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Abstract: The creation of electromagnetic energy may be realised by engineering a device with a
method of transduction, which allows an external energy source, such as mechanical, chemical,
nuclear, etc., to be impressed into the electromagnetic system through a mechanism that enables
the separation of opposite polarity charges. For example, a voltage generator, such as a triboelectric
nanogenerator, enables the separation of charges through the transduction of mechanical energy,
creating an active physical dipole in the static case, or an active Hertzian dipole in the time-dependent
case. The net result is the creation of a static or time-dependent permanent polarisation, respectively,
without an applied electric field and with a non-zero vector curl. This system is the dual of a magnetic
solenoid or permanent magnet excited by a circulating electrical current or fictitious bound current,
respectively, which supplies a magnetomotive force described by a magnetic vector potential and
a magnetic geometric phase proportional to the enclosed magnetic flux. Thus, the active electric
dipole voltage generator has been described macroscopically by a circulating fictitious magnetic
current boundary source and exhibits an electric vector potential with an electric geometric phase
proportional to the enclosed electric flux density. This macroscopic description of an active dipole is a
semi-classical average description of some underlying microscopic physics, which exhibits emergent
nonconservative behaviour not found in classical closed-system laws of electrodynamics. We show
that the electromotive force produced by an active dipole in general has both electric scalar and
vector potential components to account for the magnitude of the electromotive force it produces.
Independent of the electromagnetic gauge, we show that Faraday’s and Ampere’s law may be derived
from the time rate of change of the magnetic and dual electric geometric phases. Finally, we analyse
an active cylindrical dipole in terms of scalar and vector potential and confirm that the electromotive
force produced, and hence potential difference across the terminals is a combination of vector and
scalar potential difference depending on the aspect ratio (AR) of the dipole. For long thin active
dipoles (AR approaches 0), the electric field is suppressed inside, and the voltage is determined
mainly by the electric vector potential. For large flat active dipoles (AR approaches infinity), the
electric flux density is suppressed inside, and the voltage is mainly determined by the scalar potential.

Keywords: energy generation; electrodynamics; active dipole

1. Introduction

Classically, a permanent polarisation consists of equal and opposite charges, ±qi
e,

displaced by a finite distance,~L, to create a macroscopic electric dipole moment (EDM),
~d = qi

e~L, where the vector direction is defined from −qi
e to +qi

e (with net charge = 0).
For an active system, the charges are displaced by an external impressed force per unit
charge to seperate positive and negative charges in the induction process. This concept is
the basis of generating electrical power from an external energy source, which supplies a
non-conservative electromotive force [1–4], allowing a voltage to exist across positively
and negatively charged terminals. This means an external force in the opposite direction
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of the Coulomb force is required to keep the charges in static equilibrium, otherwise they
will accelerate towards each other. At large distances from the dipole, the electric field
appears as an ideal dipole field determined by the EDM, ~d = qi

e~L. The ideal dipole exists
only in the limit as ~L → 0 and qi

e → ∞. In contrast, for distances close to the separated
charges, a dipole has more complex electromagnetic structure, and such non-ideal dipoles
are commonly referred to as a “physical” dipole.

The ideal oscillating time dependent active conducting dipole is commonly known as
a Hertzian dipole, and in the quasi static limit, |~r| < λ

6 (λ is the wavelength of the radiation),
the electrostatic near field dominates such that it is a maximum on the conducting cylindri-
cal boundary as shown in Figure 1 [5]. Within the dipole, an active energy source drives
the dipole through a gap spacing (δg), which is much smaller than the dipole dimensions,
and thus the voltage and current oscillate out of phase as reactive power (no work is done)
driven by an effective electric vector potential [1]. In contrast, external to the dipole, the
electric field can be described by either an electric scalar or vector potential, as the field is
capable of doing work on a test charge, but also exist as a reactive near field (or fringing
field) due to the unusual boundary condition between the outside and inside of an active
electric dipole, where the tangential electrical field is maximum at the boundary [1–5]. Such
active dipoles are usually configured with a balun, and can be used to generate or detect
tangential electric fields, in particular they are used to characterise the near field of many
systems, including antennas, materials and electrical fields in biological systems [6–11].

