, is the presence of an execution envi-

ronment that can run portions of the applications’ code - these are the “bright ideas”

(application-level execution) in the diagram.

The second basic type of Active Disk application applies a filter to data as it moves

from the disk to the host. This both reduces the amount of data on the interconnect, and

offloads the host processor. The simplest example of this is a database select operation,
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which will be discussed in detail in the Database section below. The individual disks can

apply the filter to their local data pages, and return only the records that match a given

condition. Similar applications are also possible in the area of multimedia, where image

processing algorithms can be performed directly at the disks, before data is transferred to

the host.

4.1.1 Data Mining - Nearest Neighbor Search

The first data mining application examined is a variation on a standard database

search that determines the k items in a database of attributes that are closest to a particular

input item. This is used for queries that wish to find records in a database that are most

similar to a particular, desirable record. For example, in a profile of risk for loan applica-

tions there are a number of determining factors and the desire is to be “close” on as many

of them as possible. Someone who is close in age may be far in terms of salary, or level of

education, and so on. This means that the “nearest neighbor” when all the attributes are

considered together, will be the best match. This also means that standard indexing tech-
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Figure 4-1 Architecture of an Active Disk system vs. a traditional server. The top diagram shows a traditional
server system with directly-attached SCSI disks. The lower picture shows an Active Disk system using network-
attached disks, and including the object interface and security system at the drives.
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niques, that allow access to records based on a small subset of the “key” attributes, are not

sufficient, all attributes in the record must be considered.

The nearest neighbor application uses synthetic data created by a program from the

Quest data mining group at IBM Almaden [Quest97] that contains records of individuals

applying for loans and includes information on nine independent attributes: <age>, <edu-
cation>, <salary>, <commission>, <zip code>, <make of car>, <cost of house>,

<loan amount>, and <years owned>. In searches such as this across a large number of

attributes, it has been shown that a scan of the entire database is as efficient as building

extensive indices [Berchtold97, Berchtold98]. Therefore, an Active Disk scan using the

“brute force” approach is appropriate. The user provides a target record as input and the

application processes records from the database, always keeping a list of the k closest

matches so far and adding the current record to the list if it is closer than any already in the

list. Distance, for the purpose of comparison, is the sum of the simple cartesian distance

across the range of each attribute. For categorical attributes the Hamming distance

between two values is used: a distance of 0.0 is assigned if the values match exactly, oth-

erwise 1.0 is assigned.

For the Active Disk system, each disk contains an integral number of records and

the comparisons are performed directly at the drives. The host sends the target record to

each of the disks which determine the k closest records in their portions of the database.

These lists are returned to the server which combines them to determine the overall k clos-

est records. Because the application reduces the records in a database of arbitrary size to a

constant-sized list of k records, the selectivity as defined in the previous chapter is arbi-

trarily large. The memory state required at each disk is simply the storage for the current

list of k closest records.

4.1.2 Data Mining - Frequent Sets

The second data mining application is an implementation of the Apriori algorithm

for discovering association rules in sales transactions [Agrawal95]. Again, synthetic data

is generated using a tool from the Quest group to create databases containing transactions

from hypothetical point-of-sale information. Each record contains a <transaction id>, a

<customer id>, and a list of <items> purchased. The purpose of the application is to extract

rules of the form “if a customer purchases items A and B, then they are also likely to pur-

chase item X” which can be used for store layout or inventory decisions. This is a popular

type of analysis in retail settings where “baskets” of a particular purchase give clues to

what types of items people purchase together on a particular trip to the store. One of the

more famous results from this type of analysis is a basket that included diapers and beer

and was attributed to young fathers sent to the grocery store on Sunday evenings.

The computation is done in several passes, first determining the items that occur

most often in the transactions (the 1-itemsets) and then using this information to generate

pairs of items that occur often (2-itemsets) and then larger groupings (k-itemsets). The

threshold of “often” is called the support for a particular itemset and is an input parameter
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to the application (e.g. requiring support of 1% for a rule means that 1% of the transac-

tions in the database contain a particular itemset). Itemsets are determined by successive

scans over the data, at each phase using the result of the k-itemset counts to create a list of

candidate (k+1)-itemsets, until there are no k-itemsets above the desired support.

In the Active Disks system, the counting portion of each phase is performed directly

at the drives. The host produces the list of candidate k-itemsets and provides this list to

each of the disks. Each disk counts its portion of the transactions locally, and returns the

local counts to the host. The host then combines these counts and produces a list of candi-

date (k+1)-itemsets that are sent back to the disks. The application reduces the arbitrarily

large number of transactions in a database into a single, variably-sized set of summary sta-

tistics - the itemset counts - that can be used to determine relationships in the database.

The memory state required at the disk is the storage for the candidate k-itemsets and their

counts at each stage.

There can be significant variation in the size of these counts, determined largely by

the value of the support parameter. The chart in Figure 4-2 shows the memory require-

ments across a range of support values on two different databases. The lower a support

value, the more potential itemsets are generated in successive phases of the algorithm and

the larger the state that must be held on each disk. In normal use, the support value will

tend toward the higher values since it is difficult for a human analyst to deal with the large

number of rules generated with a low support value, and because the lower the support,

the less compelling the generated rules will be in terms of their relative frequency and

overall relevance for decision-making. For very low support values, however, limited

memory at the Active Disks may become an issue.

4.1.3 Data Mining - Classification

The use of data mining for classification to elicit patterns from large databases is

becoming popular over a wide range of application domains and datasets [Fayyad98,

Chaudhuri97, Widom95]. Many data mining operations including nearest neighbor

search, association rules, ratio and singular value decomposition [Korn98], and clustering

[Zhang97, Guha98] eventually translate into a few large sequential scans of the entire
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data. These algorithms can be mapped to Active Disks in much the same way as the near-

est neighbor search and association rules described above, with the basic computation

“core” operating directly at the drives and only final results being combined at the host.

This could also be generalized to a particular set of primitives that might provide, for

example, a mechanism to evaluate a neural network, specified in some standard way,

across all the items in a data set in parallel.

4.1.4 Multimedia - Edge Detection

The first multimedia application is an image processing algorithm, specifically an

application that detects the edges or corners of “objects” in a scene [Smith95]. The appli-

cation processes a database of 256 KB grayscale images and returns the edges found in the

data using a fixed 37 pixel mask. A sample image is shown in Figure 4-3 with the original

image on the left and the extracted edges on the right. This models a class of image pro-

cessing applications where only a particular set of features (e.g. the edges of “objects”) is

important, rather than the entire image. This includes any tracking, feature extraction, or

positioning application that operates on only a small subset of derived attributes extracted

from the original image. These attributes may include features such as detected edges,

objects or color vectors. When used with Active Disks, the processing at the host can

make use of the edges directly, rather than having to perform the expensive feature extrac-

tion algorithms on the raw image. The expensive pre-processing is done at the drives, and

the host can operate on the coordinates of the objects directly.

Using the Active Disk system, edge detection for each image is performed directly

at the drives and only the edges are returned to the central server. A request for the raw

image in Figure 4-3 returns only the data on the right, which can be represented much

more compactly as a simple list of coordinates. The amount of data transferred is reduced

by a factor of almost 30, from 256 KB for the image to 9 KB for the edges in the sample

image. The memory state required on each drive is enough memory for a single image that

must be buffered and processed as a whole.

Figure 4-3 Edge detection in a scene outside the IBM Almaden Research Center. On the left is the raw
image and on the right are the edges detected with a brightness threshold of 75. The data is a set of
snapshots from IBM Almaden’s CattleCam [Almaden97] and the application attempts to detect cows in the
landscape above San Jose. 
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4.1.5 Multimedia - Image Registration

The second image processing application examined performs the image registration

portion in the processing of an MRI brain scan [Welling98]. Image registration determines

a set of parameters necessary to register (rotate and translate) an image with respect to a

reference image in order to compensate for movement of the subject during the scanning.

The application processes a database of 384 KB images and returns a set of registration

parameters for each image. This application is the most computationally intensive of the

ones studied here. The algorithm performs a Fast Fourier Transform (FFT), determines the

parameters in Fourier space and computes an inverse-FFT on the resulting parameters. In

addition to higher total computation, the algorithm may also require a variable amount of

computation, depending on the image being processed, since it is solving an optimization

problem using a variable number of iterations to converge to the correct parameters. This

means that, unlike the applications discussed so far, the per byte cost of this algorithm var-

ies significantly with the data being processed.

For the Active Disk system, this application operates similarly to the edge detection.

The reference image is provided to all the drives and the registration computation for each

processed image is performed directly at the drives with only the extracted parameters

(about 1500 bytes for each image) returned to the host. The application reduces the

amount of data transferred to the server by a large, fixed fraction as shown in the table.

The memory state required at each drive is the storage for the reference image being com-

pared and for the entire image currrently being processed.
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4.2 Sorting

There are many reasons for sorting a set of records, and sort is a popular system

benchmark. Sorting is most often done in the context of database systems, where it is usu-

ally combined with another operation, as discussed in the next sections. First, the basics of

sorting in an Active Disk system.

There are several ways to partition a sorting algorithm on Active Disks, depending

on the available functionality at the disks. The primary resource constraints for sorting are

the disk bandwidth (each item of data has to be read and written at least once), network

bandwidth (how often the data must move between the source disks, the host, and the des-

tination disks on the interconnect), and memory size (which determines how large individ-

ual runs in a multiple-pass sort will be). As we will see, the main determinant of

performance for large data sets turns out to be the interconnect bottleneck.

4.2.1 Merge Sort

The most common method for out-of-core sorting is Merge Sort [Knuth79,

vonNeumann63] which performs a sequence of in-memory sorts on small subsets of the

data, followed by a series of merge phases that combine the sorted subsets until the entire

dataset is in order. In a normal merge sort, a host performs the following series of steps:

Host Parameters

Active Disk Parameters

M memory size of the host=

rd disk raw read rate=

rw disk raw write rate=

scpu CPU speed of the host=

rn host network rate=

Data Parameters

S size of relation S (pages)=

kbytes size of key (bytes)=

ibytes size of tuple (bytes)=

pbytes size of page (bytes)=

ptuples size of page (tuples)=

m memory size of the disk=

scpu’ CPU speed of the disk=

rn’ active disk network rate =

ra aggregate network fabric rate =

wsort cycles per byte of sorting=

wmerge cycles per byte of merging=

Application Parameters
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This algorithm requires four complete transfers of the data set across the network, in steps

B, D, G, and I1 and two complete reads and writes of the data to and from disk (with data

of size M that can be retained in the memory between phases and must not be re-written or

re-read).2

In an Active Disk algorithm, we save two of these transfers by having each drive

perform the sorting of its own data locally, and performing only the final merge step at the

host. Instead of providing the raw data to the host, the drives provide already sorted runs

that must simply be merged by the host. This leads to a modified algorithm as follows:

Sort Phase Transfer

A read data from disk -

B transfer data across network to host disk -> host

C sort and create sorted runs -

D transfer sorted runs across network to disks host -> disk

E write sorted runs back to disk, average run length of 2Ma

a. assuming replacement selection is used as the local sort algorithm, this would be only M if quicksort is used, the dif-
ference between these two local sorting algorithms are discussed in Section 4.2.3.

-

Merge Phase Transfer

F read sorted runs from disk, save M data still in memory -

G transfer data across network to host, save M data still in memory disk -> host

H merge sorted runs -

I transfer merged data across network to disks host -> disk

J write merged data back to disk -

1. in practice, 2M bytes (minus a bit required for the merge buffers) of this traffic can be saved by retaining as much 
data from the last run as will fit before starting the merge, this saves M bytes of write and re-reading. The equations 
that follow will assume this optimization.

2. note that this is not the fully general algorithm for MergeSort. If the data size is sufficiently large, or the number of 
buffers available for merging is sufficiently small, then multiple merge phases will be required to generate the final 

sorted output. The number of merge phases required is  where  is the size of the data in pages and  

is the number of buffers available for merging [Ramakrishnan98]. This means that in a system with 1 GB of memory 
(131,072 pages of 8 KB each), the data would have to be larger than 128 TB before a second merge phase is required. 

In order to keep the formulas readable, this analysis assumes that the data is smaller than this or that  is sufficiently 

large to require only a single merge phase.

N B⁄( )B 1–log N B

M
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We now have only two complete network transfers at G and I and we have taken

advantage of the ability of the disks to compute locally. In a network-limited system, this

saves half the traffic on the network and will reduce the runtime of the sort by nearly one

half.

The performance of these two methods can be modeled by a simple set of equations

using the parameters listed above. Starting as follows:

where the time for the first half of the Sort Phase is the largest of three parts, the time to 

read the data off the disks, the time to transfer it to the host, and the time to sort all the 

tuples at the host, then:

to transfer the data back to the drives in runs (except for one memory-full which is 

retained at the host), and to write it back to the disks, then the Merge Phase in two steps:

Sort Phase (Active Disks) Transfer

A read data from disk -

C1 sort and create sorted runs locally -

C2 write sorted runs back to disk, average run length of 2m -

C3 read sorted runs from disk -

C4 merge locally -

E write merged runs back to diska, average run length of |S|/n

a. note that this leads to a different number of runs than the host-based algorithm. The primary effect of this is the 
amount of memory required at the host for merging. If enough memory is available, it is possible to make step C2 be 
step E and drop steps C3 and C4 altogether. This will lead to average runs of length 2m instead of |S|/n.

-

Merge Phase (Active Disks) Transfer

F read sorted runs from disk -

G transfer data across network to host disk -> host

H merge sorted runs -

I transfer merged data across network to disks host -> disks

J write merged data back to disk -

tread sort+ max
S

d rd⋅
------------

S

rn

----------
S ptuples wsort⋅ ⋅

scpu

----------------------------------------------, ,
 
 
 

=

twrite runs+ max
S M–

rn

---------------------
S M–

d rw⋅
---------------------, 

 =
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to read the runs back from the disks (except for the memory-full which we kept at the 

host), transfer them to the host, and merge them into the final output, and finally:

to transfer the final output back to the drives, and write the sorted output back to the disks. 

This gives an overall time of:

and a throughput of:

for the traditional server.

For the Active Disk system, we have a similar set of equations as:

to read the local part of the data at each drive, and sort it (note that there is no network 

transfer in the Sort Phase), then:

to write the sorted runs back to the disk, then:

to read the runs back off the disk, merge them locally (using the drive CPU), transfer the 

merged runs to the host, and merge the runs from all the drives at the host (using the host 

CPU), and finally:

to transfer the data back across the network to the drives, and write the final output, which 

gives an overall time of:

and a throughput of:

tread merge+ max
S M–

d rd⋅
---------------------

S M–

rn

---------------------
S ptuples wmerge⋅ ⋅

scpu

---------------------------------------------------, ,
 
 
 

=

twrite max
S

rn

----------
S

d rw⋅
-------------, 

 =

t tread sort+ twrite runs+ tread merge+ twrite+ + +=

throughput
S pbytes⋅

t
----------------------------=

tread sort+ max
S d⁄( )
rd

----------------------
S d⁄( ) ptuples wsort⋅ ⋅

scpu’
----------------------------------------------------------,

 
 
 

=

twrite runs+

S d⁄( ) m–

rw

--------------------------------=

tread merge+ max
S d⁄( ) m–

rd

--------------------------------
S d⁄( ) ptuples wmerge⋅ ⋅

scpu’
---------------------------------------------------------------

S

rn

----------
S ptuples wmerge⋅ ⋅

scpu

---------------------------------------------------, , ,
 
 
 

=

twrite max
S

rn

----------
S d⁄( )
rw

----------------------, 
 =

tactive tread sort+ twrite runs+ tread merge+ twrite+ + +=
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and captures the more efficient processing at the disks.

In terms of the equations of Chapter 3, this is a two-phase computation, with

 as the first phase, followed by a synchronization point where all the

drives must catch up, followed by  as the second phase. As described here,

the sort phase has virtually no serial fractions, so  for the sort phase. For the merge

phase, the serial fraction is the portion of  that is bottlenecked on the merging of

runs in the CPU of the host, and may be a significant factor, depending on the relative per-

formance of the CPU and network.

Figure 4-4 shows the performance of merge sort on a large data set using a tradi-

tional server system and a system with an equivalent number of Active Disks. We see that

up to a certain number of disks, performance is disk-bound, so the Active Disk system has

no advantage. It is not until the traditional server hits its network bottleneck that the

Active Disk system begins to outperform the server, scaling linearly as additional disks

are added.

4.2.2 Key Sort

A further extension that uses the ability to compute at the disks is to perform the sort

using only the keys and introduce a “shuffling” phase once the keys are in sorted order. In

practice, most in-core sorting is done on keys only, rather than entire records, since keys

are usually small relative to whole records. If we apply this in an Active Disk system, we

can save several network transfers and one write of the entire data to disk by doing run

formation using only the keys, instead of the full records. This means that, in the host-

based algorithm shown above, we can reduce the amount of data transferred by moving

throughputactive

S pbytes⋅

tactive

----------------------------=

tread sort+ twrite runs++

tread merge+ twrite+

p 1.0=

tread merge+

Figure 4-4 Performance of sorting in Active Disk vs. a traditional server system. Results from analytic modeling
via the equations presented above. Parameters as detailed on the right. we see that with a small number of disks,
both system are disk-bound retrieving and writing data. Once sufficient disk bandwidth is available, the server
system next bottlenecks on it’s network link. Since it performs approximately four full transfers of the data on the
network, it bottlenecks at 133 MB/s / 4 transfers. Since the Active Disk system performs only two transfers, it will
plateau and finally bottleneck near 66 MB/s, but continues to scale until the disk bandwidth nears that point.

Parameter Host
Active Disk

(per disk)

Input Size 128 GB 128 GB

Number of Disks 64 64

Disk Read Rate 15 MB/s 15 MB/s

Disk Write Rate 10 MB/s 10 MB/s

CPU 500 MHz 25 MHz

CPUsort 15 cycles/tuple 15 cycles/tuple

CPUmerge 10 cycles/tuple 10 cycles/tuple

Memory 1 GB 8 MB

Network 133 MB/s agr 1000 MB/s
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only the keys in the initial Sort and Merge Phases, and moving the balance of the data only

in the Shuffle Phase, as follows:

Sort Phase (as above, but using only the keys, a data reduction of )

Merge Phase (as above, but using only keys)

This algorithm transfers all the data on the network only twice, in steps L and N and

requires only two reads and one write of the data. The (much smaller) keys are transferred

on the network five times, at steps B, D, G, I and L1.

This means the equations above can be modified as follows:

which captures the smaller amount of data to be sorted (although it must still all be read 

from the drives and sent to the host), then:

which transfers only the keys back to the drives in sorted runs, and writes only the keys 

back to the disks (note that this does require additional storage on disk for the keys, while 

the full-record sort could always re-use the space occupied by the unsorted records), then:

Shuffle Phase Transfer

K read data and keys from disk, save M keys still in memory -

L transfer data & keys across network to host, save M keys disk -> host

M shuffle data to the appropriate destination disk based on keys -

N transfer shuffled data across network to disks host -> disks

O write sorted data back to disk -

1. note that the fraction of keys that can be retained in the M memory at the host (and which must not be repeatedly 
transferred on the network) is significantly more than the amount of data that can be retained in the same memory. 
With even a reasonably small memory and small key sizes, it should easily be possible to avoid the Merge Phase for 
the key sorting altogether, although it would still be required in the Active Disk case.

kbytes ibytes⁄

tread sort+ max
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to read the sorted runs of keys and the records themselves back from the disks, transfer 

everything to the host, and merge the records into the final output, and finally:

which remains the same as before, to transfer the final sorted records back to the drives 

and write them to disk.

For the Active Disk system, the changes give:

to read the local part of the data at each drive, and sort it (again, only the keys need to be 

sorted, and since the computation is done locally, nothing needs to be transferred on the 

network), then:

to write the sorted runs back to the disk, then:

to read the runs from the disk, merge them locally, transfer the merged runs to the host, 

and merge the runs from all the drives at the host, and finally:

which remains the same as before, to write the final sorted output.

tread merge+ max

S S
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Furthermore, if the Active Disks provide a disk-to-disk transfer mechanism (without

host intervention on each transfer), then the shuffling of steps M and N can be performed

at the full cross-section bandwidth of the disk interconnect fabric, rather than at the (much

lower) rate of the network interface into the host.

In terms of the equations of Chapter 3, this is a three-phase computation, with sort as

the first phase, followed by a synchronization point where all the drives must catch up,

followed by merge. and then shuffle. As described, the sort phase again has virtually no

serial fractions, so . For the merge phase, the serial fraction is the portion of

 that is bottlenecked on the merging of runs in the CPU of the host as before, but

only for the merging of keys, which should be significantly less costly than the merging of

full records. When disk-to-disk transfer is used, the shuffle phase is also fully parallel,

with .

With a disk-to-disk transfer mechanism, this algorithm also outperforms the Active

Disk system in the simple Merge Sort because the full data must never pass through the

host (only the keys go to the host during the Key Merging phase). Without direct disk-to-

disk transfers, this algorithm will perform slightly worse than the simple Merge Sort

because of the extra transfers of all the keys on the network (since the data never left the

disks until the final merge phase, sending the keys to the host for merging and then the

entire data increases the total amount of data transferred1).

Figure 4-5 shows the performance of the key-only sorting algorithm, again compar-

ing the traditional server with an Active Disk system. We see that the throughput of both

the server and the Active Disk system increases in direct proportion to the reduction in

network traffic. The Active Disk system benefits more because it is able to perform the

initial “filtering” of keys directly at the disks, while the server system must first transfer

all the data to the host, at which point it can also drop everything except the keys for the

remainder of the sort and merge phases. The full power of Active Disks is shown in the

chart on the right of Figure 4-5, where we allow direct disk-to-disk data transfers. These

transfers proceed at the full aggregate bandwidth of the network fabric, rather than being

limited by the network interface into the host.

One variation on this basic algorithm that would be more efficient than the above

description is an algorithm where the initial Key Sort and Merge phases are replaced with

a Sampling phase that examines only a subset of the keys and makes a “guess” about the

expected distribution of the result data, instead of sorting the keys to determine the exact

distribution [Blelloch97]. This is the same as the Key Sort algorithm with Active Disks

except that only a subset (say 10%) of the keys are initially transferred to the host for sort-

ing and merging and only a listing of quantile boundaries must be returned to the disks

(rather than the entire, exact lists of keys). In this case, it would also be possible to move

1. unless the records in the final shuffle phase are sent without the key portion and are re-united with their keys before 
being written at the host, but this seems needlessly complex (and of low value for small keys).

p 1.0=

tread merge+

p 1.0=
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the local Sort phase to the end of the algorithm. The same Sort and Merge phases must still

be done locally, either at the source drive before the records as sent or at the destination

drive before they are written back to the disk.

This is essentially the algorithm proposed by the NowSort group at Berkeley

[Arpaci-Dusseau97] and will work well if the sample taken closely matches the final data

distribution1. Whatever mismatch occurs will require a final Fixup phase where drives

exchange “overflow” records with each other to rebalance the data.

To get an idea of the applicability of these optimizations, Table 4-1 shows the data

sizes for both normal and key-only sort using several queries from the TPC-D benchmark

[TPC98] and a data set from the Datamation sort benchmark [Gray97a]. We see signifi-

cant savings for the sorts within the database queries, and a factor of exactly ten for the

Datamation sort, which specifies 100 byte records and 10 byte keys.

1. the algorithm described in [Arpaci-Dusseau97] actually assumes a uniform key distribution, but they mention the 
need for a Sampling phase if the data is known to be non-uniform.
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Figure 4-5 Comparison of sorting in Active Disk vs. a
traditional system. The first chart compares the server
against the Active Disk system using the algorithm that
sorts the entire data set. We see that the Active Disk
system is comparable at low numbers of disks, and just
under twice as fast as the server system bottlenecks due to
the additional network transfers. The second chart shows
the simple key-only sorting. The basic key-only sort
improves performance by 10-15% in both the Active Disk
and traditional case. But the real benefit of Active Disks
can be seen in the chart on the right, which allows direct
disk-to-disk data transfers. In this case, the main body of
the data never moves across the network to the host, only
the keys are sent to the host for merging, and then back to
the disks which can operate independently to transfer the
data to its final destination. There are some difference in
the disk performance in the two cases, and that is
discussed in more detail in the next section. All numbers
are analytic results based on the formulas of the preceding
section.
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4.2.3 Local Sorting Algorithms

The local sort algorithm used in all of the above examples has a significant impact

on the overall performance and flexibility of the computation. The two main choices of

local sort algorithms for general data types is quicksort, or some variant of replacement

selection.

The advantage of using replacement selection is that it produces longer runs than

quicksort (with an average size of 2M - twice the size of the available memory - and even

higher when the data is already partially sorted, as is often true in real data sets). It is

straightforward to extend replacement selection to do aggregation or duplicate elimina-

tion, where the amount of memory required will be proportional to the output size, rather

than the input size, a considerable advantage for highly selective aggregates or projec-

tions. There has also been considerable work on developing memory-adaptive versions of

replacement selection that can easily adapt to changing memory conditions [Pang93a].

This variant of replacement selection can give up memory pages as it sorts (resulting in

smaller average run size, but not inhibiting the overall progress of the sort) and can make

use of additional pages as they become available (to increase average run size). Replace-

ment selection can take advantage of as much or as little memory as is available at any

given time, with a consequent variation in run size and in the total number of runs to be

merged later.

The major disadvantage of replacement selection is its poor cache performance on

modern processors [Nyberg94] due to the non-local access pattern for insertions into the

sorted heap. Quicksort, on the other hand, has better cache behavior, but is limited to

smaller runs (with a size of exactly M - the amount of available memory). It is also more

difficult to adapt quicksort to perform aggregation or duplicate elimination as it sorts, or to

make it adaptive to changes in the available memory as described above for replacement

selection. In order for quicksort to proceed, there must be enough memory to sort a mem-

ory-full of data, and this memory must remain allocated until the sort is complete.

The use of radix sort, or other, more sophisticated schemes can yield improved per-

formance if that data types of the keys is known and can be optimized for in advance

[Arpaci-Dusseau97].

Query
Input Data

(KB)
Sort - Full Data

(KB)
Sort - Keys Only

(KB)
Savings

(selectivity)

Q1 126,440 33,935 1,131 30.0

Q4 29,272 145 9 16.1

Q6 126,440 - - -

Datamation 32,768 32,768 3,276 10.0

Table 4-1 Sort size and data reduction. Sizes for sorts within TPC-D queries using plans as chosen by the
default PostgreSQL optimizer, and the Datamation benchmark for a 32 GB input file.
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A comparison of the two algorithms for sorting is shown in Table 4-2 where we see

the overall cycles/byte and code sizes for the two algorithms. We see that quicksort has a

somewhat lower instructions/byte than replacement selection - about 25% less - but the

real impact is in the cycles/byte cost, where the cache effects are clear - in this case, quick-

sort is about a factor of three less than replacement selection. A further comparison is

shown in Table 4-3 which gives the performance of the two algorithms on a StrongARM

processor such as the one proposed in Chapter 2 for future Active Disk processors. It may

be possible to further optimize replacement selection for execution in an embedded plat-

form such as the StrongARM, but the overall performance benefit of quicksort will con-

tinue to be at least a factor of two. This means that the longer runs and greater flexibility of

replacement selection must overcome the performance drop in order to be competitive.

For processing on Active Disks, the flexibility to adapt to changing memory conditions,

and the ability to perform duplicate elimination and aggregation during the sort still make

replacement selection a compelling choice.

4.3 Database

There are three core operations in a relational database system: select, project, and

join [DeWitt90]. This section uses the PostgreSQL relational database system to show

how Active Disks can benefit by partitioning each of these operations between the Active

Disks and the host. PostgreSQL was chosen as a platform for this examination because it

has been extensively reported on in the database literature [Stonebraker86], and because

on open-source version was available that could be examined and modified in detail with-

out trade secret or publishing restrictions [PostgreSQL99].

Algorithm
Instructions

(inst/byte)
User

(cycles/byte)
System

(cycles/byte)

Unique
Instructions

(KB)

Executed More 
Than Once

(KB)
Other

quicksort 15.77 28.6 17.8 13.0 10.1

replacement selection 23.23 78.0 18.0 9.7 6.4

merge 7.90 8.8 15.4 16.9 12.1 96 KB memory

Table 4-2 Performance of local sort algorithms. The table compares the performance of quicksort and
replacement selection, showing instructions and cycles per byte, the total size of the code executed, and the
size of the instructions executed more than once.

Algorithm
User

(cycles/byte)
System

(cycles/byte)
Other

quicksort 31.6 19.2

replacement selection 110.8 18.0

Table 4-3 Performance of sort on an embedded processor. The table compares the performance of quicksort
and replacement selection on a 200 MHz StrongARM processor.
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4.3.1 Select

The select operation is an obvious candidate for an Active Disk function. The

where clause in a SQL query can be performed directly at the drives, returning only the

matching records to the host. This is the operation that was implemented by many of the

early database machines, and is the basic function performed by the SCAFS search accel-

erator [Martin94]. The query is parsed by the host and the select condition is provided to

all the drives. The drives then search all the records in a particular table in parallel and

return only the records that match the search condition to the host. If the condition is

highly selective, this greatly reduces the amount of data that must traverse the intercon-

nect, as records that will not be part of the result must never leave the disks. The selectiv-

ity is simply the fraction of records that match the given search condition. This type of

search requires very little state information at the drives, since only the search condition

and the page currently being operated on must be stored in drive memory.

A basic select operation is illustrated in Figure 4-6 which shows the query:

select * from lineitem where l_shipdate > ‘1998-09-02’

using tables and test data from the TPC-D decision support benchmark.

4.3.2 Project - Aggregation

The purpose of sorting in database systems is almost always as an input step to

another operation, either a join, an aggregation, or as the final step in a projection (dupli-

cate elimination). The biggest benefit of performing sorting at Active Disks comes when it

is combined with one of these other steps directly at the disks. Aggregation combines a set

l_shipdate l_qtyl_orderkey l_price l_disc

l_shipdate l_qtyl_orderkey l_price

relation S

Figure 4-6 Illustration of basic select operation in a database system. A single relation is searched for
attributes that match the given value. Note that there are two types of data reduction going on here.
The first is the selection of matching records (5% in this example from TPC-D) and the second is the
elimination of unneeded columns from the relation (3/4 of the data in this example).

01-25-93 61730 11051.6 0.02

04-12-96 323713 29600.3 0.07

10-05-98 237010 29356.3 0.09

05-05-95 832742 9281.9 0.01

11-27-98 3136070 34167.9 0.04

11-27-98 3136070 34167.9

10-05-98 237010 29356.3
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of records to compute a final sum, average, or count of groups of records with particular

key values. If this summing or counting can be done at the disks as records are sorted on

the group by columns (particularly attractive if replacement selection is used as the sorting

algorithm, as discussed above) then the network traffic can be greatly reduced by return-

ing only the sums or counts from the individual disks for final aggregation at the host.

Similarly, if duplicate elimination can be done while sorting locally at the Active Disks,

then the duplicate records must not be needlessly transferred across the network simply to

be discarded at the host.

A basic aggregation operation is shown in Figure 4-6 which illustrates the query:

select sum(l_qty), sum(l_price*(1-l_disc)) group by l_disc

that totals up the number of items sold and the total amount of money taken in combined 

based on the l_disc attribute. All items with the same discount value are combined and 

total quantity and revenue reported.

4.3.2.1 Aggregation via Hashing

In most cases, an even more efficient way to do aggregation is via hashing

[Graefe95]. Since sorted order isn’t strictly required to aggregate groups of records, it is

only necessary to combine records with the same key values, not completely sort the

records. The primary difficulty with hashing is that it cannot easily output partial results if

the amount of memory available is less than what is required for the entire output. The

replacement selection algorithm, on the other hand, can output partial results in sorted

order, so they can be easily combined in a final merge step, requiring only memory pro-

l_shipdate l_qtyl_orderkey l_price l_disc

relation S

Figure 4-7 Illustration of basic aggregation operation in a database system. A single relation is
processed and values in the requested columns are summed together. Other operations include min,
max, count, and average.

01-25-93 61730 11051.6 0.02

04-12-96 323713 29600.3 0.07

10-05-98 237010 29356.3 0.02

05-05-95 832742 9281.9 0.07

11-27-98 3136070 34167.9 0.07

sum_revenue sum_qtyl_disc

67936.6 710.07

39599.7 290.02
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portional to the number of runs created, rather than proportional to the size of the output.

Basically, replacement selection provides a more adaptive and memory-efficient way to

do aggregation than either hashing or full sorting followed by aggregation does.

4.3.2.2 Aggregation Filtering

There are several steps in a typical aggregation query where Active Disk filtering

can be profitably applied. The first step is to remove the columns in a relation that are not

relevant to a particular query result, for example, the address field of a customer record is

not needed if we are totalling the total amount of money they owe, and the receipt date of

particular order is not important if we are trying to determine how many of a given part

have left our factory (in database terms, this is performing a projection on R to obtain R’).

Figure 4-8 shows a few rows from the input table to Query 1. For this particular query,

only 7 of the 16 columns in this table are required. In an Active Disk system, the rest of

the data never needs to leave the drive and consume interconnect bandwidth. Figure 4-9

gives the business question being answered by Query 1 as well as the SQL query text.

From looking at the query text, we can determine that only a subset of the columns in the

table are needed to answer this query, the comment and address fields, for example, are

l_okey|l_quantity| l_price|l_disc|l_tax|l_rf|l_ls|l_shipdate|l_commitdate|l_receiptdate|l_shipmode|l_comment
------+----------+--------+------+-----+----+----+----------+------------+-------------+----------+---------

1730|         6|11051.58|  0.02|    0|N   |O   |09-02-1998|  10-10-1998|   09-13-1998|TRUCK     |wSRnnCx2
  3713|        32|29600.32|  0.07| 0.03|N   |O   |09-02-1998|  06-11-1998|   09-28-1998|TRUCK     |MOgnCO1
  7010|        23|29356.28|  0.09| 0.06|N   |O   |09-02-1998|  08-01-1998|   09-14-1998|MAIL      |jPNQlx3i
 19876|         4| 6867.24|  0.09| 0.08|N   |O   |09-02-1998|  09-06-1998|   09-29-1998|AIR       |3nRkNn4
 24839|         8|12845.52|  0.05| 0.02|N   |O   |09-02-1998|  10-14-1998|   09-06-1998|REG AIR   |jlw61g3
 25217|        10| 18289.1|  0.05| 0.07|N   |O   |09-02-1998|  08-12-1998|   09-26-1998|TRUCK     |SQ7xS5
 29348|        29|41688.08|  0.05| 0.02|N   |O   |09-02-1998|  07-04-1998|   09-18-1998|FOB       |C0NxhzM
 32742|         8| 9281.92|  0.01| 0.03|N   |O   |09-02-1998|  07-17-1998|   09-19-1998|FOB       |N3MO1C
 36070|        31|34167.89|  0.04|    0|N   |O   |09-02-1998|  07-11-1998|   09-21-1998|REG AIR   |k10wyR
[...more...]
(600752 rows)

Figure 4-8 Format of the lineitem table, which is the largest in the TPC-D benchmark. The table serves as
input to Query 1. Note that a few of the columns have been removed or shortened for presentation purposes. The
full schema is provided in Appendix A and in the TPC-D benchmark specification [TPC98].

select l_returnflag, l_linestatus,
sum(l_quantity), sum(l_price), 
sum(l_price*(1-l_disc)), 
sum(l_price*(1-l_disc)*(1+l_tax)),
avg(l_quantity), avg(l_price), 
avg(l_disc), count(*)
from lineitem
where l_shipdate <= ’1998-09-02’
group by l_returnflag, l_linestatus
order by l_returnflag, l_linestatus

Figure 4-9 Business question and query text for Query 1 from TPC-D. The purpose of this query is to summarize
about 95% of the item records in the database across price, discount, and quantity.

“Report the amount of business that was

billed, shipped, and returned. Summarize

for for all items shipped up to 90 days from

the last date in the database and include

total price, total discounted price, total

price plus tax, average quantity, average

price, and average discount, grouped by

order status and return status.”
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never used by this query. In fact, the subset of columns that remain after the initial scan of

the table as it comes off the disk, provide a close to four times reduction in the amount of

data moved from the disks to the host. The Scan Savings column of Table 4-4 shows how

much data reduction is possible simply by eliminating the unecessary columns from the

largest table in a subset of the TPC-D queries.

Note that the negative impact of pre-scan at the drives is that the full records are not

returned to the client for later caching. In the case of small relations, this decrease in cache

efficiency could well outweigh the benefits of Active Disk processing. This requires the

query optimizer to choose plans where small relations (for which caching will likely be

benefitial) are returned to the host in their entirety, while large relations (which would

“blow out” the cache at any rate) are processed at the disks and marked “uncacheable” at

the host. This also avoids the cache coherence problem that would arise if Active Disks

were able to process pages that may be dirty in the host’s buffer pool. There are some

additional concerns about locking, particularly in the presence of the UF1 and UF2 update

functions in the TPC-D benchmark. These are important functions to consider in the

design of an Active Disk database system, but there are a number of possible methods to

minimize the impact of the updates on the decision support queries [Mohan92,

Merchant92] and these issues are mentioned again in Section 7.5.2. The discussion that

follows will assume that the relations being processed at the disks are uncacheable at the

hosts, and that cursor stability is sufficient for the decision support queries.1

Figure 4-10 shows the entire plan for Query 1 as determined by the PostgreSQL

optimizer, along with the amount of data reduction at each step in the query. We see that

there is a factor of four reduction in data moved at the initial scan phase, a further 5%

reduction in the qualification phase (the where clause) and then the final reduction of 5

orders of magnitude in the aggregation step, when everything is summarized down to only

four result rows. The values shown in the figure are the size estimates made by the query

1. Note that this assumption, as well as the fact that our system has been in no way audited or approved by the normal
TPC guidelines, means that are TPC-D results should be considered illustrative only of the types of benefits that might
be possible in a fully audited and benchmarked system.

Query
Input Data

(KB)
SeqScan Result

(KB)
Scan Savings

(selectivity)

Aggregate 
Result
(bytes)

Aggregate 
Savings

(selectivity)

Q1 126,440 34,687 3.6 240 147,997.9

Q4 29,272 86 340.4 80 1100.8

Q6 126,440 177 714.4 8 22,656.0

Table 4-4 Sizes and selectivities of several TPC-D queries. The table gives the data sizes and selectivities at
intermediate stages of several TPC-D queries as executed by PostgreSQL. Note that since aggregation produces
only one (or a few) values - a sum of values or a count of tuples for example - the selectivity is essentially infinite
as the input size increases, i.e. it reduces an arbitrary-sized input to a fixed (and small) number of bytes.
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optimizer, the actual sizes vary somewhat from this, as discussed in more detail in the

Optimizer section of Chapter 6, but are the same order of magnitude.

The qualification condition does not provide a significant reduction in data moved

for Query 1, but the conditions on Query 4 reduce the data to a tiny fraction of their origi-

nal size. The Qualification Savings column of Table 4-4 shows the data reduction by qual-

ification on the largest relation in the TPC-D queries. The Optimizer section in Chapter 6

provides additional details on how an Active Disk system could estimate the costs and

benefits for a particular query, that can then be used to determine the appropriate partition-

ing across disks and hosts.

Table 4-4 shows several queries from the TPC-D benchmark and the savings in data

transfer if filtering is performed at different steps in the query execution. We see that the

SeqScan

where l_shipdate <= ’1998-09-02’

group by l_returnflag, l_linestatus

sum(l_quantity), sum(l_price), 
sum(l_price*(1-l_disc)), 
sum(l_price*(1-l_disc)*(1+l_tax)),
avg(l_quantity), avg(l_price), 
avg(l_disc), count(*)

order by l_returnflag, l_linestatus

from lineitem

Sort

Group

Aggregate

Sort

select l_returnflag, l_linestatus,
Qual 35,189 -> 33,935

Scan 126,440 -> 35,189

Sort 33,935 -> 33,935

Group 33,935 -> 33,935

Aggr 33,935 -> 9

Sort 9 -> 9

Figure 1: Text, execution plan, and result for Query 1 from the TPC-D benchmark. The right column shows the text
of the query, the center diagram shows the final plan chosen by the optimizer for this execution, and the left column
shows the amount of data reduction at each node in the plan.

126,440 KB (15,805 pages) on disk

l_rf|l_ls|sum_qty|sum_base_price|sum_disc_price| sum_charge|avg_qty| price| disc| count
----+----+-------+--------------+--------------+--------------+-------+--------+-----+------
A |F |3773034| 5319329289.67| 5053976845.78| 5256336547.67| 25.509|35964.01|0.049|147907
N |F | 100245| 141459686.10| 134380852.77| 139710306.87| 25.625|36160.45|0.050|  3912
N |O |7464940|10518546073.97| 9992072944.46|10392414192.06| 25.541|35990.12|0.050|292262
R |F |3779140| 5328886172.98| 5062370635.93| 5265431221.82| 25.548|36025.46|0.050|147920
(4 rows)

Query TextQuery PlanData Reduction

Query Result

Figure 4-10 Text, execution plan, and result for Query 1 from the TPC-D benchmark. The right column shows the
text of the query, the center diagram shows the final plan chosen by the optimizer for this execution, and the left
column shows the amount of data reduction at each node in the plan. The query result is shown in the table at the
bottom. This is the entire result, note the large data reduction, from 125 MB on disk to several hundred bytes in the
final result.
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benefits of the initial table scan are significant, and the benefits to performing the entire

aggregation at the disks are several orders of magnitude.

4.3.3 Join

Highly selective joins will benefit significantly from the reduction in data transfer

by operating directly at the Active Disks. Joins will also benefit from the greater amount

of CPU power provided by the Active Disks in aggregate vs. that available at the host. A

join combines data from two (or more) relations, so it is more complex than the select or

project, which operate on only a single relation at a time. Figure 4-10 illustrates the basic

computation of a join on two relations.

4.3.3.1 Join Algorithms

There are a number of possible algorithms for performing joins, depending on the

sizes of the relations being joined, the relative size of the inner and outer relation, and the

sort order of the source relations. The purpose of a join is to combine two input relations,

R and S on a single join attribute. If the value of the attribute for a particular record in R

matches any record in S, then the combined record is output. The relation R is, by defini-

tion, the smaller of the two relations. It is also possible to perform n-way joins among a

larger number of relations, but these are simply done as a series of 2-way joins (although

the choice of join order can greatly affect the overall performance).

o_suppkey o_qntyo_orderkey

s_suppkey s_name s_address s_nationkey

o_price o_disc

s_address o_qntyo_orderkey o_price

relation S

relation R

Figure 4-10 Illustration of basic join operation in a database system. Two relations are combined on a particular
join attribute. Records from relation S that much the keys in relation R are selected and combined with the
corresponding records from R. By definition, R is the smaller of the two relations and is also referred to as the inner
relation, and S is the outer relation.
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Nested-Loops is the most straightforward algorithm for performing a join, but is

efficient only if R is extremely small. The name itself explains the basic algorithm, which

proceeds as a nested loop (or a series of nested loops, for an n-way join), choosing one

record from S and looping through R looking for matches, then choosing the next record

from S and repeating the process. In this sense, R is the inner loop, and the iteration

through S forms the outer loop, which is why R and S are often referred to as the inner and

outer relations in a join, respectively. The basic advantage of this algorithm is that it

requires very little memory, essentially only enough buffering for the two tuples currently

being compared. This algorithm is used only for extrememly small relations when the

overhead of building the hash table required for a hash-join would overcome the perfor-

mance gain.

Hash-Join [Kitsuregawa83] uses a hash table as the basic data structure and has been

shown to be the best algorithm choice except in the case of already sorted input relations

[Schneider89, Schneider90]. Hash-Join first builds a hash table of R in memory and then

reads S sequentially, hashing the join key for each record, probing the hash table for a

match with R, and outputting a joined record when a match is found. This is more effec-

tive than Nested-Loops as each of the relation needs to be read only once, and is preferable

whenever there is sufficient memory to hold the hash table of R. The amount of memory

required will be proportional to the size of R, with some amount of overhead for the hash

table structures.

Merge-Join takes advantage of the fact that the two input relations are already sorted

on the join attribute and simply joins by merging the two lists of ordered records. It does

not require repeated passes as in Nested-Loops because the records are known to be

sorted, so the algorithm can process both R and S in parallel, without ever having to “look

back” in either traversal, as in the merge phase in a Mergesort. This algorithm also has the

memory advantage of Nested-Loops because only the tuples currently being examined

need to be in memory. When only one of the relations is already sorted, the query opti-

mizer must decide whether it is less expensive to sort the second relation and perform a

Merge-Join, or simply revert to Hash-Join as if both were unsorted.

Hybrid Hash-Join is an extension of the hash-join [DeWitt84] that is used when the

inner relation is larger than the amount of memory available. The Hybrid algorithm oper-

ates in two phases. A hash function is chosen that divides the space of join keys into sev-

eral partitions. On the first pass, both R and S are read and records are output into per-

partition buckets. The partitions are chosen in such a way that a hash table of Ri will fill

the memory available. In the second phase, these buckets are read back in pairs, a hash

table is built using the records of Ri and this table is probed with all the records of Si. The

first pass of this algorithm does not require a significant amount of memory because

records are simply being divided into some number of output buckets. This fact makes

possible a straightforward extension to the basic algorithm that partially combines the two

phases and performs both the paritioning and the hashing for the first bucket at the same
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time. This means the memory is always kept full and only n-1 buckets worth of data need

to be written back to the disk. This extension also makes the algorithm very attractive for

use as an adaptive algorithm. Whereas the basic Hash-Join requires that sufficient mem-

ory be available for the entire hash table of R before the operation can proceed, the Hybrid

algorithm can adapt to changing memory conditions [Zeller90,Pang93]. It is straightfor-

ward for the Hybrid join to give up memory pages when they are needed elsewhere in the

system or make use of additional pages that become available during its processing. It

simply places more of the buckets onto disk, or loads additional buckets into memory.

This algorithm requires temporary disk space equal to the combined size of the two rela-

tions (minus one memory-full of data that need never be written to disk). It can make use

of any amount of memory available, up to the size of the complete hash table for R (at

which point it simply becomes the basic Hash-Join algorithm). For both the basic Hash-

Join and Hybrid Hash-Join, care must be taken in the choice of hash functions to ensure

even-sized partitions and efficient use of the memory that is available at any given point.

4.3.3.2 Size of Relations

The primary cost of performing joins at the Active Disks is the cost of transferring

all the parts of the inner relation that the disk does not already have (generally |R| / (n-1)

pages) before the join can begin.

The second main cost of doing joins at Active Disks is the additional time required

due to limited memory at the disks. This may require a join that can proceed in one pass at

the host (using basic Hash-Join) to use multiple passes (using Hybrid Hash-Join) at the

disks. The overall result can still be benefitial if the amount of savings (selectivity) in

transfer of tuples from S outweighs the additional disk cost of writing and re-reading S

tuples for a multi-pass join (recall that the additional disk cost is accumulated in parallel at

all the disks, while the transfer of S tuples loads the single bottleneck host interface).
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The basic performance tradeoff is embodied in the equations below:

defines the number of passes that Hybrid Hash-Join will need to make on the server sys-

tem, then:

to read relation R off the disks, transfer it to the host, and create a hash table of all the 

tuple of R that fit into the available memory (M), then transfer the balance of R back to the 

drives and write it out to the disks, then:

Host Parameters

Active Disk Parameters

M memory size of the host=

rd disk raw read rate=

rw disk raw write rate=

m memory size of the disk=

Data Parameters

S size of relation S (pages)=

R size of relation R (pages)=

scpu CPU speed of the host=

rn host network rate=

pbytes size of page (bytes)=

ptuples size of page (tuples)=

scpu’ CPU speed of the disk=

rn’ active disk network rate =

ra aggregate network fabric rate =

whash cycles to hash a record=

wprobe cycles to probe a record=

winsert cycles to insert a record=

Application Parameters

αN selectivity of join=
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to read relation S off the disks, transfer it to the host, probe the portion of R that currently 

resides in memory, send the balance of S (that cannot be probed until a later pass, 

) and the successfully matched tuples ( ) back to the drives, and write 

them all to the disks, then subsequent passes in two parts as:

to read a partition of R from the disks, transfer it to the host, and insert the tuples into a 

hash tabled, and process from S as:

to read a partition of S from the disks, transfer it to the host, probe all the tuples in the hash

table, transfer the matching tuples back to the drives, and write them to the disks. This

gives an overall time of:

and a throughput of:

for the traditional server.

For the Active Disk system, we have a similar set of equations as:

the number of passes required by the smaller Active Disk memory (m), then:
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to read relation R from all the disks, broadcast the entire relation to all the disks, build an 

in-memory hash table for the portion of R that will fit in m ( ) and hash the rest into 

partitions, and write all the partitions except the current one (  )to the disk 

locally, then:

to read the local portion of relation S at each disk, hash the portion into partitions and 

probe the in-memory portion of R, and write the remaining partitions back to the disk 

locally, then several passes of:

to read a partition of relation R and insert the tuples into an in-memory hash table locally, 

then:

to read a partition of relation S, probe the hash table, and write the matching tuples back to 

the disk. Note that all passes of these two steps are done locally, after the initial broadcast 

of relation R to all the disks, processing is done strictly locally with each disk operating 

independently. All this gives an overall time of:
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and a throughput of:

and captures the more efficient processing at the disks.

In terms of the equations of Chapter 3, this is a -phase computation, with

 as the first phase, followed by a synchronization point, followed by some

number of phases of . As described above, the first phase has a serial

fractions equivalent to the time required to broadcast R to all of the disks. The subsequent

phases can then be performed completely in parallel with .

Figure 4-11 shows the relative performance of a traditional system against an Active

Disk system for two different join sizes. For a join where R and S are relatively close in

size, the Active Disk algorithm will perform worse than the host-based algorithm. The

disks will be required to use the Hybrid Hash-Join algorithm and make multiple passes

across the data, whereas the host-based system can fit the entire hash table for R in mem-

ory and proceed in a single pass through S. The benefit of Active Disks becomes obvious

when S is significantly larger than R. In this case, the savings in not transferring non-

matching tuples of S on the network far outweigh even the repeated passes through S on

the disk. Because each of the disks can operate in parallel and independently, the tuples of

S that do not match any tuple in R will never leave the disk that they are initially read

throughputactive
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tmoreprepare tsubsequent+

p 1.0=

32 64 96 128

Number of Disks

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

T
h
ro

u
g

h
p
u

t 
(M

B
/s

)

1 gigabyte R join 4 gigabyte S 

32 64 96 128

Number of Disks

0.0

100.0

200.0

300.0

400.0

500.0

T
h

ro
u

g
h

p
u
t 

(M
B

/s
)

1 gigabyte R join 128 gigabyte S

16 16

Server

Active Disks
Active Disks

Server

Figure 4-11 Comparison of server and Active Disk across varying sizes of R and S. The basic tradeoff is
the amount of network transfer saved by not sending non-contributing tuples of S to the host in the first
place vs. the additional cost of doing multiple passes through the data if the entire inner relation does not fit
into the Active Disk memory. This downside of Active Disk join is eliminated by the use of a semi-join with
Bloom filters as described below. These numbers are analytic results as calculated from the formulas
provided in the preceding section.
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from, whereas the server algorithm must move all tuples of S across the network to the

host in order to perform the probes.

4.3.3.3 Semi-Join

The basic difficulty with performing the processing in this way is that each disk

must maintain a complete copy of R in order to perform the join correctly (otherwise it

will “miss” records that should be part of the result). This is a problem when R does not fit

into the memory available at the individual drives, thereby requiring use of the multiple

pass algorithm described above.

The total amount of memory required at each drive can be reduced by not retaining a

copy of the entire R relation at the disks, but sending only the join keys necessary for

determining whether a particular record from S should be included in the result or not. If

the disks perform only this semi-join [Bernstein81] they achieve the full savings of the

selectivity of the join, without requiring memory for all of R.

The semi-join is similar to the key-only option described in the last section for sort-

ing. The join is performed in two phases. In the first phase, the keys of R are used to filter

S and extract only the records that match the keys of R. These records from S are then

used to probe R as in the normal hash-join, but with each record guaranteed to find a

match in R. The algorithm requires significantly less memory than a full join in the first

phase, because only the keys of R must be kept in memory. This makes it a particularly

attractive algorithm for use with Active Disks. The disks can individually (and in parallel)

perform a semi-join using only the keys of R and send the matching records of S to the

host for the final join. The tuples returned must still be joined with R at the host before

they are output, but these tuples would have been sent to the host anyway for output.

This “split” version of join also avoids the size explosion possible if a particular

record from S matches multiple records in R. Performing only semi-join guarantees that

the selectivity of the operation at the drive will not exceed 1.0 (i.e. it never increases the

amount of data moved off the disk from the traditional case). In the case of a full join, the

size of the resulting table can range from no tuples (in the extreme) to the cross product of

both relations (assuming each tuple in S matches all the tuples in R, leading to |S| * |R|

tuples each of size s + r). Using the semi-join, the amount of data returned from the drives

is never more than |S|, which is the amount of data that the traditional system must transfer

in all cases.

The only downside is the additional work performed at the host in again probing R

with all the successfully matched S tuples. This cost is mitigated by several factors: 1) the

S tuple will be guaranteed to find a match in R, because it already matched a join key at

one of the disks, 2) if the S tuple matches multiple tuples in R, only one of them will be a

repeated test (since the disk will send the tuple after a single match, without probing for

additional matches, thereby leaving this work to the host) and 3) the selectvity benefits of

pre-computing at the drives.
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4.3.3.4 Bloom Join

If even the keys of R necessary for a semi-join exceed the memory capacity of the

disks, a Bloom Join algorithm [Mackert86] can be used to perform the first phase of a

semi-join at the drives. This algorithm uses a hash-based bit vector built up from the set of

inner tuples at the host and copied to each of the drives to eliminate tuples from the outer

relation before they are sent to the host, as illustrated in Figure 4-12. 

The goal, as with semi-join, is to exclude tuples from S that will not find a match in

R and therefore will not be part of the final result (non-contributing tuples). Instead of

broadcasting all the distinct values of the join attribute from R to the drives, we create a bit

vector b[1...n], initially set to all ‘0’s. For each value of the join attribute in R, we hash it

to a value in the range 1 to n and set the corresponding bit to ‘1’. We then use this bit vec-

tor when processing tuples from S. If we apply the same hash function to the join attribute

in S, then any tuple for which the bit is set to ‘0’ can be excluded from the result, since it

will not match any tuples from R. This still allows some number of “false positives” from

S to be sent back to the host, but it will give us the selectivity benefits of semi-join while

using only a constant amount of memory. A Bloom filter reduces an arbitrarily large list of

keys to a fixed-size bit vector. As a result, the memory required from doing a Bloom join

at the drives is independent of the size of the relations and can often achieve large selectiv-

ity benefits with only a small amount of memory, as shown in Table 4-5 for a number of

queries from the TPC-D benchmark.

More recent work in this area has proposed an alternative algorithm that encodes the

keys in scan order, rather than using hashing, with some promising improvements in filter

size and effective selectivity [Li95].

Figure 4-12 Illustration of the Bloom
join algorithm. Keys from the inner
relation (R) are used to form a hash-
based bit-vector that is broadcast to all
the disks. The disks use this bit vector
to filter records from the outer relation
(S) before records are returned to the
host. The filter will return some
number of “false positives” since the
bit vector cannot represent all the keys
exactly (multiple keys may hash to the
same bit position), but it will always
return all the necessary records from S.
This provides most of the selectivity
benefit of a highly selective join, while
requiring only constant memory at the
drives - the size of the Bloom filter can
be chosen based on the memory
available, rather than requiring
memory proportional to the size of the
relations in a particular query.