Figure 1. (a) A free charge active Hertzian dipole antenna, (b) an active dipole bound charge
nanogenerator. Both can be modelled by a voltage source with a capacitive output impedance [1] .
(c) The equivalent macroscopic model of the active dipole with oppositely polarity surface charges,
±σi

e, where qi
e = σi

eπa2
e , and ae, is the effective radius that the charge is spread over. The external

force per unit charge, ~Ei
e =

~Fi

qi
e
, is finite and supplies the energy to seperate (and hence polarize) the

impressed charges. The voltage output across the dipole can be modelled by an effective azimuthal
magnetic surface current boundary source, which modifies Faraday’s law, given by~Ji

m = −~∇× ~Ei
e.

For a constant value of ~Ei
e, the effective magnetic current is on the radial surface so~κi

m = ~Ji
mδ(r− ae)

(Weber convention for magnetic current). The separated free charges then generate a conservative
electric field, ~E, inside and outside the voltage source.

In the case that the medium is an insulator, a macroscopic active bound charge dipole
is known as an electret [1] and exhibit a quasi-permanent polarisation (a metastable state),
which can last for years) in the absence of an applied electric field. A common form of
active electret is the nanogenerator [12,13], which are commonly used for energy harvesting
and electricity generation [12–18]. For example, many energy harvesting electret systems
are based on triboelectric nanogenerators, where mechanical motion of the nanogenerator
creates a time dependent polarisation, which is a displacement current. The standard
Maxwell–Faraday law cannot explain the electromagnetic force, (emf) produced as there
is no significant variation of the net magnetic flux through the plane of the circuit [19].
It was shown that electrons are being transported against the average electric field by
a nonconservative force (or emf), effectively acting as a negative impedance through
mechanical motion, and a microscopic quantum mechanical theory was developed to
explain this effect [19]. In this work, we deal with the equivalent macroscopic theory
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that covers the general emf generator, but behind each generator or battery, there should
be a similar microscopic theory based on emergent phenomena [19–24]. In general, any
non-conservative generated emf can be explained by an impressed force per unit charge
(the same unit of electric field), which creates a polarisation without an electric field, and
in general has a non-zero vector curl that can be inputted into Faradays law as a forcing
function with a corresponding fictitious magnetic current boundary source term as shown
in Figure 1.

Furthermore, related to this, modern polarisation theory introduced in the 1990s [25–27]
has shown that the general definition of the polarisation was not solely calculable from
bulk characteristics of the volume of bound charge, and that a change of polarisation only
had physical meaning if it was quantified by using a geometric phase. This technique has
been very successful in first-principles studies of spontaneous polarisation in ferroelectric
materials (creation of a ferroelectret) [18,28,29], it has also been shown that this emergent
behaviour for a biaxial anisotropic photonic system may be explained using only classical
electromagnetic concepts [30], and it was recently shown that a ferroelectric phase transition
due to a soft phonon mode induced biaxial anisotropy in a perovskite material [31].