Bloom filter

l_price l_qtyp_partkey

11051.6 62593

29356.3 231098

34167.9 312593

relation S

l_partkey l_qtyl_orderkey l_price l_return

2593 61730 11051.6 A

0412 323713 29600.3 R

1098 237010 29356.3 A

5059 832742 9281.9 R

2593 3136070 34167.9 R

relation R

p_name p_brandp_partkey p_type

green car vw2593 11

red boat fast5059 29

green tree pine1098 35

blue sky clear0412 92

red river dirty5692 34

l_partkey l_qtyl_orderkey l_price l_return

2593 61730 11051.6 A

1098 237010 29356.3 A

2593 3136070 34167.9 R



80

In order to take advantage of Bloom filters, join processing at the drives provides a

semi-join function, rather than a full join as discussed above. The Bloom filter represent-

ing the keys is sent to all storage locations of the outer relation. The processing then

returns all the tuples of the outer relation that may match - with false positives allowed -

the inner relation. As in the semi-join, these tuples are then used to probe a full hash table

of R at the host and the matching records are joined and output. This saves the transfer

time of returning non-contributing tuples to the host, as well as the processing time

required at the to look up and reject a non-contributing outer tuple. There will still be some

non-contributing tuples that must be eliminated at the host, but the selectivity benefit

should usually overcome this additional CPU work.

Using a Bloom filter at the Active Disks is particularly attractive because it has the

selectivity benefits of semi-join mentioned above, but requires only a constant amount of

memory, rather than depending on the size of the inner relation.

Query Join Size of Bloom filter Keys Table

128 bits 1 kilobyte 8 kilobytes 64 kilobytes 1 megabyte ideal KB MB

Q3 1.1 1.00 0.54 0.33 0.33 0.33 0.21 12.4 4.2

Q5 1.4 1.00 1.00 1.00 1.00 1.00 0.04 58.6 4.2

Q5 2.1 1.00 0.94 0.75 0.55 0.55 0.15 89.7 28.6

Q5 4.1 0.90 0.22 0.22 0.22 0.22 0.22 0.9 0.3

Q5 5.1 0.23 0.23 0.23 0.23 0.23 0.23 0.1 0.01

Q9 1.1 1.00 0.11 0.11 0.11 0.11 0.05 4.0 4.7

Q10 2.1 0.33 0.21 0.21 0.08 21.9 28.6

Table 4-5 Sizes and selectivities of joins using Bloom filters of a particular size. Note that these measurements
are based on a particular choice of execution plan for each query, the sizes required for the different joins would be
different if the join orders were changed (and the order might well be changed based on the choice of Active Disk
function placement).
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Chapter 5: Performance and Scalability

This chapter describes a prototype system and a performance evaluation of running

the applications described in the previous chapter in an Active Disk setting. The first sec-

tion details the experiments performed to illustrate the benefits and tradeoffs in using an

Active Disk system compared to a traditional server with “dumb” disks. Performance is

measured against a running prototype system using six-year-old workstations to emulate

Active Disks. Some preliminary results using an embedded version of the prototype are

also discussed.

The next section discusses the implementation of a relational database system on

Active Disks and the performance of this system on a subset of the queries from a decision

support benchmark. The intent of these two sections is to show that the benefits promised

by the performance model of Chapter 3 are achieveable in a realistic system.

Finally, the last section discusses the balancing of Active Disk functions with an

existing foreground workload and explores a mechanism whereby closer integration of

application knowledge with on-drive scheduling can provide considerable performance

gains. The intent of this section is to illustrate a particular class of optimizations that are

possible only when application-level knowledge is combined with scheduling information

at the individual disks.

5.1 Prototype and Experimental Setup

The testbed used for all the experiments consists of ten prototype Active Disks, each

one a six-year-old Digital Alpha AXP 3000/400 (133 MHz, 64 MB, Digital UNIX 3.2g)

with two 2.0 GB Seagate ST52160 Medalist disks. For the server case, a single Digital

AlphaServer 500/500 (500 MHz, 256 MB, Digital UNIX 3.2g) with four 4.5 GB Seagate

ST34501W Cheetah disks on two Ultra-Wide SCSI busses is used1. All these machines

are connected by an Ethernet switch and a 155 Mb/s OC-3 ATM switch. This setup is

illustrated in Figure 5-1 showing the details of both systems.

1. note that these four disks on two busses represents more bandwidth than the single CPU server can handle when per-
forming sequential accesses, so adding additional disks would give no benefit for sequential bandwidth.
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The experiments compare the performance of the single server machine with

directly-attached SCSI disks against the same machine with network-attached Active

Disks, each of which is a workstation with two directly-attached SCSI disks1. All the

results reported give the throughput (MB/s) of both systems, and the amount of data pro-

cessed is scaled with the number of disks used. The results will show dramatic improve-

ments with Active Disks and confirm the intuition given by the model of Chapter 3.

1. the need to use two actual disks on each single “active disk” is an artifact of using old workstations not explicitly
designed for this purpose. The 3000/400 contains two narrow SCSI busses, with a maximum bandwidth of 5 MB/s
each. The Seagate Medalist disks used are capable of 7 MB/s each, but the use of the narrow SCSI busses limits
sequential throughput to a total of 7 MB/s when used in combination, as shown in the Microbenchmarks section. The
text will clearly identify any results where the use of two disks instead of a single, faster disk would impact the sys-
tem performance and affect the comparison.

Server

Switched network

Database Server

UltraSCSI

Obj Stor

Controller

Network Security

Traditional System

Active Disk System

Controller

SCSI

Figure 5-1 Active Disk prototype systems.  The components of the two systems
compared in the prototype numbers to follow. The diagram shows a traditional
server system with directly-attached SCSI disks. The lower picture shows an
Active Disk system using network-attached disks.

Digital AlphaServer 500/500

500 MHz Alpha 21164
256 MB memory

2 x Ultra Wide SCSI

Digital UNIX 3.2g

Seagate Cheetah 4LP

4.55 GB Ultra Wide SCSI
10,000 RPM

7.7 ms average seek

Controller

SCSI

Controller

SCSI

Controller

SCSI

Obj Stor

Controller

Network Security

Obj Stor

Controller

Network Security

Obj Stor

Controller

Network Security

Digital AlphaServer 500/500

500 MHz Alpha 21164
256 MB memory

2 x 155 Mb/s ATM

Digital UNIX 4.0

Digital Alpha AXP 3000/400
133 MHz Alpha 21064
64 MB memory

2 x Seagate Medalist

Digital UNIX 3.2g

software NASD

Digital Gigaswitch/ATM
52 ports, 155 Mb/s
10.4 Gb/s backplane
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5.1.1 Microbenchmarks

This section presents basic measurements from the systems under test, to give an

idea of the underlying performance characteristics of each. The two critical parameters are

the disk bandwidth available to read bytes from the media and the “network” bandwidth to

move these bytes from the disk to the host. In the traditional server system, the disks are

simple disk drives using a SCSI interconnect. In the Active Disk system, the disks are old

workstations and use an ATM interconnect to the host, as shown in Figure 5-1.

5.1.1.1 Disk Bandwidth

The experiments in this section measure the total raw disk bandwidth available from

the two systems. Table 5-1 shows the performance of the disks for a single Active Disk

and for the prototype host with a varying number of attached disks. The host disks perform

signficantly better than the those on the prototype “disk” because they are two generations

newer than those used in the individual Active Disks. This will make any comparison on

raw disk bandwidth in the subsequent sections pessimistic to the Active Disk system.

5.1.1.2 Interconnect Bandwidth

The second primary factor for comparison among the two systems is the network

bandwidth available between the Active Disks and the host. Table 5-2 shows the perfor-

Drive Disks Read 
(MB/s)

CPU Idle 
(%)

Configuration

Active Disk 2 6.5 - two Medalist drives

Cheetah 1 17.0 -

Cheetah 2 26.9 60.1

Cheetah 4 42.9 7.3

Table 5-1 Performance of the disks in the prototype. The table shows the performance and the overhead of
reading from the raw disks on the prototype drive and host.

Drives Read from drive Write to drive Configuration

Throughput
(MB/s)

Drive Idle
(%)

Host Idle
(%)

Throughput
(MB/s)

Drive Idle
(%)

Host Idle
(%)

1 10.4 13 - 9.4 6 - UDP, 256K buf, 32K frag

1 11.9 21 - - - - UDP, 256K buf, 32K frag, no checksum

1 11.4 12 - 10.4 10 - TCP, 256 K buf, 32K frag

2 15.1 39 - 15.3 40 - TCP, 256K buf, 32K frag

4 24.7 54 5 30.3 39 30 TCP, 256K buf, 32K frag

Table 5-2 Performance of network processing in the prototype. The table shows the performance and the
overhead of network processing on the prototype drive and host for large requests. We see that TCP performs
slightly better due to a superior flow control mechanism. We also see that turning off the checksum in UDP gives
a significant reduction in processor utilization. It was not possible to easily turn off TCP checksumming in the
prototype (to simulate a hardware-assisted checksum calculation, or a reliable network fabric, for example), but
we would expect this to lower the overhead of the TCP processing as it does for UDP.
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mance of the network for a single Active Disk and the host using ATM. This chart shows

that there is a great deal of inefficiency in using a general-purpose network stack for stor-

age traffic, which is again pessimistic to the performance of the Active Disk prototype.

The CPU utilization of transferring data on the ATM network is significantly higher than

an equivalent level of performance in the SCSI interconnect “network” used in the host

system. This means that, for example, in the case of a four disk system, only a bit more

than half of the processing power on the drive is available for Active Disk processing, the

balance of the processor is busy sending data. The “network” for the host system is simply

the SCSI bus, so the values in Table 5-1 also give the interconnect bandwidth for the tradi-

tional system.

5.2 Results

This section gives the results from running experiments with each of the applica-

tions described in Chapter 4. Each section provides the results for a single application,

comparing the server system with traditional “dumb” disks and the same system with an

equal number of Active Disks. All the experiments show the scaling of performance as the

number of disks increases from one to ten, the maximum number of Active Disks avail-

able in the prototype setup.

5.2.1 Data Mining - Nearest Neighbor Search

Figure 5-2a compares the performance of the server system against the same system

with Active Disks for the nearest-neighbor search. As predicted by the model of

Chapter 3, we see that for a small number of disks, the server system performs better. The

server processor ( ) is four times as powerful as a single Active Disk processor

( ) and can perform the computation at full disk rate. The server system CPU sat-

urates at 25.7 MB/s with two disks and performance does not improve as additional disks

are added, while the Active Disks system continues to scale linearly to 58.0 MB/s with

10 disks. The prototype system was limited to ten Active Disks by the amount of hardware

available, and four traditional disks by the length limitations of the Ultra SCSI bus, but

extrapolating the data from the prototype to a larger system with 60 disks, the smallest of

Figure 5-2a Performance of search.
The search application shows linear
scaling with number of disks up to 58
MB/s, while the server system
bottlenecks at 26 MB/s.

Figure 5-2b Scaling of search
performance. Because of the high
selectivity of this search, we would
not expect the Active Disks system to
saturate for at least a few hundred
disks.
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the real systems introduced in Table 2-1, we would expect throughput, as shown in

Figure 5-2b, near the 360 MB/s that the model predicts for this configuration.

The details of the computation in the search application are shown in Table 5-3.

5.2.2 Data Mining - Frequent Sets

In Figure 5-3a, we see the results for the first two passes of the frequent sets applica-

tion (the 1-itemsets and 2-itemsets). We again see the crossover point at four drives, where

the server system bottlenecks at 8.4 MB/s and performance no longer improves, while the

Active Disks system continues to scale linearly to 18.9 MB/s. Figure 5-3b illustrates an

important property of the frequent sets application that affects whether or not a particular

analysis is appropriate for running on Active Disks. The chart shows the memory require-

ments across a range of input support values on two different data sets. The lower a sup-

port value, the more itemsets are generated in successive phases of the algorithm and the

larger the state that must be held on disk. We expect that the support will tend toward the

higher values since it is difficult to deal with a large number of rules, and the lower the

support, the less compelling the generated rules will be. For very low values of the sup-

port, though, the limited memory at Active Disk may become an issue. Modern disk drives

today contain between 1 MB and 4 MB of cache memory, and we might expect 16 to

64 MB in the timeframe in which Active Disks would become commercially available

[Anderson98]. This means that care must be taken in designing algorithms and in choos-

ing when to take advantage of execution at the disks. The details of the basic computation

in the frequent sets application are shown in Table 5-4.

Application Input
Computation

(instr/byte)
Throughput

(MB/s)
Memory 

(KB)
Selectivity

(factor)
Bandwidth

(KB/s)

Search k=10 7 28.6 72 80,500 0.4

Table 5-3 Costs of the search application. Computation requirement, memory required, and the selectivity
factor in the network. The parameter value is a variable input to the application and specifies the number of
neighbors to search for, which directly determines the memory size required at each disk.

Figure 5-3a Performance of frequent
sets. The frequent sets application
shows linear scaling to 18.9 MB/s
with eight Active Disks, while the
server system bottlenecks at
8.4 MB/s.
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Figure 5-3b Memory required for
frequent sets.  The amount of
memory necessary for the frequent
sets application increases as the level
of support required for a particular
rule decreases. Very low support
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5.2.3 Multimedia - Edge Detection

Figure 5-4 shows the results for the edge detection application. As we see in

Table 5-5, the image processing applications require much more CPU time than search or

frequent sets do, leading to much lower throughputs on both systems. The edge detection

bottlenecks the server CPU at 1.4 MB/s, while the Active Disk system scales to 3.2 MB/s

with 10 disks. The brightness threshold provided as an input to the application determines

how many objects are identified in a particular scene by setting a threshold for the contrast

between nearby pixels to determine an “edge”. The setting shown is appropriate for prop-

erly identifying the cows (as well as a small number of rocks) in the sample images.

5.2.4 Multimedia - Image Registration

Figure 5-4 shows the results for the image registration application. Image registra-

tion is the most CPU-intensive of the applications we have considered, as shown in

Table 5-6. It achieves only 225 KB/s on the server system, and scales to 650 KB/s with ten

Application Input
Computation

(instr/byte)
Throughput

(MB/s)
Memory 

(KB)
Selectivity

(factor)
Bandwidth

(KB/s)

Frequent Sets s=0.25% 16 12.5 620 15,000 0.8

Table 5-4 Costs of the frequent sets application. Computation requirement, memory required, and the
selectivity factor in the network. The parameter value specifies the minimum support required for an itemset
to be included in the final count, which affects the amount of memory required at each drive.

Figure 5-4 Performance of edge
detection.  The edge detection
application shows linear scaling with
number of disks while the server
system bottlenecks at about
1.4 MB/s.Server
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Application Input
Computation

(instr/byte)
Throughput

(MB/s)
Memory 

(KB)
Selectivity

(factor)
Bandwidth

(KB/s)

Edge Detection t=75 303 0.67 1776 110 6.1

Table 5-5 Costs of the edge detection application. Computation requirement, memory required, and the
selectivity factor in the network. The parameter value is the brightness threshold of the objects to be
detected, and affects the selectivity of the overall computation.
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Active Disks. Due to the iterative nature of this computation, the amount of processing

required can vary significantly from image to image, a factor that the Active Disk runtime

system would have to take into account when scheduling this particular computation.

5.2.5 Database - Select (subset of Query 1)

Figure 5-6 compares the performance of a database server with traditional disks

against a server with an equivalent number of Active Disks for a simple select query. The

query being performed is:

select * from lineitem where l_shipdate > ‘1998-09-02’

using tables and test data from the TPC-D decision support benchmark. The records in the

database cover dates from 1992 through the end of 1998, so this query returns about 4% of

Server

Active Disks

Figure 5-5 Performance of image
registration.  The image registration
application also scales linearly, but
requires almost a factor of ten more
CPU cycles, reducing throughput in
both systems.
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Application Input
Computation

(instr/byte)
Throughput

(MB/s)
Memory 

(KB)
Selectivity

(factor)
Bandwidth

(KB/s)

Image Registration - 4740 0.04 672 180 0.2

Table 5-6 Costs of the image registration application. Computation requirement, memory required, and the
selectivity factor in the network. The amount of computation required is highly dependent on the image
being processed and the value shown is for an average image.

Figure 5-6 Performance of PostgreSQL select.
The PostgreSQL select operation shows linear
scaling with number of disks up to 25.5 MB/s
with 7 disks, while the server system
bottlenecks at 18 MB/s.
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the total records in the lineitem table. This query performs the qualification at the

disks and returns a record to the host only if the condition matches.

As usual, the server performs better than the Active Disk system for small numbers

of disks, since each individual disk is much less powerful than the 500 MHz host. Once

the aggregate compute power of the disks passes that of the host, the Active Disk system

continues to scale while the server performance remains flat, no matter how much aggre-

gate disk bandwidth is available. Notice that the performance increase in the Active Disk

system is somewhat less than linear. This is due to the sequential overhead of performing

the query - primarily the startup overhead of initiating the query and beginning the Active

Disk processing. This overhead is amortized over the entire size of the table processed.

For the experiments in the chart, the table is only 125 MB in size, so the overhead is sig-

nificant and noticable in the results. A real TPC-D system sized for a 300 GB benchmark,

would have a lineitem table of over 100 GB [TPC98].

The code executed at the host is a version of the PostgreSQL 6.5 modified to handle

Active Disks. Changes were made in the storage layer to provide striping and use a NASD

interface for disk access, rather than a traditional fileystem, and in the “scan” function to

provide a way to ship the qualifcation condition to the drives and start the Active Disk

processing. Additional changes to support aggregations and joins are discussed in a later

section, as are the changes to allow the query optimizer to make decisions on the most

appropriate location to execute a particular part of the query. Further details of the code

modifications necessary to support Active Disks are provided in Chapter 6.

The details of the basic computation in the select are shown in Table 5-7. We see

that the select is the least expensive of all the applications discussed so far, using less than

four instructions per byte of data processed. It also uses very little memory since only

enough memory to evaluate one page of tuples at a time is required.

Application
Computation

(instr/byte)
Computation
(cycles/byte)

Throughput
(MB/s)

Memory 
(KB)

Selectivity
(factor)

Code
(KB)

Database Select 3.75 6.5 19.5 88 52.0 20.5 (13.3)

Table 5-7 Costs of the database select application. Computation requirement, memory required, and the
selectivity factor in the network. The computation requirement is shown in both instructions per byte and
cycles per byte. The last column also gives the total size of the code executed at the drives (and the total size
of the code that is executed more than once).
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5.2.6 Database - Aggregation (Query 1)

Figure 5-7 compares the performance of a database server with traditional disks

against a server with an equivalent number of Active Disks for a simple aggregation

query. The query being performed is:

select l_returnflag, l_linestatus, 

sum(l_quantity) as sum_qty, 

sum(l_extendedprice) as sum_base_price, 

sum(l_extendedprice*(1-l_discount)) as sum_disc_price,

sum(l_extendedprice*(1-l_discount)*(1+l_tax)) as sum_charge,

avg(l_quantity) as avg_qty, 

avg(l_extendedprice) as avg_price, 

avg(l_discount) as avg_disc, 

count(*) as count_order 

from lineitem 

where l_shipdate <= ’1998-09-02’ 

group by l_returnflag, l_linestatus 

order by l_returnflag, l_linestatus

using tables and test data from the TPC-D decision support benchmark. The records in the

database cover dates from 1992 through the end of 1998, so this query summarizes about

95% of the records in the lineitem table. This query performs the qualification at the

disks and examines a record only if the condition matches. It also performs the aggrega-

tion calculations in parallel at the disks, and returns per-disk summaries that are then

aggregated into a single set of results at the host.

The details of the basic computation in the aggregation are shown in Table 5-8. The

computation required for aggregation is significantly more than for the select. The same

comparison as in the select is performed to identify records that match the qualification

condition. Matching records are then sorted and combined using the group by keys and

aggregated into the sums and averages specified by the query. Each disk returns the aggre-

gation values for its portion of the relation, and these results are then combined at the host.

Figure 5-7 Performance of PostgreSQL
aggregation.  The PostgreSQL
aggregation shows linear scaling with
the number of Active Disks and reaches
13 MB/s with eight disks, while the
server bottlenecks on the CPU at
6.5 MB/s.
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5.2.7 Database - Join (Query 9)

Figure 5-9 compares the performance of a database server with traditional disks

against a server with an equivalent number of Active Disks for a simple two-way join. The

query being performed is:

select sum(l_quantity), count(*) 

from part, lineitem

where p_partkey = l_partkey 

and p_name like ’%green%’ 

group by n_name, t_year 

order by n_name, t_year desc

using tables and test data from the TPC-D decision support benchmark. The records in the

database cover 1,000 different items, so this query matches about 10% of the unique part

numbers in the database. This query performs a semijoin at the disks and returns a record

to the host only if the join key matches the filter created from the inner relation. The

returned records from the part table are then used to probe the lineitem tables.

The details of the basic computation in the join are shown in Table 5-9. The opera-

tion performed at the drives is the filtering phase of a Bloomjoin as discussed in Chapter 4.

The drives perform only the initial filtering based on keys of the inner relation, essentially

performing a semijoin of the outer relation with the keys from the inner relation. Only

matching tuples from the outer relation are returned to the host, where they are joined with

the necessary fields from the inner relation.

Application
Computation

(instr/byte)
Computation
(cycles/byte)

Throughput
(MB/s)

Memory 
(KB)

Selectivity
(factor)

Code
(KB)

Database Aggregation 15.0 31.1 120 31.9 26.7 (18.4)

Table 5-8 Costs of the database aggregation application. Computation requirement, memory required, and
the selectivity factor in the network. The computation requirement is shown in both instructions per byte
and cycles per byte. The last column also gives the total size of the code executed at the drives (and the total
size of the code that is executed more than once).

Figure 5-8 Performance of
PostgreSQL join.  The PostgreSQL
join scales nearly linearly to 24 MB/s
with Active Disks, and is limited to
11 MB/s in the server system.
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The results in Figure 5-8 show the performance of a more complex join, executing

the full 5-way join given by Query 9 from TPC-D. The query being performed is:

select n_name, t_year, 

sum(l_extprice*(1-l_disc)-ps_supplycost*l_quantity) as sum_profit 

from part, supplier, lineitem, partsupp, order, nation, time

where s_suppkey = l_suppkey 

and ps_suppkey = l_suppkey 

and ps_partkey = l_partkey 

and p_partkey = l_partkey 

and o_orderkey = l_orderkey 

and t_alpha = o_orderdate 

and s_nationkey = n_nationkey 

and p_name like ’%green%’ 

group by n_name, t_year 

order by n_name, t_year desc

again using tables and test data from TPC-D. 

This query has a much higher serial fraction than the two-way join, and shows the

performance limitation in the Active Disk much sooner than the simple join. The serial

fraction of this entire query is close to 30%, so the maximum speedup possible with

Active Disks is a factor of 3x, even with perfect parallel scaling. The results here show a

11% improvement in performance with a total of eight disks.

Application
Computation

(instr/byte)
Computation
(cycles/byte)

Throughput
(MB/s)

Memory 
(KB)

Selectivity
(factor)

Code
(KB)

Database Join 3.4 6.2 20.0 88 4.3 19.8 (14.4)

Table 5-9 Costs of the database join application. Computation requirement, memory required, and the
selectivity factor in the network. The computation requirement is shown in both instructions per byte and
cycles per byte. The last column also gives the total size of the code executed at the drives (and the total size of
the code that is executed more than once).

Figure 5-9 Performance of PostgreSQL
join.  This query has a significantly higher
serial fraction than the previous
applications, so the scaling with Active
Disks drops off relatively early. The
performance improvement is about 11%
with eight disks.
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5.2.8 Database - Summary

Table 5-10 summarizes the results of the last several sections and compares the per-

formance of the server system and the Active Disk prototype on several of the most

expensive queries from the TPC-D benchmark. We see that the scan-intensive applications

show roughly linear scalability, while the more complex join operations have considerably

higher serial overheads, but still show significant speedups with Active Disk processing.

These results are with a small prototype system of only eight disks, which is much smaller

than the system that are built in practice for this type of workload.

5.2.9 Database - Extrapolation

Table 5-11 extends the results from the previous table to estimate the performance

of a more realistically sized TPC-D system compared to a similar system using Active

Disks. The system modelled is a Digital AlphaServer 8400 with 520 disks running

Oracle 8 on a TPC-D benchmark with a scale factor of 300 GB [TPC98a]. The numbers

are estimates for this larger system based on the results for the eight disk prototype pre-

sented in the previous section. The table shows the improvements on four of the most

expensive queries in the benchmark. We see that better than order of magnitude improve-

ments are possible in the scan-intensive queries with less dramatic, but still significant,

benefits for even the most complex join operations.

Query Type Input
(MB)

Output
(KB)

Disks Host
(s)

Throughput
(MB/s)

Active Disk
(s)

Throughput
(MB/s)

Q1 scan 494 0.2 8 76.0 6.5 38.0 12.6 100%

Q5 join (6) 494 0.1 8 219.0 2.2 186.5 2.6 17%

Q6 select 494 5057 8 27.2 18.8 17.0 29.0 60%

Q9 join (6) 494 0.5 8 95.0 4.5 85.3 5.78 11%

Table 5-10 Summary of TPC-D results using PostgreSQL. The table compares the performance of a selected set
of queries from the TPC-D benchmark running on the PostgreSQL database system using a single host, and in a
system modified to use Active Disks.

Query Type Input
(GB)

Output
(KB)

Disks Host
(s)

Throughput
(MB/s)

Active Disk
(s)

Throughput
(MB/s)

Q1 scan 192.3 0.2 520 4,357.1 45 307.7 640 1,320%

Q5 join (6) 245.1 0.1 520 1,988.2 126 1,803.4 139 10%

Q6 select 27.5 0.1 520 63.1 446 6.1 4,636 900%

Q9 join (6) 279.2 6.5 520 2,710.8 105 2,232.1 128 22%

Table 5-11 Extension of TPC-D results to a larger system. This table extends the results of the summary table in
the previous section to a larger system with a total of 520 disks. The system is the Digital AlphaServer 8400
originally presented in Chapter 2, with performance numbers from a TPC-D 300 GB benchmark reported in
May 1998 [TPC98a]. The numbers in this table predict the performance benefit of replacing the disks in that
system with Active Disks and using an appropriately modified database system. The change in cost assumes that
each Active Disk costs twice as much as a traditional disk, which is a very conservative estimate.
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5.3 Model Validation

This section compares the performance results measured in the prototype system

against the predictions made by the model of Chapter 3 and finds generally good agree-

ment across all the applications measured.

5.3.1 Data Mining & Multimedia

The graphs of Figure 5-2, 3, 4, and 5 match the basic shape of the model predictions

in Chapter 4. To confirm the values, we need the specific parameters of this testbed. We

have  for relative processing rates between the Active Disks and the

host, the host processor is about four times as powerful as a single Active Disk processor.1

Ideally, the prototype would have  for these tests, with disks and networks

being equal, but this was not possible with the testbed hardware available. Instead, the

parameters are , ,  and  for the host and

Active Disks respectively.

Estimating the applications’ selectivity is a straightforward exercise of counting

bytes and these are shown in Table 5-12. Estimating the number of cycles per byte is not

so straightforward. The analysis began by instrumenting the server implementation of

each application to determine the total number of cycles spent for the entire computation

when all code and data are locally cached, and dividing this by the total number of bytes

processed. This ignores the cost of forming, issuing and completing the physical SCSI

disk operations, measured in a previous study as 0.58 microseconds on a 150 MHz Alpha

or 10.6 cycles per byte [Patterson95]. Adding this to the “hot cache” numbers gives an

estimate of the cycles per byte required by each application in Table 5-12.

Figure 5-10 combines the results for all four applications and superimposes the pre-

dictions of the model based on these system and application parameters. The search and

frequent sets applications show strong agreement between the model and the measure-

1. this ratio can be estimated directly from the clock rates because the processors use the same basic chip, and the code
is identical for both cases. Normally one would need to compare the relative performance on the particular bench-
mark application - e.g. the embedded processor on the disk may be less adept at some functions than a more complex,
superscalar host processor, although the simple integer computations used as the basis for most of the applications
discussed here should perform nearly as well on the embedded processor

αs 133 500⁄ 1 3.8⁄= =

αd αn 1= =

rd 14 MB/s= rd’ 7.5 MB/s= rn 60 MB/s= rn’ 10 MB/s=

Application Computation
(cycles/byte)

Memory 
(KB)

Selectivity Parameter

Search 23.1 72 80,500 k=10

Frequent Sets 61.1 620 15,000 s=0.25%

Edge Detection 288 1776 110 t=75

Image Registration 1495 672 150 -

Table 5-12 Parameters of the applications for validation of the analytic model. The table gives computation
time per byte of data, memory required at each Active Disk, and the selectivity factor in the network.
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ments. The largest error, a 14% disagreement between the server model and implementa-

tion of the search may reflect an overestimate of the cycles per byte devoted to disk

processing because the estimate is based on an older machine with a less aggressive super-

scalar processor. The other two applications, however, differ significantly from the model

predictions. The problem with these applications is that they do not yet overlap all disk

accesses with computation, as the model assumes. For example, the edge detection appli-

cation reads 256 KB images as a single request and, since the operating system read-ahead

is not deep enough, causes additional stall time as each image is fetched. Using asynchro-

nous requests or more aggressive prefetching in the application should correct this ineffi-

ciency. An additional contributor to this error is the serial portion of the applications

which affects the image processing applications more seriously since they process less

total data than the other two. To estimate the performance of these applications if the over-

lapping were improved, the model validation results estimate the total stall time experi-

enced by each application and subtract it from the application run time. These “improved”

prototype estimates are shown as additional lines in Figure 5-10c and d. With this modifi-

cation, the model predicts performance within 15% for all the applications shown. Given

the goal of using the model to develop intuition about the performance of Active Disks

applications, these are strong results.

Figure 5-10 Validation of the analytical model against the prototype.  The values
predicted by the model using the system and application parameters in Section 5.4 are
superimposed as dashed lines on the measurements from the prototype systems. The
differences are within 15% for search and frequent sets. Edge detection and image
registration do not precisely fit the assumptions of our model. Both applications
suffer additional, unmodelled I/O stall time because they read from the disks in
image-sized chunks, rather than streaming in sequential accesses as search and
frequent sets are able to do. This means that there is disk access time that cannot be
overlapped with computation, reducing the throughput. There is serial overhead in all
of the applications. This is largely amortized by the large size of the databases used in
search and frequent sets, but shows up in the image processing applications that
process less total data. The gray lines on the figures estimate the expected
performance when these factors are accounted for. This estimated performance is
now within 15%.
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5.3.2 Database

The results in Figure 5-11 show the validation of the model for the three basic data-

base operations. The chart shows very close agreement between the performance pre-

dicted by the model and that observed in the prototype. For the select, the primary

limitation is the interconnect bandwidth into the host. The traditional system is faster at a

low number of disks because the SCSI busses can deliver the aggregate bandwidth of the

disks. Once this limit is exceeded, the server system no longer improves as additional

disks are added. The Active Disk system starts out lower because of the mismatch in the

underlying physical bandwidths in the prototype ( ) but quickly overtakes the host

due to the much smaller amount of data being transferred. The aggregation is cpu-limited,

so the host system bottlenecks immediately as its processor is completely occupied. Once

the aggregate processing power of the Active Disks exceeds that of the host, the Active

Disks are faster and continue to scale as disks are added. The selectivity of this computa-

tion is over 600, so the Active Disk system would not bottleneck on the interconnect until

well over 100 disks. The two-way join shows a much lower selectivity - only 8 for the

chosen subjoin from Query 9 - so even the Active Disk system will bottleneck at a certain

point. In this case, we can see the plateau already with 16 disks, although this still repre-

Figure 5-11 Validation of the model against the database operations.  The values predicted by the
model using the system and application parameters in Section 5.4 are superimposed as dashed lines
on the measurements from the prototype systems.
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sents a factor of 4x performance improvement over the host at the same point. Finally, the

power of Amdahl’s Law is shown for the full Query 9 join - the most complex of the TPC-

D queries. This computation, the way it is partitioned, has a serial fraction of 30%, which

causes the Active Disk system to quickly plateau. There are more complicated ways to

partitioned this computation which might improve the Active Disk performance, but the

gain would likely never be more than 2x the current performance.

5.4 Extension - Data Mining and OLTP

One of the major benefits of performing processing directly at the drives is the abil-

ity to more efficiently schedule application work. This is particularly promising in the

ability to balance the application processing done by the Active Disks with the existing

“demand” work at the drive.

The previous sections have focussed on the direct speedups of applications running

in an Active Disk system. It is possible, however, to use the additional resources provided

by Active Disks in another way: to perform additional work at the drives without impact-

ing the applications already using the storage system. This can improve total system

thoughput in an existing system, or reduce the cost of a new system that handles an equiv-

alent workload.

This section explores one example of this type of scheduling, where an application

operating directly at the drive takes advantage of a particular foreground workload to aid

its own processing by doing additional work in the “background” using resources that

would otherwise be wasted.

5.4.1 Idleness in OLTP

Query processing in a database system requires several resources, including

1) memory, 2) processor cycles, 3) interconnect bandwidth, and 4) disk bandwidth. Per-

forming additional tasks, such as for example data mining, on a transaction processing

system without impacting the existing workload would require there to be “idle” resources

in each of these four categories.

Active Disks provide the additional memory and compute resources that are not uti-

lized by the existing transaction processing workload. Using Active Disks to perform

scans, aggregations, and joins directly at the drives keeps the interconnect requirements

low. This leaves the disk arm and media as the critical resources. The following sections

discuss a scheduling scheme at the disks that allows a background sequential workload to

be satisfied essentially for free while servicing foreground requests.

The discussion starts with a simple priority-based scheme that allows the back-

ground workload to proceed with only a small impact on the foreground work. The fol-

lowing sections extend this system to read additional blocks completely “for free” and

show that these benefits are consistent at high foreground transaction loads and as data is

striped over a larger number of disks.
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5.4.2 Motivation

The use of data mining to elicit patterns from large databases is becoming increas-

ingly popular over a wide range of application domains and datasets [Fayyad98]. One of

the major obstacles to starting a data mining project within an organization is the high ini-

tial cost of purchasing the necessary hardware. This means that someone must “take a

chance” on the up front investment simply on the suspicion that there may be interesting

“nuggets” to be mined from the organizations existing databases. Many data mining oper-

ations translate into large sequential scans of the entire data set. If these selective, parallel

scans can be performed directly at the individual disks, then the only limiting factor will

be the bandwidth available for reading data from the disk media (i.e. the application per-

formance will scale directly with the number of disks available).

The most common strategy for data mining on a set of transaction data is to pur-

chase a second database system, copy the transaction records from the OLTP system to the

decision support system each evening, and perform mining tasks only on the second sys-

tem, i.e. to use a “data warehouse” separate from the production system. This strategy not

only requires the expense of a second system, but requires the management cost of main-

taining two complete copies of the data. Table 5-13 compares a transaction system and a

decision support system from the same manufacturer. The decision support system con-

tains a larger amount of compute power, and higher aggregate I/O bandwidth, even for a

significantly smaller amount of live data. This section argues that the ability to operate

close to the disk makes it possible for a significant amount of data mining to be performed

using the transaction processing system, without requiring a second system at all. This

provides an effective way for an organization to “bootstrap” its mining activities.

The idea of this section is to use Active Disks to support an existing transaction pro-

cessing workload as well as a background data mining workload. Previous sections have

argued that the memory and processing power is available on the disks to perform addi-

tional functions. This section will show that, for a particular choice of workloads, two

applications can be combined and can take advantage of the ability to schedule directly at

the disk drives to operate more efficiently together. Figure 5-12 illustrates the architecture

of such a system.

system # of CPUs
memory

(GB)
# of disks

storage
(GB)

live data
(GB)

cost
($)

NCR WorldMark 4400 (TPC-C) 4 4 203 1,822 1,400 $839,284

NCR TeraData 5120 (TPC-D 300) 104 26 624 2,690 300 $12,269,156

Table 5-13 Comparison of an OLTP and a DSS system from the same vendor. We see that the DSS system requires much
greater processing power and bandwidth than the OLTP system. Data from www.tpc.org, May and June 1998.
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5.4.3 Proposed System

The performance benefits of Active Disks are most dramatic with the highly-selec-

tive parallel scans that form a core part of many data mining applications. The scheduling

system proposed here assumes that a mining application can be specified abstractly as:

where steps (1) and (2) can be performed directly at the disk drives in parallel, and step (3) 

combines the results from all the disks at the host once the individual computations com-

plete.

The performance of an application that fits this model and has a low computation

cost for the filter function and high selectivity (data reduction from B to B’) will be

Traditional System

Active Disk System

selective processing reduces
network bandwidth required
upstream

Figure 5-12 Diagram of a traditional server and an Active Disk architecture.  By moving processing to the
disks, the amount of data transferred on the network is reduced, the computation can take advantage of the
parallelism provided by the disks and benefit from closer integration with on-disk scheduling. This allows the
system to continue to support the same transaction workload with additional mining functions operating at the
disks. In this case, the primary performance bottleneck becomes the bandwidth of the individual disks.

on-disk processing offloads
server CPU 

disk bandwidth becomes
the critical resource

(1) foreach block(B) in relation(X)

(2) filter(B) -> B’

(3) combine(B’) -> result(Y)

assumption: ordering of
blocks does not affect the
result of the computation
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limited by the raw bandwidth available for sequential reads from the disk media. In a ded-

icated mining system, this bandwidth would be the full sequential bandwidth of the indi-

vidual disks. However, even in a system running a transaction processing workload, a

significant amount of the necessary bandwidth is available in the “idle” time between and

during disk seek and rotational latency for the transaction workload.

The key insight is that during disk seeks for a foreground transaction processing

(OLTP) workload, disk blocks passing under the disk head can be read “for free”. If the

blocks are useful to a background application, they can be read without any impact on the

OLTP response time by completely hiding the read within the request’s rotational delay. In

other words, while the disk is moving to the requested block, it opportunistically reads

blocks that it passes over and provides them to the data mining application. If this applica-

tion is operating directly at the disk drive in an Active Disk environment, then the block

can be immediately processed, without ever having to be transferred to the host. As long

as the data mining application - or any other background application - can issue a large

number of requests at once and does not depend on the order of processing the requested

background blocks, the background application will read a significant portion of its data

without any cost to the OLTP workload. The disk will ensure that only blocks of a particu-

lar application-specific size (e.g. database pages) are provided, and that all the blocks

requested are read exactly once, but the order of blocks will be determined by pattern of

the OLTP requests.

Figure 5-13 shows the basic intuition of the proposed scheme. The drive maintains

two request queues: 1) a queue of demand foreground requests that are satisfied as soon as

possible; and 2) a list of the background blocks that are satisfied when convenient. When-

ever the disk plans a seek to satisfy a request from the foreground queue, it checks if any

of the blocks in the background queue are “in the path” from the current location of the

disk head to the desired foreground request. This is accomplished by comparing the delay

that will be incurred by a direct seek and rotational latency at the destination to the time

required to seek to an alternate location, read some number of blocks and then perform a

second seek to the desired cylinder. If this “detour” is shorter than the rotational delay,

then some number of background blocks can be read without increasing the response time

of the foreground request. If multiple blocks satisfy this criterion, the location that satis-

fies the largest number of background blocks is chosen. Note that in the simplest case, the

drive will continue to read blocks at the current location, or seek to the destination and

read some number of blocks before the desired block rotates under the head.

5.4.4 Experiments

All of the experiments in the following sections were conducted using a detailed

disk simulator [Ganger98], synthetic traces based on simple workload characteristics, and

traces taken from a server running a TPC-C transaction workload. The simulation models

a closed system with a think time of 30 milliseconds which approximates that seen in our
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traces. The multiprogramming level of the OLTP workload is varied to illustrate increas-

ing foreground load on the system. Multiprogramming level is specified in terms of disk

requests, so a multiprogramming level of 10 means that there are ten disk requests active

in the system at any given point (either queued at one of the disks or waiting in think

time).

In the synthetic workloads, the OLTP requests are evenly spaced across the entire

surface of the disk with a read to write ratio of 2:1 and a request size that is a multiple of 4

kilobytes chosen from an exponential distribution with a mean of 8 kilobytes. The back-

ground data mining (Mining) requests are large sequential reads with a minimum block

size of 8 kilobytes. In the experiments, Mining is assumed to occur across the entire data-

base, so the background workload reads the entire surface of the disk. Reading the entire

disk is a pessimistic assumption and further optimizations are possible if only a portion of

the disk contains data (see Section 5.4.4.5). All simulations run for one hour of simulated

time and complete between 50,000 and 250,000 foreground disk requests and up to

900,000 background requests, depending on the load.

There are several different approaches for integrating a background sequential

workload with the foreground OLTP requests. The simplest only performs background

requests during disk idle times (i.e. when the queue of foreground requests is completely

empty). The second uses the “free blocks” technique described above to read extra back-

ground blocks during the rotational delay of an OLTP request, but does nothing during

disk idle times. Finally, a scheme that integrates both of these approaches allows the drive

Figure 5-13 Illustration of ‘free’ block scheduling.  In the original operation, a request to read or write a block
causes the disk to seek from its current location (A) to the destination cylinder (B). It then waits for the requested
block to rotate underneath the head. In the modified system, the disk has a set of potential blocks that it can read “at
its convenience”. When planning a seek from A to B, the disk will consider how long the rotational delay at the
destination will be and, if there is sufficient time, will plan a shorter seek to C, read a block from the list of
background requests, and then continue the seek to B. This additional read is completely ‘free’ because the time
waiting for the rotation to complete at cylinder B is completely wasted in the original operation.
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to service background requests whenever they do not interfere with the OLTP workload.

This section presents results for each of these three approaches followed by results that

show the effect is consistent as data is striped over larger numbers of disks. Finally, we

present results for the traced workload that correspond well with those seen for the syn-

thetic workload.

5.4.4.1 Background Blocks Only, Single Disk

Figure 5-14 shows the performance of the OLTP and Mining workloads running

concurrently as the OLTP load increases. Mining requests are handled at low priority and

are serviced only when the foreground queue is empty. The first chart shows that increas-

ing the OLTP load increases throughput until the disk saturates and queues begin to build.

This effect is also clear in the response time chart below, where times grow quickly at

higher loads. The second chart shows the throughput of the Mining workload at about

2 MB/s for low load, but decreases rapidly as the OLTP load increases, forcing out the low

priority background requests. The third chart shows the impact of Mining requests on

OLTP response time. At low load, when requests are already fast, the OLTP response time

increases by 25 to 30%. This increase occurs because new OLTP requests arrive while a

Mining request is being serviced. As the load increases, OLTP request queueing grows,
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using Background Blocks Only.  The first chart shows
the throughput of the OLTP workload both with and
without the Mining workload. Using the Background
Blocks Only approach, we see that the addition of the
Mining workload has a small impact on OLTP
throughput that decreases as the OLTP load increases
and the Mining workload “backs off”. This trend is
visible in the second chart which shows the Mining
throughput trailing off to zero as the OLTP load
increases. Finally, the chart at the left shows the impact
of the Mining workload on the response time of the
OLTP. This impact is as high as 30% at low load, and
decreases to zero as the load increases.
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reducing the chance that an OLTP request would wait behind a Mining request in service

and eliminating the increase in OLTP response time as the Mining work is forced out.

5.4.4.2 ‘Free’ Blocks Only, Single Disk

Figure 5-15 shows the effect of reading ‘free’ blocks while the drive performs seeks

for OLTP requests. Low OLTP loads produce low Mining throughput because little

opportunity exists to exploit ‘free’ block on OLTP requests. As the foreground load

increases, the opportunity to read ‘free’ blocks improves, increasing Mining throughput to

about 1.7 MB/s. This is a similar level of throughput seen in the Background Blocks Only

approach, but occurs under high OLTP load where the first approach could sustain signifi-

cant Mining throughput only under light load, rapidly dropping to zero for loads above 10.

Since Mining does not make requests during completely idle time in the ‘Free’ Blocks

Only approach, OLTP response time does not increase at all. The only shortcoming of the

‘Free’ Blocks Only approach is the low Mining throughput under light OLTP load.

5.4.4.3 Combination of Background and ‘Free’ Blocks, Single Disk

Figure 5-16 shows the effect of combining these two approaches. On each seek

caused by an OLTP request, the disk reads a number of ‘free’ blocks as described in

Figure 5-13 in the previous section. This models the behavior of a query that wishes to

0 10 20 30 40 50
0

10

20

30

40

50

60

70

OLTP Throughput − 1 disk

multiprogramming level (MPL) of OLTP

th
ro

u
g

h
p

u
t 

(r
e

q
/s

)

0 10 20 30 40 50
0

500

1000

1500

2000

2500
Mining Throughput

multiprogramming level (MPL) of OLTP

th
ro

u
g

h
p

u
t 

(K
B

/s
)

0 10 20 30 40 50
0

100

200

300

400

OLTP Response Time

multiprogramming level (MPL) of OLTP

a
v
e

ra
g

e
 r

e
s
p

o
n

s
e

 t
im

e
 (

m
s
) Figure 5-15 Performance of the Free Blocks Only

approach.  When reading exclusively ‘free’ blocks, the
Mining throughput is limited by the rate of the OLTP
workload. If there are no OLTP requests being
serviced, there are also no ‘free’ blocks to pick up. One
advantage of using only the ‘free’ blocks is that the
OLTP response time is completely unaffected, even at
low loads. The true benefit of the ‘free’ blocks comes
as the OLTP load increases. Where the Background
Blocks Only approach rapidly goes to zero at high
loads, the Free Blocks Only approach reaches a steady
1.7 MB/s of throughput that is sustained even at very
high OLTP loads.
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scan a large portion of the disk, but does not care in which order the blocks are processed.

Full table scans in the TPC-D queries, aggregations, or the association rule discovery

application [Riedel98] could all make use of this functionality. Figure 5-16 shows that

Mining throughput increases to between 1.4 and 2.0 MB/s at low load. At high loads,

when the Background Blocks Only approach drops to zero, the combined system contin-

ues to provide a consist throughput at about 2.0 MB/s without any impact on OLTP

throughput or response time. The full sequential bandwidth of the modeled disk (if there

were no foreground requests) is only 5.3 MB/s to read the entire disk1, so this represents

more than 1/3 of the raw bandwidth of the drive completely “in the background” of the

OLTP load.

5.4.4.4 Combination Background and ‘Free’ Blocks, Multiple Disks

Systems optimized for bandwidth rather than operations per second will usually

have more disks than strictly required to store the database (as illustrated by the decision

1. As mentioned before, reading the entire disk is pessimistic since reading the inner tracks of modern disk drives is sig-
nificantly slower than reading the outer tracks. If we only read the beginning of the disk (which is how “maximum band-
width” numbers are determined in spec sheets), the bandwidth would be as high as 6.6 MB/s, but our scheme would also
perform proportionally better.
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Blocks and Free Blocks approaches.  This shows the
best portions of both performance curves. The Mining
throughput is consistently about 1.5 or 1.7 MB/s,
which represents almost 1/3 of the maximum
sequential bandwidth of the disk being modeled. At
low OLTP loads, it has the behavior of the Background
Blocks Only approach, with a similar impact on OLTP
response time and at high loads, it maintains
throughput by the use of ‘free’ blocks. Also note that at
even lower multiprogramming levels (going to the
right on the Mining throughput chart), performance
would be even better and that an MPL of 10 requests
outstanding at a single disk is already a relatively high
absolute load.



104

support system of Table 5-13). This same design choice can be made in a combined

OLTP/Mining system.

Figure 5-17 shows that Mining throughput using our scheme increases linearly as

the workloads are striped across a multiple disks. Using two disks to store the same data-

base (i.e. increasing the number of disks used to store the data in order to get higher Min-

ing throughput, while maintaining the same OLTP load and total amount of “live” data)

provides a Mining throughput above 50% of the maximum drive bandwidth across all load

factors, and Mining throughput reaches more than 80% of maximum with three disks.

We can see that the performance of the multiple disk systems is a straightforward

“shift” of the single disk results, where the Mining throughput with n disks at a particular

MPL is simply n times the performance of a single disk at 1/n that MPL. The two disk sys-

tem at 20 MPL performs twice as fast as the single disk at 10 MPL, and similarly with 3

disks at 30 MPL. This predictable scaling in Mining throughput as disks are added bodes

well for database administrators and capacity planners designing these hybrid systems.

Additional experiments indicate that these benefits are also resilient in the face of load

imbalances (“hot spots”) in the foreground workload.

5.4.4.5 ‘Free’ Blocks, Details

Figure 5-18 shows the performance of the ‘free’ block system at a single, medium

foreground load (an MPL of 10 as shown in the previous charts). The rate of handling

background requests drops steadily as the fraction of unread background blocks decreases

and more and more of the unread blocks are at the “edges” of the disk (i.e. the areas not

often accessed by the OLTP workload and the areas that are expensive to seek to). This

means that if data can be kept near the “front” or “middle” of the disk, overall ‘free’ block

performance would improve (staying to the right of the second chart in Figure 5-18).

Extending our scheduling scheme to “realize” when only a small portion of the back-

ground work remains and issue some of these background requests at normal priority
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(with the corresponding impact on foreground response time) should also improve overall

throughput. The challenge is to find an appropriate trade-off of impact on the foreground

against improved background performance.

Finally, note that even with the basic scheme as described here, it is possible to read

the entire 2 GB disk for ‘free’ in about 1700 seconds (under 28 minutes), allowing a disk

to perform over 50 “scans per day” [Gray97] of its entire contents completely unnoticed.

5.4.4.6 Workload Validation

Figure 5-19 shows the results of a series of traces taken from a real system running

TPC-C with varying loads. The traced system is a 300 MHz Pentium II with 128 MB of

memory running Windows NT and Microsoft SQL Server on a one gigabyte TPC-C test
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time needed to read the entire disk in the background at a multiprogramming level of 10. The second plot shows the
instantaneous bandwidth of the background workload over time. We see that the bandwidth is significantly higher at the
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database striped across two Viking disks. When we add a background sequential workload

to this system, we see results similar to those of the synthetic workloads. At low loads,

several MB/s of Mining throughput are possible, with a 25% impact on the OLTP

response time. At higher OLTP loads, the Mining workload is forced out, and the impact

on response time is reduced unless the ‘free’ block approach is used. The Mining through-

put is a bit lower than the synthetic workload shown in Figure 5-19, but this is most likely

because the OLTP workload is not evenly spread across the disk while the Mining work-

load still tries to read the entire disk.

The disk being simulated and the disk used in the traced system is a 2.2 GB Quan-

tum Viking 7,200 RPM disk with a (rated) average seek time of 8 ms. We have validated

the simulator against the drive itself and found that read requests come within 5% for most

of the requests and that writes are consistently under-predicted by an average of 20%.

Extraction of disk parameters is a notoriously complex job [Worthington95], so a 5% dif-

ference is a quite reasonable result. The under-prediction for writes could be the result of

several factors and we are looking in more detail at the disk parameters to determine the

cause of the mismatch. It is possible that this is due to a more aggressive write buffering

scheme modeled in the simulator than actually exists at the drive. This discrepancy should

have only a minor impact on the results presented here, since the focus is on seeks and

reads, and an underprediction of service time would be pessimistic to our results. The

demerit figure [Ruemmler94] for the simulation is 37% for all requests.

5.4.5 Summary

The previous chapters have shown that Active Disks can provide the compute

power, memory, and reduction in interconnect bandwidth to make data mining queries

efficient on a system designed for a less demanding workload. This section illustrates that

there is also sufficient disk bandwidth in such a system to make a combined transaction

processing and data mining workload possible. It shows that a significant amount of data

mining work can be accomplished with only a small impact on the existing transaction

performance. This means that if the “dumb” disks in a traditional system are replaced with

Active Disks, there will be sufficient resources in compute power, memory, interconnect

bandwidth, and disk bandwidth to support both workloads. It is no longer necessary to buy

an expensive second system with which to perform decision support and basic data mining

queries.

The results in Section 5.4.4.5 indicate that the current scheme is pessimistic because

it requires the background workload to read every last block on the disk, even at much

lower bandwidth. There are a number of optimization in data placement and the choice of

which background blocks to “go after” to be explored, but the simple scheme described

here shows that significant gains are possible.
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Chapter 6: Software Structure

This chapter describes the structure and implementation of the Active Disk code for

the applications described in the previous sections. It describes the basic structure of an

application for Active Disks, as well as the details of the prototype implementation. In

addition, it describes the separation of the database system into a host and Active Disk

portion, and the basic set of primitive functions required at the Active Disks to support this

structure. Finally, it quantifies a promising characteristics of code running on the Active

Disks, the ability to specialize a piece of code to the exact execution environment in a par-

ticular drive architecture and for a particular application function.

6.1 Application Structure for Active Disks

This section provides an outline of the structure of applications that execute on

Active Disks, including that design philosophy, the structure of the on-drive code and the

types of changes required for the code that remains on the host.

6.1.1 Design Principles

The basic design principles of developing an application to run in an Active Disk

setting are to 1) expose the maximum amount of parallelism in the data-intensive portion

of the processing, 2) isolate the code to be executed at the disks as much as possible to

form self-contained and manageable units, and 3) utilize adaptive primitives to take full

advantage of variations in available resources during execution. These three goals allow

the largest amount of performance and flexibility in the placement and execution of the

application code.

6.1.2 Basic Structure

The basic structure of an Active Disk application is that a “core” piece of code will

run at each of the drives, while any high-level synchronization, control, or merging code

continues to run at the host. This creates a client-server parallel programming model as

illustrated in Figure 6-1. Input parameters are initialized at the host and distributed to all

of the disks. Each of the disks then computes on its own local data and produces its portion

of the final result. The host collects the results from all the disks and merges them into the

final answer. Since there is a portion of code that runs at the host and processes data from
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the disks, it is always possible to “fix up” an incomplete computation at the drive, as long

as the drive functions always act conservatively. If they improperly filter a record that

should have been part of the result, for example, then the host code will never catch it. 

The high-level structure of an Active Disk application is similar to the normal pro-

cessing loop that simply uses that basic filesystem calls to do I/O. At an abstract level, any

data processing application will have a structure similar to the following:

The challenge for Active Disks is to specify the code for steps (3) and (4) in such a way 

that this portion of the code can be executed directly at the disks, and in parallel. This 

means there must not be any dependence on global state, or requirements for ordering in 

the processing of the blocks, because the execution will occur in parallel across all the 

disks on which F is stored. In all of the applications discussed here, this extraction of the 

appropriate code was done manually within the source code, although it should be possi-

ble to do a significant portion of this extraction automatically, or at least provide tools to 

aid the programmer in identifying candidate sections of code and eliminating global 

dependencies.

As a specific example of this two-stage processing, operating in parallel on the sep-

arate blocks in a file and then combining all these partial results, consider the frequent sets

application. It operates on blocks of transaction data individually and converts them into

itemset counts. The itemsets counts for all the blocks are then combined at the host simply

Figure 6-1 Basic structure of Active Disk computation. The host initializes the computation,
each of the drives computes results for its local data, and these results are combined by the host.

Initialize
Parameters

Compute
Local Results

Merge
Results

Input

Final
Result

(1) initialize

(2) foreach block(B) in file(F)

(3) read(B)

(4) operate(B) -> B’

(5) combine(B’) to result(R)

(6) cleanup
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by summing the individual counts, as shown in Figure 6-2. The operate step for fre-

quent sets takes raw transaction data and converts it into an array of counts of candidate

itemsets. The figure shows the 2-itemset phase, where the counts are stored as a two-

dimensional array and a 1 is added whenever a pair of items appears together in a transac-

tion (in a particular shopper’s basket). This set of counts can be calculated independently

at each of the disks, and the combine step merges the arrays from all the disks by simply

summing the values into a final array. There are no global dependencies once the initial

list of candidate itemsets is distributed, and each block of transactions can be processed in

parallel and in any order.

The search application is partitioned in a similar manner, with the operate step

choosing the k closest records on a particular disk, and the combine step choosing the k

closest records across all these individual lists. As with the frequent sets application, the

serial fraction of the search application is orders of magnitude less expensive than the par-

allel, counting fraction of the application, which leads to the linear speedups shown in

Chapter 5.

The edge detection and image registration applications operate purely as filters, so

they consist of completely parallel operate phases that convert an input image into a set

of output parameters. These is no combine step, as the results are simply output for each

image, without being combined further at the host. Since these two applications contain

essentially no serial fraction (every application has a tiny serial fraction in overhead to

combine
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Figure 6-2 Basic structure of one phase of the frequent sets application. The blocks of transaction data are
converted into itemset counts, which can then be combined into total counts.
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start the computation across n disks, however, this cost is quickly amortized when used

across reasonably-sized data sets), they also show linear scalability in the prototype results

from Chapter 5.