In this work, we use the fact that a permanent vector polarisation, generated without
an electric field has both a non-zero curl and divergence. For the curl of the polarisation
to be nonzero, an energy input is required to separate the bound charge; this describes a
permanent electret or energy harvesting material [1,12,16,17,32–37] as well as the proper-
ties of ferroelectric domain walls [38]. This description is also similar to an active dipole
in antenna theory, a voltage source in circuit theory [1–5], or an active dipole emitter in
quantum theory [39–41], where an external nonconservative force (sometimes referred as a
fictitious or pseudo force) is described by an impressed electric field (sometimes referred
to as a fictitious or pseudo electric field) [24,42,43] with a nonzero curl (one could call this
a polarisation). Furthermore, the electret, energy harvester, or ferroelectric domain may
be classified as an active bound charge dipole. We may recognize this active dipole term
generally as a nonconservative curl force term, which necessarily modifies Faraday’s law,
and is only present internally to the active antenna, voltage source, electret, or ferroelectric
domain and not present globally outside the active device. As with all curl forces [44–49],
this nonconservative term cannot be characterized by a scalar potential; on the other hand, it
has been recently shown to be characterized via an electric vector potential [1,39,40,50–52],
and we show that the permanent polarisation vector can be defined as a combination of
a scalar and vector potential. Importantly, the electric vector potential gives a non-zero
tangential surface term, which at the boundary can be viewed as an effective magnetic
current [1], an entity related to a geometric phase and a monopole instanton [53]. Fur-
thermore, we find that the time rate of change of this electric geometric phase leads to
the derivation of Ampere’s Law (magnetomotive force), and the time rate of change of
the well-known magnetic Berry phase (or Aharonov–Bohm (AB), phase) [54] leads to the
derivation of Faraday’s law (electromotive force). This is consistent with prior work, which
derives motive forces from the Aharonov–Bohm and Aharonov–Casher effects [55,56].

2. Quasi-Static Time Dependent Active Hertzian Dipole; Fields and Potentials

For a dipole, some standard text book example assumes point charges, which are
unphysical, a better approximation is to assume ideal surface charges, σi

e [57], so qi
e = σi

eπa2
e

as shown in Figure 1c, so the electric force is spread over an area and solutions are non-
divergent. Such permanent active electric dipoles occur in bound charge (ideal electret)
and free charge (battery, dipole antenna or electric generator) systems [1]. We thus may
define the separation of free charge or bound charge by a polarisation vector as

~Pi
e = ε~Ei

e = σi
e ẑ, (1)

where the polarisation vector is in the ẑ direction, εr is the dielectric constant of any media
involved, ε = ε0εr and σi

e represent impressed free or bound charge, respectively. In these
cases, an effective magnetic current surface density exists, as shown in Figure 1c, at the
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radial boundary of the dipole and acts as a source term, which has been shown to be given
by [1],

~κi
m = −σi

e
ε

φ̂, (2)

in the Weber convention and is in the azimuthal direction. Next, we consider the general
time dependent case.

Maxwell’s equations for an ideal voltage generator with impressed bound or free
charge (ε = ε0) volume density, ρi

e, has been shown to be given by [1] (Weber convention),

~∇ · ~E =
ρi

e
ε

and ~∇ · ~Ei
e = −

ρi
e

ε
, (3)

~∇× ~B− εµ0
∂~E
∂t

= µ0(~Ji
e +~J f ); ~Ji

e = ε
∂~Ei

e
∂t

, (4)

~∇ · ~B = 0, (5)

~∇× ~E +
∂~B
∂t

= 0 and ~∇× ~Ei
e = −~Ji

m. (6)

or in terms of the total electric field, ~ET by

~∇ · ~ET = 0, (7)

~∇× ~B− εµ0
∂~ET
∂t

= ~J f , (8)

~∇ · ~B = 0, (9)

~∇× ~ET +
∂~B
∂t

= −~Ji
m, (10)

with the following constitutive relations

~ET = ~Ei
e + ~E. (11)

Here, ~J f in the lossless case has zero divergence, since ρ f = 0, and ~Ji
m also has zero

divergence since ρi
m = 0. ~Ji

m exists on the radial boundary of the dipole, and drives the
impressed electric field, ~Ei

e, by the left-hand rule and also sets the boundary condition
for the parallel components of the fields on the radial boundary. Here, the ∂~B

∂t term in
Equation (10) can be identified as a magnetic displacement current and~J f can only exist
if an external circuit is coupled to the ideal voltage generator [13–18] or the generator is
non-ideal with an effective internal resistance.