6.2 Implementation Details

This section provides specific details about the prototype implementation evaluated

in the previous chapter. The prototype makes specific assumptions about how the code is

organized and what the execution environment at the drives looks like. These assumptions

are not specifically required, but are discussed here to motivate one particular set of design

choices.

6.2.1 Background - NASD Interface

The prototype uses the Network-Attached Secure Disk (NASD) system developed

at Carnegie Mellon as a basis. This means that the drives are already network-attached

devices that can communicate directly with clients, with high-level management functions

provided by an external file manager that is not on the primary data path [Gibson97]. The

interface to these drives is object-based, rather than block-based as SCSI is today. The

drive provides a flat namespace of objects or extents, where space management and layout

within an object are controlled by the drive itself. In the traditional SCSI interface, a drive

provides a linear address space of fixed-size (and small, 512 bytes is the standard unit)

blocks. Higher-level filesystems are then responsible for allocating and managing this

space, without the drive having any knowledge of how these individual blocks are aggre-

gated into the “objects” seen by users (whether files, database tables, etc.). The object

interface of NASD allows the drive to manage sets of blocks as a whole, and communicate

to clients at a higher level. The choice of how to map user-understood “objects” onto

NASD objects is up to the filesystems that are implemented on top of NASD. The group at

Carnegie Mellon has explored the mapping of the Network File System (NFS) and the

Andrew File System (AFS) onto the object interface, where each file and directory in

these filesystems is mapped onto a separate NASD object [Gibson97a]. One could assume

more complex mappings where larger groups of files are mapped onto objects, or where a

single file is broken into multiple objects, but this work only considers the case where files

map onto single NASD objects. This allows the entire file to be treated as a single unit for

optimization and management.

6.2.2 Goals

There were several goals in the implementation of the prototype that influenced the

basic decisions made. It was desireable for the Active Disks functions to 1) operate out-

side the security system, 2) get resource management and thread of control from the host,

and 3) minimize the amount of code that is executed at the drives.

By operating above the security system, the functions executing on the disks are

required to obtain and present the same capabilities to the security system in order to gain
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access to data as functions executing on clients would. The functions executing at the

disks would not have priveleges beyond those of external code, except for the fact that

they could execute operations more quickly than a host, making, for example, a denial-of-

service attack more dangerous. By operating outside the security system, the data on the

disks is protected, just as it is in a conventional NASD system, without remote functions.

If a client does not have a capability to access a particular object, then there is no way that

a remote function operating on behalf of that client could gain the necessary capability.

By depending on the host for a thread of control, the drive does not have to manage

the highest level execution of an application. Just as in a traditional disk, the drive obtains

a request for service, expends some amount of resources servicing that request, and

returns control to the client (whether or not the client is blocked waiting for the request to

return, or is expecting to be “called back” when the request have been completed makes

no difference to the underlying system, the programmer is logically giving a “thread of

control” to the drive for the duration of the request, whether it is requiring it to operate

synchronously or is prepared to handle asynchronous completion).

By minimizing the amount of code that is run at the drives, the Active Disk code is

“built up” from simply reading the data to adding parts of the surrounding processing,

rather than being “stripped down” for a much larger piece of code. This allows the pro-

grammer to be more careful about both the amount of parallelism available and the

amount of synchronization required by the code.

6.2.3 Basic Structure

All of the data mining and multimedia applications described in Chapter 4 follow

the same basic model. The on-disk functions operate by processing a block of data after it

is read from the disk and before it is sent on the network, as follows:

where the operate operation reduces the amount of data to be sent on the network by 

the selectivity factor of the particular application. Note that this code structure allows the 

order in which blocks are read and processed to be determined by the on-disk scheduler, 

opening the way for optimizations such as the one discussed at the end of Chapter 5.

(1) request(R)

(2) map(R) -> block_list(L)

(3) foreach block(B) in block_list(L)

(4) read(B) from disk

(5) operate(B) -> B’

(6) send(B’) to host

(7) complete(R)
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6.2.3.1 Initialization

Active Disk processing is initiated by specifying a particular function to execute as

part of a modified SETATTR request. This causes the Active Disk runtime system to pass

the filesystem_specific portion of the SETATTR to the installed code as a set of

parameters of the form:

This causes a new Active Disk computation state to be initialized and bound to the

particular object_id. The initialization returns a tag which refers to this particular

instance of the execution for this object.

In the prototype, all the functions are directly linked with the code of the drive, so

the code_obj identifiers are simply static “code slots” at the drive that point to one of

the pieces of on-disk code. In a general-purpose system, this pointer would specify a sec-

ond on-disk object that contains the code to be executed. This code object would then con-

tain the text of the function to be executed using some type of portable, mobile code

system (such as Java, for example, but many other systems are possible).

Note that this arrangement allows multiple code segments (via separate installs) to

be attached to the same object_id, allowing for example a “counting” and a “filtering”

request stream all to be active against the same object at the same time. It does not provide

any way for multiple computations with the same code but different “states” to be active at

the same time (except by installing the same code twice).

6.2.3.2 Operation

Function execution is accomplished by specifying the tag returned from the Initial-

ization as a special parameter to a normal READ request that includes an object identifier,

offset and length specification, and an appropriate capability. The requested data is read

and the function executed before data is sent on the network. Each request is accepted

individually because this allows the host to control the overall pace of the execution. A

request from the host provides both a capability (for the security system) to access a par-

ticular region of the object and manages the high-level resource management. Each

request “enables” a particular amount of execution on the drive processor.

Another design option would be to allow the code to be initiated at the drive and

then told to “START”, with the drive controlling the pace of the execution. In choosing the

request-at-a-time option, the idea is to let the host continue to provide high-level flow con-

trol and manage the execution, rather than letting the thread of control transfer explicitly

typedef struct remote_param_s {

nasd_identifier_t object_id; /* object to operate on */

nasd_len_t block_len; /* block size */

nasd_identifier_t code_obj; /* code to execute */

nasd_identifier_t param_obj; /* init parameters */

} 
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to the drive. This level of control must be balanced against the desire to give the drive suf-

ficiently large request to optimize over. The greater range of the object that the request

covers, the more aggressive the drive scheduler can be. Within the region of the object

specified by the READ, the drive is welcome to reorder requests as it sees fit1.

6.2.3.3 Memory Allocation

The goal of the memory allocation system is to prevent unnecessary copying of data

into and out of the Active Disk applications and to equitably share memory segments

between the remote programs and the disk cache. Instead of copying buffers between the

disk subsystem (“kernel”) and remote code (“user”), block descriptors are passed between

modules. The Active Disk function simply acquires pages from the on-disk cache that are

not backed by physical blocks on the disk. These pages can then be used by the Active

Disk function at will.

In the protoype implementation, an allocation of blocks to an Active Disk function

is permanent until it is explicitly released by the function. In a general-purpose system,

memory pages for Active Disk functions would be integrated into the same page-manage-

ment algorithm used for allocating pages for caching to individual objects and request

streams. This would provide a mechanism whereby Active Disk functions would be asked

to give up pages, or have them forcibly reclaimed.

6.2.3.4 Interface

The following list the functions are provided to support the four basic data mining

and multimedia applications:

1. this allows optimizations such as the reordering discussed at the end of Chapter 5, although this system is not imple-
mented in the current prototype and blocks are simply processed sequentially.

typedef struct filter_itemset_param_s {

unsigned int min_support;

} filter_itemset_param_t;

void filter_setup_itemsets(filter_itemset_param_t params)

void filter_itemsets(char* buffer, unsigned int len)

void filter_complete_itemsets(char* output, unsigned int *out_len, 

unsigned int max_len)
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Note the similarity between the the frequent sets and the search, both of which simply con-

sume their inputs, with results provided by the final complete call, while both the edge 

detection and image registration functions produce output results as they go, returning a 

reduced amount of data (potentially none) in the output buffer for each block processed. 

The same basic structure is seen for all four functions, an initialization routine that takes a 

particular set of parameters, a processing routine that is executed once for each block of 

data, and a completion function to extract any collected result.

typedef struct filter_search_param_s {

int salary; int commission; int loan; int age; int zip;

int car; int house; int education; int years; int group;

unsigned int num_matches;

} filter_search_param_t;

void filter_setup_search(filter_search_param_t params)

void filter_search(char* buffer, unsigned int len)

void filter_complete_itemsets(char* output, unsigned int *out_len, 

unsigned int max_len)

typedef struct filter_edges_param_s {

unsigned int which_algorithm;

unsigned int brightness;

} filter_edges_param_t;

void filter_setup_edges(filter_edges_param_t params)

void filter_edges(char* buffer, unsigned int len,

char* output, unsigned int *out_len, unsigned int max_len)

void filter_complete_edges(void)

typedef struct filter_register_param_s {

int max_iterations;

} filter_register_param_t;

int filter_setup_register(filter_register_param_t params)

void filter_register(char* buffer, unsigned int len,

char* output,unsigned int *out_len, unsigned int max_len)

void filter_complete_register(void)
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6.3 Database System

This section outlines the changes necessary to adapt a relational database system for

use with Active Disks. Figure 6-3 gives an overview of the PostgreSQL structure for pro-

cessing a query. A query is parsed from the SQL input string. The traffic cop determines

whether the request is a SQL statement to be further optimized (select, insert, delete, etc.)

or a utility function (create table, destory table, etc.) and passes the request to the proper

place. If the query is to be optimized, the optimizer generates a description of all the possi-

ble execution paths as a series of nodes. It then uses cost estimates that take into account

the cost of the various nodes and statistics from the tables to be processed to determine the

optimal path. This path is then converted into a final plan and initialized for execution.

The execution engine takes the set of nodes that make up the query and executes them in

turn, from bottom up, allowing pipeline parallelism wherever possible.

Figure 6-4 expands the detail of one of the Execute nodes to incorporate the access

to storage and the required data type functions. The diagram illustrates a sequential scan

node that traverses a table from beginning to end, matching tuples against a qualification

condition and returning only matching tuples. A database page is read from the disk, pro-

cessed by the File subsystem, which provides the interaction with the underlying operating

system, passed through a particular access method (a Heap in this case), and then com-

bined with the table schema that identifies the layout of tuples on the page. Tuples are then
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Figure 6-3 Overview of PostgreSQL query structure.  The PostgreSQL engines accepts a query, determines a set of
possible paths for executing the query, uses cost estimates to choose an optimal plan, and then processes the query as
a series of execute nodes.
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processed one by one and the qualification condition is evaluated. The evaluation of the

qualification requires both the condition as described in the query (e.g. the field offset and

constant to match against for dept_id = 5) and the data type-specific functions to per-

form the comparison (e.g. the code for =, equality of integers). If the tuple matches, it is

passed along to the next node in the chain. Other nodes, such as MergeJoin, combine

tuples from multiple relations, so these will have two “streams” of incoming tuples. A

node such as Group that groups a set of tuples matching a particular condition together

may have several logical “streams” of output tuples.

Figure 6-5 shows the changes necessary in a system with Active Disks to execute

the same sequential scan node. The code is logically split into a drive and host portion. We

see that the disk now processes much more of the code than before. The tuple descriptions

from the table schema, the expressions and constants from the qualification, and the oper-

ators for evaluating the condition are all statically bound into the Active Disk function and

shipped to the drives for execution. Just as the original File module was modified to pro-

cess pages in parallel from multiple drives, the execution nodes are modified to accept

tupes in parallel from multiple drives executing concurrently.

The modified diagram in Figure 6-6 shows the high-level overview of PostgreSQL

as modified for Active Disks. The query optimizer is extended to take into account system

Figure 6-4 Details of a PostgreSQL Execute node.  The diagram shows the execution of a sequential scan node,
including the access method for getting tuples from disk and tuple descriptions and data type-specific functions
through the Function Manager.
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configuration parameters such as the number and types of Active Disks and the network

connecting them. In addition, several of the execute nodes are combined to produce logi-

cal nodes that can be executed more efficiently in an Active Disk system. Essentially, this

combines the Group and Aggregation node types with the Sort node, which would have

otherwise been executed one after the other, but can be done much more efficiently fused

together and executed as a whole. When combined into a single execution node, tuples can

be aggregated as they are sorted. The basic algorithm used is replacement selection, where

a tuple that matches the key of an existing tuple in the tree is merged into a single “aggre-

gated” tuple, rather than inserting the new tuples into the tree. This means that the total

amount of memory required for an aggregation is the size of the aggregated result (i.e.

determined by the number of unique values of the group by keys), rather than the size

of the input. If the nodes are not combined, then this computation is performed by Postgr-

eSQL in two stages, where the data is first sorted, and then adjacent tuples are aggregated.

This requires a much greater amount of memory and is not necessary since the aggrega-

tion only needs to be able to combine adjacent tuples, and never requires all the tuples to

be in fully sorted order. Of course, this type of optimization is not limited to the Active

Disk case, it simply makes the execution primitive on the Active Disks more efficient as

well as more adaptive.

Figure 6-5 PostgreSQL Execute node for Active Disks.  The diagram shows the execution of a sequential
scan node, including the access method for getting tuples from disk and tuple descriptions and data type-
specific functions through the Function Manager.
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6.3.1 Query Optimization

The PostgreSQL query optimizer must be modified to take into account the presence

of a particular number of Active Disks, as well as their relative memory sizes and process-

ing rates. The optimizer must also have some idea of the processing power and memory of

the host and the basic performance characteristics of the network connecting the Active

Disks to the host. The optimizer can then combine this system information with character-

istics of the data in the tables being operated on and the structure and parameters of the

query to estimate selectivities and determine the appropriate placement of functions.

Figure 6-7 shows the query plan generated by the PostgreSQL optimizer for

Query 5 from the TPC-D decision support benchmark. This query performs a total of five

joins among six relations, followed by a final sort and aggregation step.

6.3.1.1 Cost Functions

The optimizer contains cost estimates for each of the basic operations parameterized

by the sizes of the tables, the selectivities of the qualification and join conditions being

evaluated, and the basic system parameters. Table 6-1 shows the cost equations for each
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Figure 6-6 Overview of PostgreSQL query structure with Active Disks.  The cost estimates are modified to also
take into account the system parameters, including the number and capabilities of Active Disks in the system. For
efficient execution, the Active Disk system also combines several node types so that Group and Sort and
Aggregation, Group, and Sort are done as entire nodes that can be executed together, rather than in series, one
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Execute node as implemented in the default PostgreSQL optimizer and the modifications

required to take into account the availability of Active Disk processing.

SeqScan

where o_orderdate >= ’1994-01-01’
and o_orderdate < ’1995-01-01’
from order

and c_custkey = o_custkey

sum(l_price*(1-l_disc))

from customer

HashJoin

NestLoop

HashJoin

NestLoop

Qual 1,171 -> 162

Scan 29,272 -> 1,171

Scan 4,288 -> 117

Join 57 + 1 -> 12

Join 117 +162 -> 324

Scan 126,440 -> 14,075

Join 324 +14,075 -> 3,249

Scan 264 -> 7

Group 12 -> 12

Sort 12 -> 12

Figure 6-7 Text, execution plan, and result for Query 5.  The right column shows the text of the query, the center
diagram shows the final plan chosen by the optimizer for this execution, and the left column shows the amount of
data reduction at each node in the plan (according to the optimizer estimates).

160,280 KB (20,035 pages) on disk
n_name| revenue

---------+----------
CHINA |7349391.47
INDONESIA|6485853.40
INDIA |5505346.81
JAPAN |5388883.59
VIETNAM |4728846.60
(5 rows)

SeqScan

IdxScan

SeqScan

SeqScan

MergJoin SeqScan

Sort

Group

Aggregate

Sort

from lineitem

and o_orderkey = l_orderkey

and l_suppkey = s_suppkey

from supplier

from nation

and s_nationkey = n_nationkey

where r_name = ’ASIA’
from region

and n_nationkey = r_nationkey

group by n_name

order by revenue desc

Scan 8 -> 1

Join 7 +3,249 -> 40

Qual 1 -> 1

Scan 8 -> 1

Join 40 + 1 -> 57

Aggr 12 -> 2

Sort 2 -> 2

Query Result

Query TextQuery PlanData Reduction
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6.3.1.2 System Parameters

In order to compare the query performance on the Active Disks against execution

exclusively at the host, some additional parameters about the underlying components must

be available. In the default optimizer, there is only one choice for placement of the func-

tion, so the relative performance of the on-disk processing is not a consideration. It is,

however, necessary to consider the size of the host memory even in normal optimization

because the algorithms chosen, particularly for joins and sorting, depend on how much of

a relation can fit into memory at one time. The parameters tracked are the same System

Parameters used in the performance model of Chapter 3. The relative cpu rates of the disks

and host, the relative network rates, and the rate of the underlying raw disks.

Note that the PostgreSQL system only handles a single query at a time, so there is

no inter-query optimization. It is assumed that all system resources are available to exe-

cute the query being considered. This is obviously limiting in the general case, and addi-

tional work would be necessary to extend the optimizations to take into account current

system load and the availability of resources over time for a long-running query.

Node Basic Equation Equation with Active Disks

SeqScan

IndexScan

HashJoin

Hash -

npages
rd

------------------
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scpu

-------------------------------------------------------+
npages

rd’
------------------

ntuples nclauses w⋅ ⋅
d scpu’⋅

-------------------------------------------------------+

nind aexp ges n ectedpexp ages+

rd

----------------------------------------------------------------------------------- +

ntuples selectivity w⋅ ⋅
scpu

------------------------------------------------------------ +

nindextuples selectivity windex⋅ ⋅
scpu

--------------------------------------------------------------------------------------
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rd’
----------------------------------------------------------------------------------- +

nind agesexp d⋅
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d scpu’⋅

------------------------------------------------------------ +
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d scpu’⋅

--------------------------------------------------------------------------------------

Hash ninnertuples( ) +

ninnerpages nrun 1–( )⋅
rd

---------------------------------------------------------------- +

noutertuples w⋅
scpu

------------------------------------------

Hash ninnertuples( ) +
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rd

---------------------------------------------------------------- +

ninnerpages d⋅
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---------------------------------------- +
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d scpu’⋅

------------------------------------------

ntuples selectivity w⋅ ⋅
scpu

------------------------------------------------------------

Table 6-1 Cost equations used within the PostgreSQL optimizer. The table shows the cost functions
used in the default PostgreSQL optimizer, as well as the modifications necessary to support estimates
of Active Disk processing.
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6.3.1.3 Database Statistics

Figure 6-8 shows the statistics maintained by PostgreSQL for the lineitem table

from TPC-D. The table has a total of 16 attributes and the first statistics table gives the

minimum and maximum values for each column. The second table gives the types and

sizes of each attribute, as well as an estimate of the disbursion of the values currently in

the database for that attribute. In PostgreSQL, this disbursion is calculated by counting the

item that occurs most frequently in the particular column plus 20% of the number of

unique values. A more sophisticated database system would keep a small number of histo-

grams for each column to provide better estimates at the cost of additional space for stor-

ing the statistics. These statistics are maintained in a lazy fashion, usually through an

explicit analyze function that is run against the database at regular intervals or after any

bulk loading operation. These statistics are only used to estimate the cost for query plan-

ning, so 100% accuracy is not required.

starelid|staattnum|staop|stalokey |stahikey
--------+---------+-----+------------+-----------------------

18663|        1|   66| 1|600000
   18663|        2|   66| 1|20000
   18663|        3|   66| 1|1000
   18663|        4|   66| 1|7
   18663|        5|  295| 1|50
   18663|        6|  295| 901|95949.5
   18663|        7|  295| 0|0.1
   18663|        8|  295| 0|0.08
   18663|        9| 1049| A|R
   18663|       10| 1049| F|O
   18663|       11| 1087| 01-02-1992|12-01-1998

18663|       12| 1087| 01-31-1992|10-31-1998
   18663|       13| 1087| 01-08-1992|12-30-1998
   18663|       14| 1049| COLLECT COD|TAKE BACK RETURN
   18663|       15| 1049| AIR|TRUCK
   18663|       16| 1049| 0B6wmAww2Pg|zzzyRPS40ABMRSzmPyCNzA6
[...more...]
(61 rows)

attrelid|attname        |atttypid|attdisbursion|attlen|attnum
--------+---------------+--------+-------------+------+------

18663|l_orderkey     |      23|  2.33122e-06|     4|     1
   18663|l_partkey      |      23|  1.06588e-05|     4|     2
   18663|l_suppkey      |      23|  0.000213367|     4|     3
   18663|l_linenumber   |      23|    0.0998572|     4|     4
   18663|l_quantity     |     701|   0.00434997|     8|     5
   18663|l_extendedprice|     701|  2.66427e-06|     8|     6
   18663|l_discount     |     701|    0.0247805|     8|     7
   18663|l_tax          |     701|    0.0321099|     8|     8
   18663|l_returnflag   |    1042|     0.307469|    -1|     9
   18663|l_linestatus   |    1042|     0.300911|    -1|    10
   18663|l_shipdate     |    1082|  8.94076e-05|     4|    11
   18663|l_commitdate   |    1082|  8.33926e-05|     4|    12
   18663|l_receiptdate  |    1082|  8.90733e-05|     4|    13
   18663|l_shipinstruct |    1042|     0.100238|    -1|    14
   18663|l_shipmode     |    1042|    0.0451101|    -1|    15
   18663|l_comment      |    1042|            0|    -1|    16
[...more...]
(572 rows)

Figure 6-8 Statistics tables maintained by PostgreSQL for the lineitem table.  Depending on the type and
range of a particular column, the optimizer has sufficient information to accurately estimate the sizes of
intermediate query results.
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From the second table, we see that an attribute such as the orderkey have a very low

disbursion value, meaning that there are a large number of values, while attributes such as

the returnflag and linestatus have a high disbursion, meaning a much smaller number of

unique values. The first table then provides additional details by showing the minimum

and maximum values. For example, looking at l_returnflag and l_linestatus,

which are the group by keys for Query 1 from TPC-D, the data type is known to be

varchar, with a size of 1 (from the schema for the lineitem relation), which means

that the optimizer can guarantee that no group by result will exceed 65536 (256 x 256)

unique values, no matter how many records are processed. By looking at the low and high

values in the statistics, this can be further reduced to 153 (from ‘A’ to ‘R’ in the

l_returnflag, and from ‘F’ to ‘O’ in the l_linestatus). Finally, considering the

disbursion values for these two attributes gives an estimate of about 10 (1/0.3 x 1/0.3). It

turns out that there are only four unique combinations of these two attributes in the final

result, but the statistics have helped narrow the size estimate from the 600,000 records in

the original lineitem table, to an estimate of 65536, 153, or 10 output records, depend-

ing on which statistics are used.

6.3.1.4 Estimates

Table 6-2 shows the date sizes at the intermediate points of several TPC-D queries.

The table shows the estimates made by the PostgreSQL optimizer at each stage as well as

the actual size during execution of the query. Notice that the optimizer may overestimate

or underestimate the size and selectivities of the various stages of processing, but usually

comes very close to the actual size. The Scan column gives the estimate for the data reduc-

tion by removing unneeded columns from the relation - for example, not returning the

address or comment fields when these are not part of the query result. Since this is a static

reduction in the amount of data based on the database schema, and this version of Postgr-

eSQL always stores fixed-size fields, the estimate for this step will always be correct. The

Qual column estimates the qualification condition in the where clause of the query -

l_shipdate <= ‘1998-09-02’ in the case of Query 1. Finally, the Aggr column

estimates the size of the aggregation result, using 153 records as the estimate for Query 1,

based on the statistics discussed at in the previous section.

Query Input Data
(KB)

Scan Result
(KB)

Optimizer
Estimate

(KB)
Qual Result

(KB)

Optimizer
Estimate

(KB)
Aggr Result

(bytes)

Optimizer
Estimate

(bytes)

Q1 126,440 35,189 35,189 34,687 33,935 240 9,180

Q4 29,272 2,343 2,343 86 141 80 64

Q6 126,440 9,383 9,383 177 43 8 8

Table 6-2 Data sizes and optimizer estimates for stages several TPC-D queries. Plans are as chosen by the
PostgreSQL optimizer. We see that the optimizer may both under- and over-estimate the expected size.
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6.3.2 Storage Layer

The lowest-level storage layer in the database must be replaced with a system that

understands how to communicate with network-attached Active Disks. The basic Postgr-

eSQL system maps each relation in the database into a separate UNIX file. This makes

mapping these files into a NASD object system straightforward - each file (and therefore

each relation) becomes a single object in NASD. This means that operations such as

sequential scans that operate on the relation as a whole have the advantage of adressing a

single object within NASD. When data is striped over multiple disks, each disk contains

an object with its portion of the relation. This means that in a system with 10 disks, the

relation will consist of ten NASD objects, one on each disk. Data is written to the disks in

round-robin fashion, using a block size of 256 KB. Since the database pages are 8 KB in

size, no page is ever split between multiple disks, eliminating the need for special detec-

tion of such edge cases, as would be required for an application with arbitrary record sizes.

When a request is made for a particular page within a relation, the storage layer

maps this request into a block request from the appropriate disk. The storage layer also

performs prefetching when it detects that a file is being scanned sequentially and has suffi-

cient buffer space available.

6.3.3 Host Modifications

This section describes the modifications required to the PostgreSQL code to support

the prototype results presented here. This gives an idea of the extent of the modification

necessary to have a database system support Active Disk functions.

6.3.3.1 Parameter Passing

The host must provide a “bypass” mechanism whereby information for scans, aggre-

gates, and joins can be sent to the drives as parameter values to the core operations. This

includes scan conditions, relation schemas, and the bloom filter bit vectors for semi-join.

For scans and semi-joins, the work at the drives is considered “pre-work” and the

host-side code does not have to know what work has been done. For the aggregation, this

is more difficult, because certain aggregation functions cannot be handled without know-

ing that pre-computation has already happened at the drives (e.g. average, which must

track the total number of records counted, as well as the running total of the values). In

this case, the format of the table seen at the host is implictly modified to be a representa-

tion of the table with the “pre-aggregates” included as additional columns. The on-disk

code is responsible for converting tuples in the actual format of the table to tuples contain-

ing the pre-aggregates necessary for this particular query.

6.3.4 Active Disk Code

The code for PostgreSQL processing on the Active Disks can be divided into four

categories. The disk must include the code for basic page layout, for the layout of tuples or

records within a page, support for operations on the data types required by a particular
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query (operators such as less-than, greater-than, equality, plus, or minus), and support for

the core database functions. This means that all the infrastructure for query parsing, query

optimization, and recovery does not have to be duplicated at the drive. Table 6-3 gives the

sizes and breakdown of the major portions of code required at the drives in the Postgr-

eSQL prototype.

6.3.4.1 Page Layout

The code required at the drive must understand the layout of a PostgreSQL page.

Since database pages come in fixed-length chunks (8 KB, in the case of PostgreSQL), this

is relatively easy to manage at the Active Disks. There are no concerns about alignment or

pages that span multiple disks, as there is in the case of arbitrary filesystem files. How-

ever, this code will still need to be specific each database system being used, Oracle and

Informix, for example, will have their own page layout formats.

6.3.4.2 Tuple Layout

The code for dealing with database schemas and tuple layouts, as well as NULL-

handling, must also be specific for each database system. There must be a way to describe

this structure between the host-based code and the drive code. In the execution of Postgr-

Table 6-3 Code sizes for the Active Disk portions of PostgreSQL. Size of the various portions of the Active
Disk code for the database system.

Module Original Modified Host
(New & Changed)

Active Disk

Files Code Files Code Files Code

access 72 26,385 - - 1 838

bootstrap 2 1,259 - - - -

catalog 43 13,584 - - - -

commands 34 11,635 - - - -

executor 49 17,401 9 938 4 3,574

parser 31 9,477 - - - -

lib 35 7,794 - - - -

nodes 24 13,092 - - 6 4,130

optimizer 72 19,187 2 620 - -

port 5 514 - - - -

regex 12 4,665 - - - -

rewrite 13 5,462 - - - -

storage 50 17,088 1 273 - -

tcop 11 4,054 - - - -

utils/adt 40 31,526 - - 2 315

utils/fmgr 4 2,417 - - 1 281

utils 81 19,908 - - 1 47

Total 578 205,448 12 1,831 15 9,185

New 1,257
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eSQL with Active Disks, the tuple format is one of the parameters passed to the Active

Disk code when it is initialized.

6.3.4.3 Data Type Operators

Operators for dealing with basic calculations on database fields must be present at

the drive for all the data types that the drive supports. This includes comparison operators

for scanning and sorting and the arithmetic operators for aggregation.

In PostgreSQL, the type system is extensible through user-provided functions, and

these functions are written in C and linked with the core database code. For the prototype

Active Disk system, only the operators necessary for completing the TPC-D queries were

ported to the drive, and the total code size of these pieces is shown in Table 6-3.

6.3.4.4 Core Operations

The basic database operations on Active Disks - scan, semijoin, sort, and aggrega-

tion can be used in common among multiple database systems. These operations require

user-provided routines for comparing and merging tuples, but the code for the basic scan,

sort, and replacement selection with aggregation can be common among multiple database

platforms. The basic operators are scan, semijoin, and aggregate.

6.3.4.5 Scan

The scan primitive at the drive supports all simple scans, using a static condition

that is evaluated for every tuple in the relation, such as the where clause from Query 1 of

TPC-D that specifies l_shipdate <= ‘1998-09-02’. The tuple_desc

describes the layout of tuples within the relation and qual_expression gives the con-

dition to be evaluated, which is can be any SQL condition, including constants, expres-

sions, and references to individual fields in the relation being processed.

When used in a database system that allows user-defined-functions and the addition of 

user-defined abstract data types, this scan primitive with the appropriate data types could 

be used to implement all of the data mining and multimedia applications described in 

Chapter 4. This would require providing the user-defined functions and data type opera-

typedef struct database_scan_param_s {

char* tuple_desc; /* format of the tuples on disk */

char* qual_expression;

} database_scan_param_t;

int database_setup_scan(database_scan_param_t params)

void database_scan(char* buffer, unsigned int len,

char* output,unsigned int *out_len, unsigned int max_len)

void database_complete_scan(void)
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tors that operate as disk functions, just as the basic data type operators must be made avail-

able at the Active Disks.

6.3.4.6 Semijoin

The semijoin primitive at the drive supports the semijoin portion of a full join

operation. The tuple_desc describes the layout of tuples within the relation and

join_key gives the field that is being joined. The join_filter is the bloom filter

representing a list of join key values, such as those for l_partkey from Query 9 or

l_suppkey from Query 5.

When used in a multiple-pass algorithm such as the hybrid hash join [DeWitt90], the 

bloom filter is simply set to select only tuples from the the partition that is currently being 

processed. Depending on the number of partitions, simply re-scanning the entire relation 

and returning the matching tuples will be more efficient than writing the partitioned 

records during the initial scan phase.

6.3.4.7 Aggregate/Sort

The aggregate primitive at the drive supports both aggregation and generic sort-

ing. The basic algorithm used is replacement selection in both cases. Aggregates are sim-

ply a special case where records with matching keys are merged using the aggregation

function, rather than being inserted into adjacent slots in the sorted heap. In the case of

sorting, the aggr_expr is null and no merge operation is provided, all records are sim-

typedef struct database_semijoin_param_s {

char* tuple_desc; /* format of the tuples on disk */

char* join_keys;

char* join_filter;

} database_semijoin_param_t;

int database_setup_semijoin(database_scan_param_t params)

void database_semijoin(char* buffer, unsigned int len,

char* output,unsigned int *out_len, unsigned int max_len)

void database_complete_semijoin(void)
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ply output in sorted order. If the amount of memory at the Active Disks exceeds the size of

the sorted output, then separate sorted runs are output and must then be merged at the host.

This allows a single, flexible primitive to be used for both operations.

The use of replacement selection as the basic algorithm provides the benefit of

longer average run length, adaptivity in the face of changing memory conditions (the abil-

ity to give up memory pages as the operation progresses, and make use of additional mem-

ory page that become available [Pang93a]), and support for the merging operation

necessary to perform aggregation while sorting.

6.4 Code Specialization

Since users have to rewrite their code to take advantage of Active Disks, this is an

excellent opportunity to get them to write the code “the right way” and reduce some of the

aliasing and code analysis problems that traditional software now suffers. The work of the

COMPOSE group at IRISA and the Synthetix work at OGI have shown that code special-

ization through partial evaluation can be a powerful tool [Massalin89, Pu95, Volanschi96,

Consel98, Marlet99]. This type of specialization is particularly benefitial for operating

system code and for small code “kernels” such as the functions to be executed on Active

Disks. The work of Consel et al. makes the observation that 25% of operating system code

is spent verifying arguments and parsing (or “interpreting”) system data structures. This

work is often redundant across calls - traversing the same pointer chain in a ready queue,

for example - and can easily be specificialized [Consel98]. Furthermore, this type of spe-

cialization can also allow a particular piece of code to be optimized for the environment in

which it runs - taking knowledge of the particular machine architecture available on the

drive (cache size, processor type) or the number of memory buffers available into account.

We know that once a particular piece of code is sent to the drive it will be executed

many times, amortizing the specialization cost. This leverages the information the pro-

grammer provides when creating an Active Disk function (“this is important, this is the

core part of my application”) where a general-purpose system (running on a host for

example) would have to first “discover” which particular pieces of code to specialize.

typedef struct database_aggr_param_s {

char* tuple_desc;/* format of the tuples on disk */

char* sort_keys;

char* aggr_expr;

} database_aggr_param_t;

int database_setup_aggr(database_aggr_param_t params)

void database_aggr(char* buffer, unsigned int len,

char* output,unsigned int *out_len, unsigned int max_len)

void database_complete_aggr(void)
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Such selective specialization should also be particularly successful for the core data-

base functions that often traverse the same basic expression tree during the execution of a

particular query. Database engines are basically “interpreters” from a query language,

SQL, to the functions implementing tuple layout, memory management, and the core data-

base functions.

The next two sections examine the possibilities for code specialization in the context

of the PostgreSQL system and the TPC-D benchmark running on Active Disks.

6.4.1 Case Study - Database Aggregation

Table 6-4 shows the cost of executing Query 1 from the TPC-D benchmark using C

code written specifically to handle that single query for the particular table schema using a

file of test data from the benchmark. Data is read from a binary file of records, and the

entire processing of Query 1 is hand-coded into the program. No processing of schema

descriptions or of the query text is done at runtime. We see that the instruction per byte

cost is very low, giving a very high theoretical throughput on the prototype Active Disk.

This should represent close to the fastest possible execution of this particular query, with

the exact schema of the records on disk, the datatypes, as well as the query text, known at

compile time.

Table 6-5 shows the same aggregation query as executed by the full PostgreSQL

code. We see that the cost is much higher when the fully general code that handles arbi-

trary datatypes and query texts, is used. This code is able to handle tables and records of

an arbitrary schema, rather than being specific to one particular record format. This code

query type computation
(instr/byte)

throughput
(MB/s)

memory 
(KB)

selectivity
(factor)

instructions
(KB)

Q1 aggregation 1.82 73.1 488 816 9.1 (4.7)

Q13 hash-join 0.15 886.7 576 967,000 14.3 (10.5)

Table 6-4 Cost of Query 1 and Query 13 in direct C code implementation. The computation cost and memory
requirements of a basic aggregation and hash-join implemented in C code specifically written to access the
TPC-D tables from raw disk files. The last column also gives the total size of the code executed at the drives
(and the total size of the code that is executed more than once).

operation computation
(instr/byte)

throughput
(MB/s)

selectivity
(factor)

scan 28 17.8 4.00

qualification 29 17.2 1.05

sort/group 71 7.0 1.00

sort/aggregate 196 2.5 3,770

Table 6-5 Cost of Query 1 using the full PostgreSQL code. The computation cost of the
phases of computation to handle the query in a general database system.
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also deals with an arbitrary expression for the Qualification, the Sort, and the Aggregate

steps, where the C code is hard-coded for the particular qualification constants, sort keys,

and aggregation expressions used in Query 1 of TPC-D.

These two sets of code represent the extremes of the spectrum, the fully general

code from PostgreSQL that can handle any SQL query to the direct C code implementa-

tion that can only perform a single hard-coded query. The insight of a code specialization

and optimization system is to bridge the two order of magnitude performance gap between

the two. Since the PostgreSQL code is repeatedly processing the same format tuples and

evaluating the same conditions, it should be possible to generate more efficient, special-

ized code for the execution of any given query.

Figure 6-9 shows the structure of the PostgreSQL code that is executed at the Active

Disk. We see that a number of parameters and operators can be statically bound into the

code at the time it is prepared for Active Disk execution. This means that the code on the

Active Disks can take advantage of the knowledge of the tuple layouts, condition parame-

ters, and operators to specialize for this particular query. By statically binding the tuple

descriptions, the qualification expression and constants, and the subset of data type opera-

SeqScan

ExecQual Qual

HeapTuple ExprEval

FuncMgr

Figure 6-9 Active Disk processing of PostgreSQL Execute node.  This diagram shows the change to the
previous diagram necessary to support Active Disk processing. Note that the table schemas, expressions, and
data type operators are statically bound in as part of the Active Disk function, this enables further
optimizations to specialize the code that executes at the drives.
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tors needed for a particular schema and query text, the runtime code specialization system

can create code that is much closer to the hand-coded version in performance.

6.4.2 Case Study - Database Select

This section explores the types of specialization possible in the code for select in

PostgreSQL as described in Chapter 5. Table 6-6 shows the amount of code executed for

the thirteen most popular routines in the database select operation on a column of type

date. We see that the largest single fraction of the time is spent copying data, but that the

tuple processing and interpretation take over 50% of the code in just six routines. Much of

the processing in these routines is repetitive and can be specialized away when the code is

optimized for a particular query. By collapsing the general-purpose data type and expres-

sion-parsing routines that operate on any data types into a single routine that only knows

how to compare a single date column with a constant date value, the total number of

instructions necessary would be greatly reduced.

Further study is needed to determine how much of these indivdual routines can be

specialized, and what trade-offs the runtime system must make between the potential sav-

ings and the overhead of performing the specialization, but the data presented in the last

two sections shows that this is a promising direction for an Active Disk runtime system to

take advantage of.

Table 6-6 Most frequently executed routines in PostgreSQL select. These thirteen routines account for close
to 95% of the execution time at the drive.

Routine File Instructions Percent Description

memcpy libc 6,385,334 20.81 copy buffer

ExecEvalVar executor/execQual.c 4,598,000 14.98 evaluate column

ExecMakeFunctionResult executor/execQual.c 3,572,000 11.64 result

ExecEvalExpr executor/execQual.c 3,534,000 11.52 expression

ExecEvalFuncArgs executor/execQual.c 2,774,000 9.04 arguments

fmgr_c utils/fmgr/fmgr.c 1,748,000 5.70 function dispatch

bzero libc 1,421,000 4.63 clear buffer

process_rawtuple executor/rawUtil.c 1,406,563 4.58

ExecQual executor/execQual.c 1,027,126 3.35 qualification

ExecEvalOper executor/execQual.c 912,005 2.97 operator

ExecQualClause executor/execQual.c 684,000 2.23

ExecStoreTuple executor/rawUtil.c 418,000 1.36

date_gt utils/adt/rawdatetime.c 228,000 0.74 data comparison
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Chapter 7: Design Issues

There are many additional design considerations for Active Disk systems. This

chapter addresses a number of these issues and provides an overview of the questions that

will need to be answered by anyone designing an environment for Active Disks.

7.1 Partitioning of Code for Active Disks

The basic contention of the previous chapter on Software Structure was that a single

version of the application code can be written that can then be executed at the drive or on

the host as necessary. Such code would be written in a mobile code system and would

expose the maximum amount of parallelism possible in the core processing. This would

then allow the code to be distributed across any number of drives (without concern for

how many drives were being used), or to be run at the host, perhaps as multiple threads in

an SMP system. The user is required to re-write their application once, using separate,

mobile modules inside the I/O-intensive loops. This code can then be distributed among

hosts and drives either statically placed by the programmer, or automatically placed by a

runtime system. In the case of the database system, this placement can take advantage of

the existence of the query optimizer to assist in this placement. This allows the database

runtime system to combine statistics about the underlying data sets being processed and

the properties of the code being executed to choose an optimal placement (and to choose

when Active Disk execution will improve performance). These placement decisions are

more difficult in general-purpose code, that does not have as much detailed information as

the query optimizer.

A system with a single set of mobile code modules at its core also provides a natural

way to utilize systems with legacy disks that do not support Active Disk processing. If the

drive does not have Active Disk capabilities, or if it is does not have the resources avail-

able to perform a particular requested function, then the disk can act as a normal drive and

return only the requested data as stored, with processing occurring exclusively at the host.

7.2 Identifying I/O Intensive Cores

Identifying the characteristics of appropriate code for Active Disks can be tricky.

Table 7-1 shows the breakdown of application characteristics across several phases of the
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frequent sets application. We see that if we look at the overall average behavior, we get a

significantly different picture than if we look at the individual phases one at a time.

This data is obtained by instrumenting a single execution of the code and counting

the total number of instructions executed, the number of unique memory pages accessed,

and the total size of the code executed. Simply looking at a execution profile does not

reveal this multiple-phase structure. The tool used to obtain these measurements captures

data between successive calls to read(). An additional difficulty in identifying the

proper “core” code in this particular application comes from the fact that the program

actually has three call sites that initiate a read from the filesystem, but the tool only identi-

fies one use of the read() system call since all three application-level calls use the

fread() routine from the stdio library instead of calling read() directly. This will

be a challenge for any automated tool trying to identifying the various phases of computa-

tion, since such a tool would have to unravel all these layers of abstraction.

7.3 Why Dynamic Code

One suggestion for Active Disk processing is to have only a fixed set of functions,

for example sort, join, aggregate, and filter that allow settings from the programmer to

handle field lengths, comparison functions (for sorts), and simple finite state machines for

filters. The contention is that such a very basic set of primitives could capture 80 percent

of the cases where Active Disk execution is desired. The benefit of this approach is that

the on-drive code can be developed separately from the rest of the application code. The

basic primitives essentially become part of the firmware of the drive, and are developed

and tested by the drive manufacturers. The disadvantage of this approach is that it limits

the flexibility of the on-drive functions to the set of primitives included with the drive.

This eliminates one of the basic benefits of Active Disks, to be able to execute arbitrary

application code that allows any application to take advantage of the processing capabil-

ity. In addition, this scheme does not have a direct benefit for safety, since user-provided

Phase
Computation

(inst/byte)
Memory 

(KB)
Program

(KB)
Selectivity

(factor)

1-itemsets 8.31 32 1.3 -

2-itemsets 22.22 582 1.3 -

3-itemsets 90.59 426 2.9 -

4-itemsets 29.85 426 2.9 -

5-itemsets 29.77 49 2.8 -

6-itemsets 12.82 49 2.8 -

overall 32.37 992 23.1 1891

Table 7-1 Computation, memory, and code sizes of the frequent sets application. The highlighted numbers in
each column show the maximum value for that parameter across all the phases. We see that the maximum differ
considerably from the averages at the bottom of the columns. If the application were measured as a whole, the
parameters would be those across the bottom, whereas the execution environment would see the much higher
values at runtime.
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routines such as the comparison functions for sorting, might still cause unpredictable

behavior.

7.4 On-Drive Processing

One of the obvious questions about the viability of the Active Disk approach is the

availability of “excess” cycles on the disks. The disk controller is already performing a

number of complex functions, and it is natural to question how much processing power is

available for “new” functions, particularly expensive user-provided code. It is certainly

true that today’s disk drives are not designed with any “excess” processing capacity, due

to the cost constraints of the drive market. However, there are several trends that suggest

that a significant amount of processing cycles will be available in the future. First, the cur-

rent drive controller must be powerful enough to meet the peek demand of the drive,

meaning that it’s average utilization should be much lower. Second, the electronics in

modern drives are designed to offload as much of the “common case” functions as possi-

ble from the control processor. This is the goal of the specialized drive ASIC discussed in

Chapter 2, which handles servo processing (the most compute-intensive of the basic drive

control tasks), data transfer (via specialized DMA engines), and any specialized functions

such as drive-support XOR [Seagate98a]. This leaves the control processor only responsi-

ble for functions such as request scheduling and buffer management.

The most processor-intensive function performed by the drive is the processing of a

WRITE request from a host. On a Fibre Channel drive, the disk must receive burst data

from the host at (theoretically) up to 100 MB/s. The disk must accept this data at the full

speed of the host, store it in its memory buffers, and then write it (much more slowly) to

the media. The buffer allocation necessary for a large WRITE will be the most pressure on

the control processor. During READ requests, data is streamed directly from the media to

the network by the DMA engines, leaving the processor largely idle. During a seek, the

servo engine is responsible for tracking the location of the head, again leaving the proces-

sor largely idle.

Finally, the most significant motivation for drive manufacturers to provide this type

of execution capability is an attempt to differentiate their products by adding value-added

functionality for which they can charge higher margins. This is one way to escape the low-

margin commodity nature of the current drive business.

7.5 Locking

One of the basic questions when running a single application across multiple nodes

is the question of concurrency control. This will be one of the key issues in the design of

an Active Disk runtime system, and there are a number of promising existing solutions

that would apply to an Active Disk setting.
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7.5.1 Cursor Stability

For many queries, such as the decision support workloads of the TPC-D benchmark,

it may be sufficient to provide Level 2 stability or cursor stability [Gray92]. In the context

of a database system, this guarantees that a particular page does not change during execu-

tion of a particular query on that page. This ensures that any page layout or tuple layout

information on the page is in a consistent state when it is processed. This is relatively

straightforward for a database system, because page sizes in databases are fixed-size (and

small) blocks of data. This does mean that an Active Disk system on the drives must pro-

vide a way to guarantee atomic across application-defined units, such as 4 KB or 8 KB

database pages, not just on disk-level blocks, such as the 512 byte sectors which form the

basic unit of atomicity in today’s drives.

7.5.2 Transient Versioning

An alternative technique, since disk capacity is increased faster than disks can be

filled (or accessed, recall the discussion in Chapter 2 on the disparity between the growth

in capacity and the increase in transfer rates), a tradeoff can be made to use additional

space in order to efficiently support more sophisticated concurrency control schemes. If

space is cheap, an approach such as transient versioning can trade off increased disk usage

against performance [Mohan92, Merchant92]. Such a scheme works by using version vec-

tors at the disks to maintain multiple versions of the same page. The primary problem with

this approach is the extra disk storage required for the copies of recently modified pages.

Given today’s drive capacities, this should be a feasible option. The second performance

objection to this approach is the amount of metadata that must be maintained to ensure

that the right block is picked by a particular query. Since drives using the NASD interface

are already doing their own space management, it should be possible to add support for

version vectors without too much additional effort. The specific system reported in

[Mohan92] can be designed to guarantee that there never need to be more than three ver-

sions of the same block, and puts bounds on the costs of cleaning, or garbage collecting,

versions that are no longer needed.

7.5.3 Optimistic Protocols

In the same vein as transient versioning, there are a number of schemes in optimistic

concurrency [Amiri99, Adya99, Kung81] that would apply to an Active Disk setting.

Such protocols maintain a list of blocks that a particular transaction depends on, and a list

of blocks to be modified. The system then uses write-ahead logging to ensure that all drive

operations are recoverable in the case that they are aborted at some later time, when a con-

flicting update detected. Such schemes are optimistic in that they assume that the normal

case (the common case) is that there is no contention for a particular block and that it is

easier to fix things up in the rare case when contention is detected, rather than pessimisti-

cally locking large numbers of blocks across large numbers of devices in order to synchro-

nize a commit ordering. Using the optimistic method greatly increases the scope for
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concurrency and parallelism, thereby improving overall system throughput. Rather than

having to wait for locks, operations can proceed on the assumption that there will not be

any conflicts, and resolve any conflicts that do occur at later point.

Recent work in this area has shown that the types of functionality required within

the drive runtime system to support this is minimal, and that the memory requirements can

be kept small. Particularly if the amount of excess disk space used is allowed to grow rea-

sonably large. The design of adaptive systems for concurrency control also allow a switch

between optimistic and pessimistic locking when a large amount of contention and large

numbers of aborts are detected [Amiri99].

7.5.4 Drive Requirements

At the most basic level, all of these methods require that the drives support reads in

e.g. 8 KB pages so that applications don’t see inconsistent pages. This size can be negoti-

ated higher under control of the drive, but applications must be able to specifiy a “least

acceptable unit” they can tolerate. This does not mean requests must be exclusively in this

unit. With proper buffering, something more complex could be done. This allows applica-

tions such as the image processing that require entire 256 KB images at a time to do their

own buffering. An open question is which level of the API will provide this support. Drive

internals must provide a mechanism to guarantee update control on a page basis, otherwise

an application could write inconsistent data. But this can still be as simple as knowing

what the minimum consistency unit is at format time. Drive interals must be able to handle

more than sector size in order to protect applications from each other. But there is no need

to support arbitrary sizes.

7.6 Why This Isn’t Parallel Programming

One often-heard objection to Active Disks is that this is simply parallel program-

ming, and could just as easily be done with a massively parallel processor, or a cluster of

PC nodes. The primary difference to Active Disks is the additional power for the addi-

tional cost. In parallel computing, system designers have to justify the price of the addi-

tional nodes in their speedups numbers. In practice, these speedups are usually in the

range of 5x on 8 nodes, or 10x on 16 nodes and that is considered “good”. With Active

Disk processing, the additional processing capability comes essentially for free. If this

processing power is available on every disk drive, then it would be largely unused without

some manner of Active Disk capability. This means that any use of the processing capabil-

ity on Active Disks will reduce the load on the host and improve overall performance.

In addition, as discussed above, taking advantage of Active Disks does not require

re-writing an entire application to take advantage of the parallelism available. As proposed

here, an Active Disk system still has a powerful front-end host processor with a large

memory that is effective for many tasks that cannot be parallelized across the nodes.

Effective use of Active Disks simply requires re-working of the core data-processing por-

tions of the code to take advantage of an additional hardware feature.
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The offloading of the CPU for peripheral-specific tasks is well-established. In the

I/O realm, this is exemplified by the difference between SCSI and IDE drives. The use of

DMA in SCSI offloads the simple portion of the work (the data transfer from disk buffers

to application buffers) to the peripheral component, and reduces direct host intervention

and management.

A second example is Postscript printers. For higher-level functionality, the use of

Postscript as a page description language allows rendering of a page to be performed by a

specialized component (which today is also simply a RISC processor programmed in C,

just as this dissertation proposes for Active Disks and disk firmware). This system pro-

vides support for remote functions (Postscript code) to execute on behalf of the host. The

original motivation for Postscript was to offload the work a CPU had to perform to render

a page directly by providing a language to describe page layout more compactly and flex-

ibly than simple providing a bitmap [Perry88]. Documents can now be shipped to the

remote device (often “network-attached” in today’s environments1) and offload hosts.

Note that there is a second, even more important reason why Postscript was a suc-

cess. It created a level of abstraction between the description of a page and the direct

workings of a particular print engine. This allowed applications to create “device indepen-

dent” documents, that would provide predictable output across a range of print engines

and printers. This platform independence is also important for Active Disks, even if it is

not the key factor that it was for Postscript. It is useful to consider the Active Disk code as

being “independent” of the number of storage devices being used. This allows the code to

execute regardless of whether it is a “dumb” disks or Active Disks are being used, whether

the data is striped across 4 disks, across 104 disks, in RAID1, in RAID5, and so on. This is

analogous to what storage interfaces already do today, where RAID controllers and strip-

ing software all provide a “logical” interface that looks the same as the single-device inter-

face - the recursive SCSI block interface. This is what the object interface in NASD is

intended to address, and the Active Disk interface is a logical step beyond that.

It should be noted that the logical step between the NASD object interface and

Active Disks is a large one because a set of additional “control structures” are being

brought across the interface. An Active Disk must know that “this code is executed in a

loop iterating over this entire data file” in order to be most efficient in scheduling and per-

forming the processing. A much higher level of parallelism and a larger amount of work

must be exposed in order to take full advantage of the execution capability.

1. but not secure, note the difference to NASD, where data must be protected from unauthorized discovery or alteration. 
This is not necessary on a printer, since the only thing that can go wrong is an “unauthorized” document is printed. 
Information cannot (except a few edge cases) be leaked or destroyed by an errant Postscript function. In this sense the 
difference is that between an “input” device such as a disk drive vs. a printer which is simply an “output” device.
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7.7 Additional On-Drive Optimizations

There are a number of areas where close integration between the on-disk system and

application functions benefits performance of the system. One example of this is the use of

background work as described at the end of the previous chapter. We saw that it was pos-

sible to effectively take advantage of resources that would otherwise be “wasted” by hav-

ing more detailed knowledge of the workload. The type of optimization described for

identifying “free” blocks would only be possible if performed directly at the disk sched-

uler, which is the only place with the appropriate level of knowledge of particular drive

characteristics (exact seek times and head settle times, for example) and the exact logical-

to-physical mapping of on-drive objects. The ability of the drive scheduler to “callback”

into application code at a time that is convenient from its point of view makes possible a

powerful new set of abstractions.

Another area for optimization is batch scheduling of requests for the same regions of

data. If there are two (or more) scans going on of the same object, these scans can be

“combined” at the drive and can be satisfied in (as good as) half the time. The system can

“fast forward” one scan to start at the active position of the current one and then complete

the prefix when the entire object has been scanned. This type of sharing of operators is dis-

cussed in [Mehta93] in the context of a database system. They consider a batch system

where there are tens or hundreds of queries to be executed at once, and relative scheduling

among this entire set of queries is possible.

This type of integration in scheduling is also important in the context of storage

devices that are shared among a number of hosts. Traditionally, individual disk drives

have been controlled by a single host that directed all aspects of its function. The use of

dual-ported drives to provide fault-tolerance has loosened this somewhat, but still depends

on a particular host being the “primary” and the other the (idle until needed) “hot spare”.

This means that the drive still has to contend with only one “master” at a time. In the con-

text of Storage Area Networks (SANs), this distinction no longer holds. In a Fibre Chan-

nel fabric, it is possible for a large number of hosts to make requests of the same device at

the same time. The design of the devices is aimed at keeping this number reasonably small

[Anderson95], but as soon as there is more than one host issuing requests, the drive must

perform properly scheduling among all the hosts. In this new architecture, the individual

devices are the only place where coordinated scheduling of request streams can take place.

It is not practical to require that all hosts that wish access to a particular device tightly

coordinate their requests. This would require a great deal of messaging among the hosts

and would rapidly overcome the benefits of having network-attached storage. This is par-

ticularly true if the hosts sharing a particular device are heterogeneous - it is possible that

the shared storage device(s) may be the only point of sharing among such hosts.
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Chapter 8: The Rebirth of Database Machines

In a March 1979 special issue of IEEE Computer, David Hsiao of Ohio State Uni-

versity titled his editor’s introduction “Data Base Machines Are Coming, Data Base

Machines are Coming!” after a popular movie1 of the time [Hsiao79]. In that issue, a num-

ber of articles talked about the advances in database and hardware technology that made

possible the development of special-purpose hardware to support basic database manage-

ment functions. The main benefit was to move processing close to the data and offload the

general-purpose processors that were inefficient for data-intensive processing. The

research at the time included a range of machines with varying degrees of functionality,

including CASSM (content addressable segment sequential memory), RAP (relational

associative processor), and RARES (rotating associative relational store) [Su79,

Ozkarahan75]. A mere four years later, Haran Boral and David DeWitt of the University

of Wisconsin published a paper entitled “Database Machines: An Idea Whose Time Has

Passed?” [Boral83]. They examined the work before and since the Computer articles and

concluded that the time for database machines had passed because 1) a single general-pur-

pose host processor was sufficient to execute a scan at the full data rate of a single disk, 2)

special-purpose hardware increased the design time and cost of a machine, 3) for a signif-

icant fraction of database operations, such as sorts and joins, simple hardware did not pro-

vide significant benefits.

Fortunately, the technology trends in the years since 1983 have affected all of these

arguments, as discussed in the previous chapters. Aggregate storage bandwidth has dra-

matically improved due to the widespread use of disk parallelism in arrays with large

numbers of disks. The increasing transistor count in inexpensive CMOS microchips is

driving the use of microprocessors in increasingly simple and inexpensive devices. Net-

work interfaces, peripheral adapters, digital cameras, graphics adapters, and disk drives all

have microprocessors whose power exceeds the host processors of 15 years ago. The pre-

vious chapters have argued that next-generation disk drives will have this processing

power in “excess” and that it can be put to good use for a range of data-intensive applica-

tions. This chapter will explore the research on database machines at that time and since. It

1. the movie was a Cold War film about Russians, not databases
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will give a basic overview of a range of machine architectures, and draw parallels between

the functionality and performance of these machines and the functionality proposed for

Active Disk systems.

8.1 Early Machines

The first database machines all included specially-designed circuitry that carried out

database primitives in conjunction with some type of rotating storage elements. Several of

the machines were predicated on the imminent development of new storage technologies

such as bubble memories, which did not develop as anticipated.

8.1.1 Database Machines are Coming!

The introduction of Hsiao to a special issue of IEEE Computer devoted to database

machines is entitled “Database Machines Are Coming, Database Machines are Coming!”

and lists several of the factors that made these architectures look attractive at the time

[Hsiao79]. He points to benefits in reliability due to codifying particular functions in hard-

ware and verifying those more closely, rather than depending on a monolithic mass of

software. However, the main benefit is in performance, where he suggests that conven-

tional machines are optimized for numerical computations and simple data processing, but

not for concurrent access to data or for the amount of data movement required in process-

ing large databases. He contends that these processors spend most of their time traversing

layers of software rather than processing data.

He also identifies the roadblocks to such machines before that time. In particular,

the immaturity of database research, where the relational model had gained respectability

only recently, with Codd’s 1970 paper [Codd70] on the relational model and the immatu-

rity of the relevant hardware technologies (large associative memories, etc.).

These arguments find parallels in the Active Disk work presented in the previous

chapters. The codifying of particular functions to execute on the disks also requires sepa-

rating a “core” portion of the code of the database system, and gets the verification as well

as the optimization benefits (see Section 6.4) of having isolated smaller portions of code.

This focus on a small set of data-intensive code that can be parallelized and optimized

frees up the host processor to focus on the more complex portions of the processing, such

as interaction with the user, query optimization, and recovery mechanisms that are not

performance-critical. Perhaps this will not directly make the entire system more reliable,

as Hsiao suggests, but it can aid the developer of the database system in separating the per-

formance-critical portions from the high-functionality pieces.

8.1.2 Content-Addressable Segment Sequential Memory (CASSM)

The CASSM (Content Addressable Segment Sequential Memory) takes the form of

a fixed-head floppy disk drive with logic associated with each head [Su79]. The machine

was designed to be an entire database engine, complete with its own query language,

designed as a processor-per-track (PPT) machine as discussed in Section 2.1.1. The core



141

logic associated with each track performs basic arithmetic, logical operations, and aggre-

gation functions including sum, count, min, and max. It also contains mark bits on each

track to maintain state across several phases of a search operation. One revolution is

required to evaluate each condition in a search, including on pass to identify the relation

that is targeted for a select. Rows are selected by setting mark bits as the conditions are

checked and finally outputting the rows that pass all the tests. These mark bits are stored in

a small RAM associated with the device, so they need not be written to the storage

medium on each revolution [Smith79].

The basic hardware architecture of CASSM uses a number of cells, each attached to

a rotating memory element. The cells are then connected by a tree of interconnects that

also contains the logic gates to perform the various aggregation functions. Each cell oper-

ates as a pipeline that decodes the instruction being executed (instructions are also stored

in the device), reads the data from the rotating memory, performs the requested instruc-

tion, and writes the data back to the memory. The use of a pipelined system means that

each instruction takes essentially one cycle, although the overall latency is several cycles.

Data items can be marked for deletion and are then garbage collected and moved

toward the “bottom” of the memory elements by a specialized algorithm to free up space.

Since the data item is written on every iteration, it is possible to introduce a “stall” and

leave a blank space in the memory that can be filled in with a record to be inserted at a par-

ticular location, instead of simply appending the record into the free space at the “bottom”

of the memory. A single cell prototype of the hardware was demonstrated in 1976, but the

multi-cell version was never built due to the complexity of the hardware, so the only eval-

uation was in detailed simulation [Su79].

8.1.3 Relational Associative Processor (RAP)

The RAP operates similarly, again using processor-per-track computation elements,

but contains enough logic to perform k comparisons on each revolution [Ozkarahan75]. It

also uses mark bits to maintain state across a more complex search, but these marks as

stored on the media along with the data for a track, not in a separate RAM as in CASSM.

The RAP processes a specialized RAP microcode that implements a set of basic

access functions that control a set of k comparators in each logic element. Operations

include select to mark tuples that match a particular condition; cross-select that serves as

the basis for joins; read and save for returning tuples to or writing them from the front-end

working store; sum, count, min, and max functions for aggregation; update and deletion.

The language also provides for conditional branches.

The design of the original machine allowed communication among all the individual

cells, but the second generation RAP prototype explicitly eliminated support for direct

cell-to-cell communication because of 1) the high cost of providing physical connections

between all the cells, 2) the space requirement of providing transmission lines of sufficient

length, 3) the negative impact on asynchroneity and reliability when cells can communi-

cate with each other at will, and 4) limited need for such messaging [Schuster79].
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The prototype RAP.2 system developed in 197x contains k = 3 comparators per

logic unit. The RAP.2 hardware was completed to a prototype state including a front-end

system that translated queries into RAP microcode instructions. An illustration of the

select operation in this machine was provided at the beginning of Chapter 2. The basic

limitation of the RAP was the small amount of comparator logic available. If more than k

conditions are required for a particular query, multiple passes across the data must be

made. This is particularly complex in the case of joins, where the first k keys of the inner

relation are loaded and searched, then replaced with the next k, and so on. This means it

will require n/k revolutions to search for all n keys. Active Disks avoid this problem by

providing general-purpose programmed logic, rather than fixed comparison functions in

hardware. They also provide a large associated random-access memory that can store

intermediate results and tables of keys, allowing a better tradeoff of computation and num-

ber of rotations of the disk.

8.1.4 Rotating Associative Relational Store (RARES)

The RARES (Rotating Associative Relational Store) is a back-end processor and

depends on a query optimizing front-end that determines the appropriate distribution of

function between the front-end machine and the specialized back-end logic, which pro-

vided a selection and sort machine [Lin76, Smith79].

Due to its orthogonal data layout - rows are stored across rather than along tracks -

RARES is particularly well-suited to maintaining the existing sort order of a relation. At

any given point in time, all the pieces of logic will be operating on the same record, limit-

ing the contention for the output channel when a record matches. In the other machines,

several records are being compared at once, meaning that when there is contention for the

output channel, they might easily be output in an order other than the one in which they

were stored, thereby ruining any existing sort order among the records.

A sort in the RARES machine is performed in two phases. In the first phase, a histo-

gram is built based on the distribution of the sort keys. On the second pass, rows are out-

put in chunks based on this histogram. The size of individual chunks is chosen to match

the amount of memory available at the front-end for performing a single-pass, in-core sort.

This means that a sort operation will require n/m+1 revolutions where n is the number of

records and m is the size of the front-end memory.

8.1.5 DIRECT

The DIRECT machine uses a set of processing elements that are not directly associ-

ated with the heads or tracks on the disk [DeWitt79]. Instead, it depends on a full crossbar

switch which allows any of the processing elements to process data from any of the stor-

age units. Storage consists of both CCD associative memory and mass storage (disk) ele-

ments. The processing elements operate in a MIMD (multiple instruction, multiple data),

rather than in the SIMD (single instruction, multiple data) fashion used by the processor-

per-track machines. This means that multiple queries can be active in the machine at the
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same time. The DIRECT machine does not use mark bits as in the previous architectures,

but operates instead via temporary relations stored in the CCD memory elements. Instruc-

tions for the processing elements are compiled at the front-end as “query packets” and the

architecture contains support for queuing these packets to the back-end processors. This

queue can be managed in a variety of ways to maximize utilization of the back-end pro-

cessors while still ensuring reasonable query response times.

8.1.6 Other Systems

The LEECH system includes support for joins that makes use of filter bits similar to

those described in the Bloom Joins of the previous chapter [Smith79]. The inner relation is

scanned, matching rows are output and a vector of bits is set for each matching row. This

vector is then used on a second pass to scan the outer relation, again outputting matching

rows, which can then be combined by the front-end for a full join result. The Data Base

Computer (DBC) also did database functions in hardware. The Britton-Lee Machine was

one of the more commercially popular of the database machines.

8.1.7 Survey and Performance Evaluation [DeWitt81]

A survey paper by David DeWitt and Paula Hawthorn uses analytic models of sev-

eral database machine architectures to predict and compare their performance on several

workloads DeWitt81]. They compare a conventional system (CS), to a processor-per-track

system (PPT) with logic for every track on the disk, a processor-per-head system (PPH)

with logic for every head, a processor-per-disk system (PPD) with a single processor for

the entire disk, and a multi-processor cache system (MPC) where disk controllers and pro-

cessing units are connected by a crossbar network and work is shared among the nodes.

Their basic conclusion is that the PPT and PPH systems perform well for selection

operations in the absence of suitable indices, but that the performance of these architec-

tures rapidly degrades with increasing output contention. The performance gap from PPT

and PPH to the CS, PPD, and MPC methods is narrowed considerably by the presence of

indices, as shown in Table 8-1, which shows the performance as predicted by the formulas

in [DeWitt81]. We see the huge advantage of PPT and PPH for selection without an index

in the first table. The second table shows that the benefit is considerably less when an

50,000 tuples, no index

Selectivity CS PPT PPH PPD MPC

0.0001 11.40 0.179 0.732 6.80 6.83

0.001 11.40 0.179 0.732 6.80 6.83

0.01 11.40 0.186 0.732 6.80 6.83

0.1 11.40 0.473 0.732 6.80 6.83

Table 8-1 Predicted performance of database machines from [DeWitt81]. The tables reproduce the values in
Table 4.1 and 4.2 of the 1981 DeWitt and Hawthorn paper on database machine performance. The results are
the performance (in seconds) predicted for each of the five database machine architectures to perform a select
with the selectivity given. Note the large performance improvement by using the processor-per-track and
processor-per-disk architectures in the no index case. In the index case, the performance benefit is less
dramatic, but still shows an improvement of 40% for PPT over CS and PPH.

50,000 tuples with index

Selectivity CS PPT PPH PPD MPC

0.0001 0.278 0.179 0.288 0.288 0.315

0.001 0.288 0.179 0.288 0.294 0.320

0.01 0.387 0.186 0.311 0.351 0.378

0.1 1.389 0.473 0.597 0.938 0.965
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index is available. The performance of PPH is now comparable with CS, although PPT is

still 40 or 50% faster. At this point, with less than a factor of two advantage in perfor-

mance, the authors dismiss the PPT architecture as too expensive and claim the PPH

equivalent to the conventional system.

This conclusion is predicated on two factors that the original authors did not con-

sider - the cost of random access versus sequential access to the disk, and the increasing

size of databases. The values in Table 8-2 show the same comparison with these two fac-

tors taken into account. The first table recalculates the values from the previous table,

which is Table 4.2 in the [DeWitt81] paper to take into account the full cost of random

disk accesses when reading pages from a table through an index. The formulas used in

[DeWitt81] assume that the set of pages returned from an index lookup can be read with

the same efficiency as a full scan of the table - they assume simply the cost of a track

switch, rather than a full seek between page accesses. The first table in Table 8-2 recalcu-

lates the values using an equation that models an average seek time for each page accessed

through the index. This increases the time taken by the CS, without any effect on the PPT

and relatively minor impact on the PPH performance. It does, however, increase the gap

between the CS and PPT to more than a factor of two, depending on the selectivity.

If we now take into account the growth of database sizes, where a table with 50,000

tuples of 100 bytes each, as assumed by the authors in 1981, is very small, we see that the

improvement from PPH and PPT is much more significant. The amount of seeking

required by the CS greatly handicaps this system at high selectivity and large database

size. The 50,000 tuples used in the paper represent only 5% of the capacity of the disk

being modeled, where 1,000,000 is close to 100% of the capacity, leading to much longer

average seeks. Using the larger database size, the second table in Table 8-2 shows that the

advantage of PPT and PPH is more than a factor of four over the conventional system.

Note also that this comparison does not take into account any possible caching or batching

of page requests, which could reduce the number of seeks required and improve the per-

formance somewhat in the CS and PPH cases.

Table 8-2 Predicted performance of database machines with realistic disk times. The first table shows
the numbers from the index case in the previous table modified to take into account a more realistic value
for accessing index pages on the disk. This increases the time in both the CS and PPH systems, and
makes the advantage of PPT close to a factor of two. The second table further extends these results to a
more realistically sized table with one million, instead of only 50 thousand, tuples. The times of both the
PPT and PPH are much less affected by the enlargement of the table than the CS, PPD, and MPC
systems.

1,000,000 tuples with index and dac

Selectivity CS PPT PPH PPD MPC

0.0001 0.338 0.179 0.326 0.339 0.365

0.001 0.536 0.218 0.343 0.454 0.481

0.01 2.597 0.791 0.916 1.686 1.713

0.1 23.824 6.524 6.649 14.624 14.651

with index and realistic disk access

Selectivity CS PPT PPH PPD MPC

0.0001 0.317 0.179 0.326 0.326 0.353

0.001 0.327 0.179 0.326 0.332 0.359

0.01 0.426 0.186 0.329 0.390 0.417

0.1 1.418 0.473 0.597 0.967 0.994
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The paper goes on to examine joins, and concludes that the PPT and PPH architec-

tures will perform much more poorly than the conventional system - by a factor of three

for PPT and more than a factor of ten for PPH. The basic assumption that causes this huge

performance gap is the number of comparisons that can be performed by the per-track and

per-head logic on a single pass. The basic comparison rate of the PPT and PPH systems is

limited by the number of comparisons (k) that can be performed on a single revolution of

the disk. When more than k comparisons must be performance to satisfy a query - for

example, in a join, where the number of comparisons is proportional to the number of

tuples in the inner relation - then the PPT and PPH architectures incur multiple revolutions

in order to identify all the matching records. The first table in Table 8-3 shows the perfor-

mance of a join using a relation with 10,000 tuples and an inner relation of 3,000 tuples.

This duplicates the results presented in Table 4.3 of [DeWitt81], using the underlying

equations as published in the paper1. The second table of Table 8-3 shows the modified

numbers by varying the number of comparisons that can be performed at once, from the

k = 1 of the original paper, up to k = 100. We see that the PPT rapidly outperforms the

CS, and that the PPH catches up once several dozen comparisons can be done at once, per-

forming several times faster with 100 comparisons per revolution. Finally, Table 8-4

quantifies the performance differences with increasing database size. Using k = 25 as a

1. the numbers do not match precisely, because the exact details of the equations used are not given and I have recon-
structed the equations as close as possible from the descriptive text in the paper.

10,000 tuples R, 3,000 tuples S

Selectivity CS PPT PPH PPD

0.0001 34.1 83.1 443.9 4086.5

0.001 34.1 83.1 443.9 4086.5

0.01 34.1 83.1 443.9 4086.5

0.05 34.1 103.7 443.9 4086.5

0.1 34.1 199.2 443.9 4086.5

Table 8-3 Predicted performance of join from [DeWitt81]. The first table reproduce the values in Table 4.3 of
the 1981 DeWitt and Hawthorn paper on database machine performance. The results are the performance (in
seconds) predicted for each of the five database machine architectures to perform a join of two relations R and
S with the sizes and selectivity given. Both the processor-per-track and processor-per-disk architectures suffer
due to the limited number (the paper assume k = 1) of parallel comparators available in the per-track or per-
head logic. If this restriction is relaxed to allow additional per-track or per-head logic, then the numbers
change to those in the second table, where PPT and PPH perform significantly better.

10,000 tuples R, selectivity 0.0001

k CS PPT PPH PPD

1 34.1 83.1 443.9 4086.5

3 34.1 29.1 149.8 1364.0

10 34.1 10.2 46.9 411.2

100 34.1 2.9 7.2 43.6

Table 8-4 Predicted performance of joins varying 
by relation size. The table models the performance
of a machine with k = 25 comparators, a selectivity
of 0.0001 and an increasing size of the base table. In
this case, the performance advantage of PPT is clear
across all the values, and the PPH is more than a
factor of two faster for most table sizes.

selectivity 0.0001, k = 25

Size of R CS PPT PPH PPD

10,000 34.1 5.4 20.4 166.1

50,000 187.2 5.4 72.4 800.9

100,000 402.0 5.4 137.3 1,594.4

1,000,000 5,067.1 5.4 1,306.5 15,876.9
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reasonable estimate, this table shows the performance of joining a table from 10,000 to

one million tuples in size with the same 3,000 tuple inner relation (a variation in the rela-

tive size of these two relations would change the performance, as analyzed in the discus-

sion of joins in Chapter 4, but only the simplest case is shown here). We see that the

performance of the conventional system rapidly degrades as the size of the database

increases, with the PPT performance staying constant, and the PPH always at least a factor

of two better than the CS. This shows that the conclusion drawn in 1981 due to a dirth in

the amount of logic available in the per-track and per-head devices, would be very differ-

ent with the much greater amounts of logic that would be possible today.

8.2 Later Machines

The second generation of machines changed from purpose-built processing ele-

ments to using general-purpose processors as the core building blocks. This eliminated

some of the complexities of actually designing and building hardware, and allowed more

rapid turn-around of ideas for higher-level software structures.

8.2.1 An Idea Who’s Time Has Passed? [Boral83]

The basic contention of Boral and DeWitt in this survey article is that 1) only 2 or 3

processors (VAX 11/780s) are required to handle the bandwidth of a single disk (Fujitsu

Eagle or IBM 3380), even if they are doing projects and joins [Boral83]. Only a single

processor is required for selects, and 2 or 3 for joins. This determination is based on a

measured 2.5 ms for select and 13 - 22 ms for joins, with 10 ms for a sequential disk read

and 30 ms for a random disk read. This is significantly better than the thousands of proces-

sors needed for a PPT system. The second contention of the article is that 2) one cannot

build large databases under a PPT system, there is simply too little data per track.

Today there is 1) much more data per track (but everything is head-based, not track-

based, no more fixed track disks) and 2) some increase in readout bandwidth (although not

nearly as much as in capacity per track). Instead, people have followed the trends and now

have 1/10 or 1/100 of one processor per disk (e.g. Digital AlphaServer 8400 with 12 pro-

cessors and 520 disks). Active Disks suggest that this go back to one processor per disk.

This overcomes the objection of Boral and DeWitt, because they objected mainly to multi-

ple processors per disk (as in the PPT machines, with processors proportional to the num-

ber of tracks on the disk). In addition, the single processor proposed for Active Disks

today is also much more powerful than two or three VAX 11/780s, even relative to today’s

higher readout bandwidths, meaning that Active Disks can easily perform the sort and join

operations that were beyond the PPT machines.

The article contains additional objections in terms of the complexity of microcode

for specialized database machines. This is overcome in Active Disk systems by using gen-

eral-purpose processors (i.e. RISC cores) and general-purpose languages (e.g. Java). The

challenge is to have people write code in a very general-purpose fashion that can then be

used in an Active Disk setting just as easily as a traditional single processor or in an SMP
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architecture. The basic contention is that this is not that difficult - people want parallelism,

people can think in terms of “small”, “mobile” functions.

8.2.2 GAMMA

The initial GAMMA prototype developed at the University of Wisconsin used

seventeen VAX 11/750s acting in concert behind a single front-end processor. The sec-

ond-generation prototype upgraded this hardware to an Intel iPSC/2 32-node hypercube

system using Intel 386 processors. The designers identify network bottlenecks as a pri-

mary concern in the system [DeWitt90].

This system used a shared-nothing architecture and depended heavily on hash-based

algorithms for easily distributing the load among the disk and processing nodes. Much of

the work in GAMMA focussed on the algorithms necessary to efficiently take advantage

of this type of system, including hybrid hash-joins and memory-adaptive algorithms for

sort and join. Many of these algorithms are relevant to an Active Disk system and have

already been mentioned in previous chapters.

The Bubba prototype was also designed as a shared-nothing system and supported a

number of different architectural features with unique partitioning of function between the

database and storage systems [DeWitt92].

The work of Hagmann and Ferrari summarizes a number of different architectures

for partitioning function between front-end and back-end nodes. They present six different

possible splits in software and provide benchmark results [Hagmann86].

8.3 Exotic Architectures

There are a number of “exotic” technologies that were proposed as the basis for

database machines, none of which succeeded in displacing rotating magnetic storage as a

cost-effective permanent medium. At the time, CCD storage, bubble memory, and asso-

ciative memories, were considered as the basis of fast, random access devices [Hsiao79].

More recently, both RAM (as discussed in Section 2.2.2) and Flash memory have been

repeatedly proposed as imminent replacements for magnetic disks, but disk technology

has so far managed to stay ahead of the cost/performance curves of every contender.

Ongoing advances in the technology for MEMS-based storage offer the most com-

pelling opportunity for a major change in storage technology [Carley99]. This technology

uses micro-mechanical systems built in a silicon process to marry permanent data storage,

through an underlying layer of magnetic material, with the density and manufacturing

benefits of integrated circuits. A single chip is etched with thousands of tiny mechanical

tips that can each move across a small portion of the magnetic surface and act as read/

write heads. A large number of individual tips can read or write at the same time, leading

to data rates much higher than today’s single-head disk drives. The use of a silicon process

means that the areas surrounding the mechanical tips can be shaped into processing cir-

cuitry. This allows a single chip to contain both processing elements, memory, and perma-
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nent storage. This would be the ultimate “computer-on-a-chip” device, with all processing

done close to the data.

8.4 Commercial Systems

There were a number of database machines that were marketed as commercial prod-

ucts, the most successful and longest-lived of which is the Content-Addressable File Store

(CAFS) from ICL that was sold primarily to mainframe customers as a database “acceler-

ator”. In addition to this, systems from Tandem and Teradata picked up many of the paral-

lel database ideas [DeWitt92] and modern versions of these systems - based on

commodity component nodes, without specialized hardware - are still being sold quite

successfully today.

8.4.1 Content-Addressable File Store (CAFS and SCAFS)

The original Content-Addressable File Store (CAFS) included, among other things,

support for a special piece of hardware called the file-correlation unit [Babb85] that used

bit maps to assist in processing relational joins and projections, very similar to the filters

used for the semi-joins in the Active Disk implementation.

The program to develop SCAFS (Son of CAFS) focussed on two primary lessons

from the designers’ experience with CAFS, that 1) it should be invisible at the application

level (i.e. hidden below SQL) and 2) it should be established as an industry standard solu-

tion designed for the low-cost, high-volume market.

To achieve these goals, the technology was introduced as a platform-independent

library interface, called the “smart disk” interface by the database vendors, which pro-

vided access to the search functions of the SCAFS Accelerator hardware. This system

used the existing query optimizer to include knowledge of the “smart disk” interface

which could be chosen to execute single table select operations that would then execute

within the SCAFS system. The hardware of SCAFS made use of a device with a 3.5” form

factor that fit into the same SCSI enclosure as the database disks [Martin94].

Results with SCAFS show an improvement from 40% to 3x in a mixed workload

(production transaction processing and decision support) and response time improvements

of from 20% to 20x. In a pure decision support workload, throughput was 2 to 20 times

better, and individual transaction response time improved up to 100 times. The use of

SCAFS also helped systems that ordinarily benefit from heavy indexing by allowing

administrators to rebalance the trade-off between the number of secondary indices and the

amount of full scanning performed. This allows the production database to save the cost of

maintaining multiple indices, and then depend on the Accelerator for decision support

queries. The performance boost of the Accelerator reduces the need for secondary indices

to achieve the same level of performance. This allows better performance on inserts while

scans remain fast. The use of the Accelerator for evaluating predicates means that proces-

sor-intensive searches that require string-matching can be handled as efficiently those

using numeric values.
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A performance study of SCAFS in the context of a U.K. government customer

[Anand95] shows that the improvement possible with the Accelerator depends heavily on

the “hit” rate of the query, i.e. the selectivity as the term has been used in previous sec-

tions. The more data that is returned from the disk sub-system, the lower the benefit of

using SCAFS - although the result is never less than a 2x improvement. They also found

that the INGRES optimizer used in the study was not choosing to make use of the Acceler-

ator as often as it could. The conclusion of the authors was that INGRES chose to use the

Accelerator only if it had already decided to do a full scan of the table. It did not take the

presence of the Accelerator into account when estimating the cost of other possible plans.

This means that plans that used the Accelerator executed much faster than the optimizer

estimated, but that other queries where use of the Accelerator would have been less glo-

bally expensive were not even considered. This means that the feedback system in the

optimizer, as discussed in Section 6.3.1 is an important component of a database system

optimized for Active Disks.



150



151

Chapter 9: Related Work

The basic idea of executing functions in processing elements directly attached to

individual disks was explored extensively in the context of database machines, as dis-

cussed in the previous chapter. These machines fell out of favor due to the limited perfor-

mance of disks at the time and the complexity of building and programming special-

purpose hardware that could only handle limited functions. Instead, database research has

developed large-scale, shared-nothing database servers with commodity processing ele-

ments [DeWitt92]. It has recently been suggested that the logical extension is to perform

all application processing inside programmable system peripherals [Gray97].

9.1 Network-Attached Storage

This work on Active Disks follows from prior work at Carnegie Mellon on Net-

work-Attached Secure Disks (NASD), which exploit the computational power at storage

devices to perform parallel and network file system functions, as well as more traditional

storage optimizations [Gibson97, Gibson98]. Our initial work in the area of Active Disks

discusses several classes of applications that can benefit from Active Disks - including fil-

ters, multimedia, batching, and storage management - and enumerates the challenges to

providing an execution environment on commodity disk drives [Riedel97].

9.1.1 Network-Attached Secure Disks

The basic goal of the NASD project is to eliminate the server bottleneck from the

storage hierarchy, and make disks directly accessible to clients [Gibson97]. This elimi-

nates the need to move all data from the disks, over a storage “network”, through the

memory system of a server machine, over a client network, and to the clients [Gibson98].

Management is performed asynchronously, and is only invoked for metadata management

and to distribute access capabilities as required by the security system at each of the disks

[Gobioff97]. The basic NASD system describes an interface for network-attachment, and

for an object interface to replace the block interface of SCSI. Details of the object inter-

face and the security system as they relate to Active Disks have already been discussed in

previous chapters. Communication is via remote procedure call, and builds upon general-

purpose networking protocols to allow connectivity across standard local area networks.

Recent work on optimized protocols [vonEiken92, Wilkes92, vonEiken95, Benner96,
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Intel97] has eliminated many of the software overheads associated with general-purpose

networking, and allowed systems that use more reliable underlying physical transports to

reduce their processing requirements by building on the reliability of the underlying fab-

rics [Boden95, Horst95]. The popularity of Fibre Channel [Benner96] and Gigabit Ether-

net [3Com99], which share a common physical layer protocol, may soon lead to a merger

of these protocols into a single system appropriate for both storage and general-purpose

network traffic. This would allow all clients to take advantage of direct communication

with the storage devices.

9.1.2 Storage Area Networks (SANs)

Almost every major vendor in the storage industry has announced products or plans

in the area of Storage Area Networks (SANs) [Clariion99, Seagate98, IBM99, HP98a,

StorageTek99, Veritas99]. The core concept is to use a fully-connected network infra-

structure, rather than direct-attached SCSI devices, to manage a collection of storage

devices. There is a single network infrastructure that connects storage devices and hosts,

but is still separate from the general-purpose network that connects clients and hosts. This

allows multiple hosts to share the same storage, but still requires clients to access data

through intermediate hosts, rather than directly. The initial products in this realm are

based on Fibre Channel arbitrated loops, which are very much like SCSI except that they

allow multiple initiator hosts to connect to the same device. Switched Fibre Channel is

starting to become available [Brocade99] and promises support for much larger fabrics

and greater scalability. This type of shared storage infrastructure provides more efficient

access from multiple hosts to the same storage and makes possible device-to-device trans-

fers without requiring all the data to traverse a host. This enables, for example, direct drive

to tape backup operations [Clariion99, Legato98] or even direct drive to drive transfers.

9.1.3 Network-Attached Storage (NAS)

Products in the area of Network-Attached Storage (NAS) address the second portion

of the NASD work, the question of higher-level interfaces to storage. These devices pro-

vide storage service at the distributed filesystem level through standardized protocols

including NFS, HTTP, and CIFS. A number of vendors provide devices that have been

specialized to perform only this function [Hitz94] and connect directly to a local area net-

work, where they act as file servers would in a traditional setting. These are usually large,

expensive devices, but smaller devices are becoming available based on commodity com-

ponents and operating systems [Cobalt99]. Such devices all contain general-purpose pro-

cessors that run the internal filesystem code. This makes them excellent candidates for

Active Disk processing. They simply require the addition of an appropriate execution

environment and a coherent programming model. In addition, such devices could make

use of Active Disks internally (replacing the SCSI disks they currently use) to offload por-

tions of their own file system processing or take advantage of additional scheduling

knowledge at the disks.
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9.2 Disk Drive Details

There is not much published material on the internal functioning of disk drives, as

much of these details are protected by the patents or trade secrets of the various drive man-

ufacturers. However, a number of academic studies have attempted to model the perfor-

mance of disk drives and storage systems simply be observing their external behavior.

9.2.1 Local Disk Controller

An early article by Houtekamer explored the use of a local disk controller (LDC) in

an IBM System/370 to replace the existing I/O subsystem [Houtekamer85]. He analyzed

the performance benefits of placing a controller adjacent to each disk drive, rather than

having a single controller as in the existing 370 architecture. The primary benefit was the

offloading of the shared interconnect, and the additional asynchoneity and parallelism

introduced when each of the disks could operate independently without holding the shared

bus for the duration of a request.

These controllers used channel programs that are much simpler than the general-

purpose programming environment proposed for Active Disks, but still allow a level of

programmability at the individual devices and allow the drives to operate in parallel, only

taking the shared bus when they have data to transmit. In a network-attached architecture

with switched fabrics, there is no longer a shared bus, but, as previous sections have

argued, the interconnect bandwidth is still a significant limitation.

9.2.2 Drive Modeling

The work of Shriver at New York University develops a very detailed model for

how a disk drive performs under a particular workload [Shriver97, Shriver98]. The ana-

lytic models are driven by application traces and are highly accurate, giving agreement

within 17% of the performance of real disks by adding details of prefetching and schedul-

ing that had not previously been considered. These models have been used to develop

higher-level storage management systems that predict system load and rebalance work

appropriately [Borowsky96, Borowsky97, Borowsky98].

9.2.3 Drive Scheduling

The work of Worthington and Ganger at Michigan studied the benefits of using var-

ious levels of complexity in the scheduling of disk requests. They found that modeling

prefetching and caching helps dramatically, but that detailed geometry information pro-

vides only marginal benefits [Worthington94]. The relation of this work to scheduling in

Active Disks is discussed in more detail below.

9.3 Storage Architectures with Smarts

A number of other groups have examined issues similar to those discussed for

Active Disks and proposed different types of hardware architectures and partitionings of

applications.
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9.3.1 Active Disks

Work at Santa Barbara and Maryland has applied Active Disk ideas to a set of appli-

cations similar to those discussed in the previous chapters, including database select,

external sort, datacubes, and image processing. Their work proposes an extended-firm-

ware model based on the block-level access of today’s disks [Acharya98]. Much of this

work has focussed on describing a programming model for Active Disks based on

streams. Applications are designed as a number of streams that are then mapped to parallel

processing on the disk nodes. The mapping of metadata is done at the host, along with all

control of the overall application processing. The studies are based on extensive simula-

tions that compare Active Disks to architectures using clusters of commodity PCs and to

large SMP systems.

9.3.2 Intelligent Disks

A group at Berkeley has estimated the benefit of Active (Intelligent in their termi-

nology) Disks for improving the performance of large SMP systems running sort, scan,

and hash-join operations in a database context [Keeton98]. They estimate that decision

support systems account for 35% of database server sales, and that the size of individual

systems is growing by over 100% per year. Intelligent Disks are seen as a logical succes-

sor to networks or workstations, with lower cost from tighter integration and higher per-

formance from closer coupling of storage, processing, and switched-based serial

interconnect fabrics. This work uses an analytic model to estimate the benefits of Intelli-

gent Disks in a decision support environment where all computation is performed by intel-

ligent storage elements.

Previous work by members of this group has studied the performance of relational

database code on modern multiprocessors in the context of a transaction processing work-

load [Keeton98a]. A group at Rice and Compaq has provided a similar analysis for both

decision support and transaction processing workloads [Ranganathan98]. Both of these

studies focus strictly on the detailed processor performance, seeing the behavior of the

input/output system as secondary.

9.3.3 SmartSTOR

Work at IBM Almaden and Berkeley analyzed the performance of the TPC-D deci-

sion support queries and found that single table acceleration was insufficient, especially in

the context of database systems that make heavy use of pre-aggregation and summary

tables [Hsu99]. This work proposes that using processing elements per-disk will not be

cost-effective, and suggests the use of front-end units with more powerful processing and

memory resources to manage a number of underlying, “dumb” disk drives.

Recent changes to the TPC-D benchmark definition have led to a split of this bench-

mark into two separate benchmarks: TPC-R, which allows the use of summary tables and

serves as a benchmark for a “reporting” workload, and TPC-H which contains more strin-

gent requirements against pre-aggregation and re-establishes the benchmark’s original
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focus on ad-hoc queries [TPC99f, TPC99g]. The use of ad-hoc queries, where query pat-

terns are generally not known beforehand, more closely mirrors the way large systems are

used in practice and derives much less benefit from pre-aggregates than the well-struc-

tured reporting workloads of TPC-R. Ad-hoc queries will benefit much more from the

aggregate power of Active Disks, even with relatively low processing power on the indi-

vidual disks, as described in detail in Chapter 5.

9.4 Parallel Programming

The parallel programming community has long sought a basic set of primitives that

all programmers could use, or an automatic method for parallelizing code without direct

help from the user. These efforts have met with only mixed success as it can be difficult to

identify (much less eliminate) serial dependencies among code that was not written with

parallelism in mind.

9.4.1 Scan Primitives

The work of Blelloch at Carnegie Mellon explored a number of primitives that were

implemented in the NESL parallel programming language and allow the programmer to

express explicit parallelism in their computation. These primitives were specified in the

context of a functional language, thereby simplifying a number of the problems using leg-

acy code written in procedural languages such as C [Blelloch89].

9.4.2 Data and Task Parallelism

A considerable body of work has explored the parallelization of applications across

the nodes of both massively-parallel machines [JaJa92] and networks of workstations

[Subhlok93]. This has been done both by parallelizing compilers [HPF93] and by applica-

tion-specific libraries optimized for parallel execution [Dongarra79, Blackford97]. The

partitioning of applications across hosts and Active Disks is similar to the parallelization

of applications in general, although the nature of I/O make it both easier and more diffi-

cult. I/O operations are usually much more coarse-grained than array accesses that parallel

compilers must distribute. Programmers are already familiar with the idea of I/O being

done in largish blocks and via a relatively small set of interfaces (read, write, open, etc.)

which should aid isolation of I/O units. On the other hand, most applications are coded to

deal with a “sequential” model of file access, rather than operating in parallel, so partition-

ing into concurrently executing portions may be more complex than what is currently

done for parallel array accesses. A body of work on parallel I/O has also explored the dis-

tribution of function across compute nodes and I/O nodes in massively parallel machines

[Corbett93, LoVerso93] and particular parallel I/O interfaces [Nieuwejaar95].

The identification of parallelism across different tasks in a computation (task paral-

lelism), rather than simply across all the elements in a distributed array (data parallelism),

introduces some additional complexity. Such systems allow different code elements to run

at different times within the same architecture, and take advantage of the structure of the
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computation to re-map to different portions of the underlying machine as appropriate

[Gross94, Stricker95]. The effectiveness of this approach was demonstrated in a number

of specific problem domains, including vision [Webb93], earthquake modeling

[O’Hallaron98], and air pollution modeling [Segall95]. This work in programming models

and algorithms for automatic placement of function [Yang93]can be used by Active Disks

to properly partition applications and expose the available parallelism.

9.5 Parallel I/O

A number of projects have addressed the optimization of I/O in a system with many

parallel nodes.

9.5.1 Disk-Directed I/O

The disk-directed I/O work of Kotz shows that providing an aggregate description

of a large amount of work to an I/O node (or perhaps across a number of nodes) allows it

(them) to schedule the work of the entire request and exhibits significant performance gain

over executing the work as a series of simple requests [Kotz94]. This includes functions

such as scatter/gather operations that distribute data across a large number of clients (col-

lective I/O) or a drive-to-drive copy controlled at the drives, rather than through the client.

9.5.2 Automatic Patterns

Work by Madhyastha at the University of Illinois has focussed on the identification

of patterns of I/O access in a running system. When a particular, known pattern is

detected, the system adjusts its behavior to better match this pattern (e.g. increasing or

decreasing the amount of cache memory used, or changing how aggressively prefetching

is done). The use of a neural network allows the system to “learn” additional patterns and

strategies for optimization. This is done through a modification of the runtime system

which “observes” the behavior of running application. It does not require any changes to

the applications [Madhyastha96, Madhyastha97].

Complementary work at Maryland on optimizing I/O in a variety of parallel applica-

tions has found large benefits with relatively small changes to the original code

[Acharya96]. These two approaches can be seen as both competitive and complementary.

The classification work assumes that applications are not modified, and allows the system

to adapt to the request streams generated by the applications. The optimization work

assumes that the applications are somehow “broken” in their use of parallel I/O and

believe that the applications should be modified to match the characteristics of the under-

lying system. This has the advantage that the parallelism can now be made explicit, giving

the runtime system exact knowledge of what is going on, rather than the “guesses” of the

automatic system. On the other hand, this type of optimization tends to specialize the code

for a particular system architecture. If this code is then moved to a significantly different

architecture with different performance characteristics, it will need to be modified again.
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The ideal system would allow the parallelism to be made explicit, without specializing to a

particular machine.

9.6 Data Mining and OLTP

One of the performance advantages of Active Disks discussed in Chapter 5 was the

use of integrated scheduling at the individual disk drives to combine a “background”

workload that can take advantage of the characteristics of a particular “foreground” work-

load to share resources more efficiently. The most obvious example of this is the combina-

tion of a decision support workload and a transaction processing workload. This allows

decision makers to identify and evaluate patterns in the database while the system contin-

ues to process new transactions. The closer this connection is, the more up-to-date and rel-

evant decisions can be. Chapter 5 proposed a system where these decision support queries

can be performed against the “live” production system. This extends previous work in

mixed database workloads, and in disk scheduling.

9.6.1 OLTP and DSS

Previous studies of combined OLTP and decision support workloads on the same

system indicate that the disk is the critical resource [Paulin97]. Paulin observes that both

CPU and memory utilization is much higher for the Data Mining workload than the OLTP,

which is also clear from the design of the decision support system shown in Table 5-13 in

Section 5.4.2 of Chapter 5. In his experiments, all system resources are shared among the

OLTP and decision support workloads with an impact of 36%, 70%, and 118% on OLTP

response time when running decision support queries against a heavy, medium, and light

transaction workload, respectively. The author concludes that the primary performance

issue in a mixed workload is the handling of I/O demands on the data disks, and suggests

that a priority scheme is required in the database system as a whole to balance the two

types of workloads.

9.6.2 Memory Allocation

Brown, Carey and DeWitt [Brown92, Brown93] discuss the allocation of memory

as the critical resource in a mixed workload environment. They introduce a system with

multiple workload classes, each with varying response time goals that are specified to the

memory allocator. They show that a modified memory manager is able to successfully

meet these goals in the steady state using ‘hints’ in a modified LRU scheme. The modified

allocator works by monitoring the response time of each class and adjusting the relative

amount of memory allocated to a class that is operating below or above its goals. The

scheduling scheme we propose here for disk resources also takes advantage of multiple

workload classes with different structures and performance goals. In order to properly

support a mixed workload, a database system must manage all system resources and coor-

dinate performance among them.
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9.6.3 Disk Scheduling

Existing work on disk scheduling algorithms [Denning67,..., Worthington94] shows

that dramatic performance gains are possible by dynamically reordering requests in a disk

queue. One of the results in this work indicates that many scheduling algorithms can be

performed equally well at the host [Worthington94]. The scheme that we propose here

takes advantage of additional flexibility in the workload (the fact that requests for the

background workload can be handled at low priority and out of order) to expand the scope

of reordering possible in the disk queue. Our scheme also requires detailed knowledge of

the performance characteristics of the disk (including exact seek times and overhead costs

such as settle time) as well as detailed logical-to-physical mapping information to deter-

mine which blocks can be picked up for free. This means that this scheme would be diffi-

cult, if not impossible, to implement at the host without close feedback on the current state

of the disk mechanism. This makes it a compelling use of additional “smarts” directly at

the disk.

With the advent of Storage Area Networks (SANs), storage devices are being shared

among multiple hosts performing different workloads [HP98a, IBM99, Seagate98,

Veritas99]. As the amount and variety of sharing increases, the only central location to

optimize scheduling across multiple workloads will be directly on the devices themselves.

9.7 Miscellaneous

There are several areas of research that have explored “activeness” in other contexts,

placing general-purpose computation outside the domain of traditional microprocessors.

There have also been significant advances in the commercial deployment of small-foot-

print execution environments that can be used in very resource-constrained environments.

9.7.1 Active Pages

The Active Pages work at the University of California at Davis proposes computa-

tion directly in memory elements, moving parallel computation to the data [Oskin98].

Their architecture is based on a memory system where RAM is integrated with some

amount of reconfigurable logic. Results from a simulator promise performance up to 1000

times that of conventional systems, which often cannot keep their processors fed with data

due to limitations in bandwidth and parallelism. This work takes advantage of the same

silicon technology trends as Active Disks, but must operate at a much lower granularity

than the parallelism of Active Disk operations.

The authors suggest that the partitioning between the computation performed in the

processor and in the Active Pages can be done by a compiler that takes into account band-

width, synchronization, and parallelism to determine the optimal location for any piece of

code. For Active Pages, this scheduling would have to be done at the instruction or basic

block level due to the tight coupling between the processor and the Active Pages. For

Active Disks, this scheduling would be done at the module or component level, as dis-
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cussed in the previous sections, since the coupling is much lower and the “distance”

between Active Disks and the host is much larger.

9.7.2 Active Networks

The Active Networks project provides the inspiration for the name Active Disks1

and proposes a mechanism for running application code at network routers and switches to

accelerate innovation and enable novel applications in the movement of data and network

management [Tennenhouse96]. This work suggests two possible approaches for managing

network programs - a discrete approach that allows programs to be explicitly loaded into

the network and affect the processing of future packets and an integrated approach in

which each packet consists of a program instead of simply “dumb” data. The tradeoff

between the two is the amount of state that devices can be expected to maintain between

requests and how many requests can be active at any given time. The implementation of

the Active IP option [Wetherall96] describes a prototype language system and an API to

access router state and affect processing. It does not address the resource management

issues inherent in allowing these more complex programs.

These types of functions are much more sensitive to execution time than Active

Disk functions. Network packets within IP switches are processed at rates of gigabits per

second, while Active Disks have the “advantage” of being limited on one side by the (low)

performance of the mechanical portions of the disks. This also means that the resource

management system for Active Disks must only take into account a small number of con-

currently running functions at the disks, while Active Network switches might easily have

thousands of concurrent processing streams.

9.7.3 Small Java

There has been considerable work on optimizing safe languages such as Java

through the use of just-in-time compilation [Gosling96, Grafl96] or translation

[Proebsting97]. Small-footprint Java implementations are becoming available for embed-

ded devices due to the popularity of the language and the promise of portability among

hardware platforms. Recent product announcements promise a Java virtual machine in

256K of ROM [HP98] or as tiny as a smart card that provides a Java virtual machine in 4K

of ROM and can run bytecode programs up to 8K in size for a significant subset of the lan-

guage [Schlumberger97]. This demonstrates that it is possible to implement a workable

subset of the Java virtual machine in a very limited resource environment. Other systems

such as Inferno [Inferno97] are specifically targeted for embedded, low-resource environ-

ments and might also be appropriate choices for Active Disk execution.

1. The name was originally suggested by Jay Lepreau from the University of Utah in October 1996 during a question at
the OSDI work in progress session where the original work on Network-Attached Secure Disks, later published as
[Gibson97] was being presented.
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Chapter 10: Conclusions and Future Work

The continued increase in performance and decrease in cost of processors and mem-

ory are causing system “intelligence” to move from CPUs to specialized system peripher-

als. In the context of storage systems, designers have been using this trend to perform

more complex optimizations inside individual devices. To date, these optimizations have

been limited by the relatively low-level nature of today’s storage protocols. At the same

time, trends in storage density, mechanics, and electronics are eliminating the bottlenecks

to moving data off the storage media and putting pressure on interconnects and hosts to

move data more efficiently as it is processed further “upstream”. The ability to execute

application code directly at storage devices allows processing to be performed close to the

data; enables application-aware scheduling; and makes possible more complex and spe-

cialized operations than a general-purpose storage interface would normally support.

This dissertation has demonstrated an important class of applications that will see

significant gains - in many cases linear scaling in the number of devices added to the sys-

tem - from the use of Active Disks. These applications take advantage of the parallelism in

large storage systems to greatly increase the total computational power available to them,

and circumvent the limited interconnect bandwidth in these systems, greatly increasing the

apparent data rate from storage. An analytic model for estimating traditional server and

Active Disk performance predicts the speedups possible given a simple set of application

characteristics. A prototype Active Disk system with up to 10 disks realizes speedups of

more than a factor of two over a comparable traditional server. This system should easily

scale to speedups of more than 10x in reasonably-sized systems similar to those already in

use for large databases today.

Emerging applications such as data mining, multimedia feature extraction, and

approximate searching involve ever-larger data sets, on the order of 100s of GB or TB,

and justify large numbers of Active Disks. Many of these applications have the character-

istics that make them attractive for execution across Active Disks. This dissertation has

described a set of compelling example applications from these domains and measured

their performance in the prototype system. In addition, the preceding chapters have shown

that all of the core functions of a relational database system can be implemented effec-
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tively in the context of Active Disks, with dramatic performance improvements on a

benchmark decision support workload.

10.1 Contributions

This work makes several contributions to the understanding and analysis of storage

and database systems:

• the basic concept of Active Disks, proposing the use of excess process-

ing power on commodity storage devices to execute application-level

code, rather than simply optimizing within a single, strictly-defined

storage interface

• a validated performance model that predicts the performance of an

application in an Active Disk system given a few basic characteristics of

the application and the underlying hardware

• a description of how to adapt data-intensive applications from database,

data mining, and multimedia to Active Disks

• the choice of appropriate algorithms for performing all the core func-

tions of a relational database system and the development of a small set

of on-disk primitives

• evaluation of a prototype system to demonstrate the benefits promised

by the performance model and show that the code changes required to

take advantage of Active Disks are feasible and straightforward

• the modification of a relational database system to use Active Disks and

show dramatic improvements on portions of an industry-standard

benchmarks for such systems

• the demonstration of a novel approach to disk scheduling that allows the

combination of application-level knowledge and drive-specific informa-

tion that can only be performed directly at the drives and promises sig-

nificant performance improvements on mixed database workloads

• the identification of an additional advantage in code specialization made

possible by extracting a “core” portion of an application’s processing

and mapping it to a particular, well-known architecture for optimization

• the discussion of previous research on database machines and its rele-

vance to the design of Active Disk systems today

all of which support the claims made in the thesis of this work that was presented in the 

introduction: that data-intensive applications can take advantage of computational power 

available directly at storage devices to improve their overall performance, more effec-

tively balance their consumption of system-wide resources, and provide functionality that 

would not otherwise be available.
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These points also serve to answer the major objections to Active Disks and illustrate

that this is an architecture with novel cost/performance tradeoffs, that significant perfor-

mance benefits are possible, and that these benefits are attainable with straightforward

modifications to existing applications. In addition, the dissertation has introduced two

areas of further optimization, in disk scheduling and code specialization that are made

possible by partitioning applications in this way.

10.2 Future Work

There are a number of areas to be explored before the benefits presented here can be

fully put into practice. Providing a safe environment for application code inside the drive

in order to both protect the integrity of data on the drive and ensure proper function in the

presence of misbehaved application code is critical. One of the key benefits of the SCSI

interface to today’s disks is that it is easily understood and easily evaluated or “certified”.

By introducing greater variety in the functions that can be executed by the storage devices,

this simplicity of analysis will suffer. The specific limits that will be required to ensure

continued “reliable” operation of these systems are still unclear. The issue of resource

management becomes considerably more complex as computations becomes more distrib-

uted. Active Disks will need to make more complex scheduling decisions than disk drives

do today, but they also open many new areas for optimization by exploiting the much

richer interfaces they make possible.

By demonstrating the need for and benefits of a programmable interface at these

devices, this work opens the way for applications and uses far beyond what has been dis-

cussed here. By providing what is simply a capability that others can build on, Active

Disks open up a range of new possibilities and research areas.

10.2.1 Extension of Database Implementation

There are several additional areas of specialization within the context of existing

database systems. The prototype does not attempt to optimize index-based scans, for

example, although benefits in scheduling and re-ordering of disk requests are certainly

possible. The system described here also does not attempt any optimization when writing

data. There are numerous possibilities for optimizing the layout of data as it is written, or

for re-organizing data as information about access patterns and usage becomes available.

Combining such knowledge with integrated scheduling directly at the disks, should open

up a number of optimizations of the 10% and 25% variety that are not the orders of magni-

tude promised by parts of this work, but are very acceptable in much-studied, and com-

mercially important, transaction processing systems.

10.2.2 Extension to File Systems

If the benefits of the database structure and presence of the query optimizer could be

extended to a more general filesystem interface, then more applications could take advan-

tage of this type of system. The basic tradeoff is a more structured way of managing data
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(fixed-size pages, explicit schemas) and limited types of operations (a set of basic opera-

tions, operators, and data types) than simply treating filesystem objects as “bags of bits”.

The more information on explicit typing and primitive “operators” that is available, the

better a runtime system will be able to optimize a particular function or application, as is

done with queries in the relational database system, which is built on a well-defined core

model. This type of information on “structure” is the key to being able to automatically

partition, distribute, and parallelize processing. How to “discover” it where it exists auto-

matically, or impose it where it does not, is an open question.

10.2.3 Pervasive Device Intelligence

Advances in technology such as MEMS-based storage open up a range of new

options for processing coupled directly with data. The use of micro-mechanical systems

promises the density and capacity of magnetic storage, along with the form factor and

manufacturing process advantages of silicon. This makes possible a single chip that con-

tains both magnetic media for permanent storage, computation elements, and memory.

The issues in how to program a massive collection of such components, that can be

embedded in a huge range of individual devices, or aggregated into very high-density

“blocks” of computation and storage are only beginning to be understood. Such devices

will break the normal paradigms for developing applications, and will require a much

more data-centric model of computation than is commonly used today. The partitioning of

applications for Active Disks as discussed here is a first step in that direction, but the pos-

sibilities of such pervasive devices are much larger.

10.2.4 The Data is the Computer

The processing of large volumes of data will continue to become more important as

more and more of the world’s data is digitized and stored. The number of daily transac-

tions and events that will soon be tracked (and later analyzed in the search for patterns) is

enormous. Companies and individuals are just beginning to realize the possibilities

opened up when massive amounts of data, of huge variety, can be easily searched and ana-

lyzed. These data sets will not be the structured types that succumb easily to indexing and

pre-aggregation, but will demand high throughput and flexibility in storage systems and

access methods. The parallelism and flexibility required will again change the nature of

application development, and will need to build on a new set of storage and processing

primitives that can be combined in highly parallel and distributed ways.
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Appendix A: Benchmark Details

This appendix contains a summary description of the tables and queries for the

TPC-D benchmark, as used by the Active Disk prototype.

1.1 Details of TPC-D Queries and Schemas

A listing of the schemas for the tables used in the TPC-D benchmark, as well as the

full SQL text of the queries discussed in Chapters 4, 5, and 6.

1.1.1 Tables

The lineitem table is the largest table in the benchmark (a factor of 5x larger than

the next-largest table) and contains a listing of:

l_orderkey identifier

l_partkey identifier

l_suppkey identifier

l_linenumber integer

l_quantity decimal

l_extendedprice decimal

l_discount decimal

l_tax decimal

l_returnflag char, 1

l_linestatus char, 1

l_shipdate date

l_commitdate date

l_receiptdate date

l_shipinstruct char, 25

l_shipmode char, 10

l_comment varchar, 44

for each item sold by the company.
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The order table is the next largest table and contains a listing of:

o_orderkey identifier

o_custkey identifier

o_orderstatus char, 1

o_totalprice decimal

o_orderdate date

o_orderpriority char, 15

o_clerk char, 15

o_shippriority integer

o_comment varchar, 79

for each order processed.

The part table contains a listing of:

p_partkey identifier

p_name varchar, 55

p_mfgr char, 25

p_brand char, 10

p_type varchar, 25

p_size integer

p_container char, 10

p_retailprice decimal

p_comment varchar, 79

for each unique part in the database.

The supplier table contains a listing of:

s_suppkey identifier

s_name char, 25

s_address varchar, 40

s_nationkey identifier

s_phone char, 15

s_acctbal decimal

s_comment varchar, 101

for each supplier of parts.

The partsupp table contains a listing of:

ps_partkey identifier

ps_suppkey identifier

ps_availqty integer

ps_supplycost decimal

ps_comment varchar, 199

matching parts and suppliers.
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The customer table contains a listing of:

c_custkey identifier

c_name char, 25

c_address varchar, 40

c_nationkey identifier

c_phone char, 15

c_acctbal decimal

c_mktsegment char, 10

c_comment varchar, 117

for each customer.

The nation table contains a listing of:

n_nationkey identifier

n_name char, 25

n_regionkey identifier

n_comment varchar, 152

for placing countries in geographic regions

The region table contains a listing of:

r_regionkey identifier

r_name char, 25

r_comment varchar, 152

for each order processed. There are only a small number of countries and regions in the

database, so both of these tables are very small.

Finally, the optional time table is used to map dates to date strings for systems that

do not handle such conversions internally:

t_timekey date

t_alpha char, 10

t_year integer

t_month integer

t_week integer

t_day integer

for each unique date that appears in the database.
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1.1.2 Query 1 - Aggregation

The business question for Query 1 is to provide a summary report of all the items

shipped as of a particular date. This date is chosen within 60 and 120 days of the end date

in the database, so about 95% of the data items must be scanned to answer this query. Sev-

eral items are summarized, including total list price, total amount charged, average price,

and average discount. The query text as used in the PostgreSQL prototype is:

select l_returnflag, l_linestatus, 

sum(l_quantity) as sum_qty, 

sum(l_extendedprice) as sum_base_price, 

sum(l_extendedprice*(1-l_discount)) as sum_disc_price,

sum(l_extendedprice*(1-l_discount)*(1+l_tax)) as sum_charge,

avg(l_quantity) as avg_qty, 

avg(l_extendedprice) as avg_price, 

avg(l_discount) as avg_disc, 

count(*) as count_order 

from lineitem 

where l_shipdate <= ’1998-09-02’ 

group by l_returnflag, l_linestatus 

order by l_returnflag, l_linestatus

where a constant end date is used to simplify processing.
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1.1.3 Query 9 - Join

The business question is to total up the profit, by year and country of origin, for all

parts matching a particular string. The prototype uses only a sub-query from the larger

query to perform a two-way join using the text:

select sum(l_quantity), count(*) 

from part, lineitem

where p_partkey = l_partkey 

and p_name like ’%green%’ 

group by n_name, t_year 

order by n_name, t_year desc

which extracts a total quantity and count for parts containing the word “green”.

A full 5-way join is performed using Variant B of the full query text, as:

select n_name, t_year, 

sum(l_extprice*(1-l_disc)-ps_supplycost*l_quantity) as sum_profit 

from part, supplier, lineitem, partsupp, order, nation, time

where s_suppkey = l_suppkey 

and ps_suppkey = l_suppkey 

and ps_partkey = l_partkey 

and p_partkey = l_partkey 

and o_orderkey = l_orderkey 

and t_alpha = o_orderdate 

and s_nationkey = n_nationkey 

and p_name like ’%green%’ 

group by n_name, t_year 

order by n_name, t_year desc

which again finds all the “green” items, but further summarizes the profit by year and 

country of origin.
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