The modified form of these equations means in general an electric vector potential,
~C, can be introduced, along with the electric scalar potential, V, and the magnetic vector
potential, ~A. The possible existence of an electric vector potential and a magnetic scalar
potential has been postulated to exist through the dual nature of Maxwell’s equations
being excited by magnetic monopoles and magnetic currents [58–64] and is known as
two-potential theory. Moreover, the electrical engineering community have also shown
that the dual of Maxwell’s equation may be excited by non-conservative electromagnetic
systems or voltage generators [1–3], without the need for monopoles to exist. Thus, from
two-potential theory, and given there is no magnetic scalar field in the system we are
describing, we may write the potential of the defined fields in Equations (3)–(11) as

~B = −µ0
∂~C
∂t

+ ~∇× ~A (12)
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~E = −~∇V − ∂~A
∂t

(13)

~Ei
e =

~Pi
e

ε
= ~∇V − 1

ε
~∇× ~C; (14)

~ET =
~DT
ε

= −1
ε
~∇× ~C− ∂~A

∂t
. (15)

Note, the field that experiences the “pure” vector potential is ~ET =
~DT
ε = ~Pi

e/ε + ~E, for
both the free and bound system.

Inside the active dipole, the polarisation field, ~Pi
e, exists without any applied electric

field, with both vector and scalar potential components, with the scalar component exactly
equal and opposite to the scalar potential of the ~E field, consistent with Equation (3).
Meanwhile, ~Ei

e and ~ET have the same vector curl and thus the same component of electric
vector potential, while satisfying the constitutive given by Equation (11).

Outside the active dipole, ~Ei
e = 0, which means from Equation (14), ~∇Vout =

1
ε
~∇× ~Cout

since the electric flux density and electric field intensity are equal outside the dipole
(~Eout = ~ETout outside). This gives us two ways to describe the electric field or flux density
outside the active dipole, i.e., with either an electric scalar or vector potential. In the quasi
static limit, the solution is dominated by the electrostatic near field of the dipole, which
is reactive with the internal impressed current and voltage necessarily out of phase [1].
Thus, the electric flux density can be thought as a continuation of the same vector potential
within the dipole, with the electric flux density given by the left-hand rule, sourced from
the magnetic current at the boundary, as shown in Figure 1. This dual description of the
potential outside the active dipole is analogous to how a scalar magnetic potential is a
useful quantity to describe the magnetic field outside a permanent magnet, highlighting
that either a magnetic scalar or vector potential can be used.

Now, by substituting the fields given in Equations (12) and (15) back into the electric
and magnetic Gauss’ law, we obtain

∂(~∇ · ~A)

∂t
= 0;

∂(~∇ · ~C)
∂t

= 0, (16)

so the divergences of the vector potentials must be time independent. Then, by substituting
either (13) or (14) into Gauss’ law, and using (16), we obtain

∇2V = −ρi
e

ε
(17)

Substituting, (12) and (15) into Faraday’s law, we obtain

~∇× ~∇× ~C + µ0ε
∂2~C
∂t2 = ε~Ji

m. (18)

Then, by substituting, (12) and (15) into Ampere’s law, we obtain

~∇× ~∇× ~A + µ0ε
∂2 ~A
∂t2 = µ0~J f . (19)

It is well known that there is more than one set of potentials that can generate the same
fields, given that ~∇× ~∇× ~C = −~∇2~C + ~∇(~∇ · ~C), to simplify, we chose the gauge where
the divergence of the vector potentials are zero (Coulomb Gauge), so we obtain

�2~C = −ε~Ji
m and �2 ~A = −µ0~J f . (20)

Thus, we have successfully calculated the potentials in terms of the impressed sources,
~Ji

m and ρi
e as well as any free current in the system,~J f . For the lossless system with no load,
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∇ ·~J f = 0. Note that the impressed current,~Ji
e = ε ∂~Ei

e
∂t , in our presentation is not considered

a source term, as it is described as a non-dissipative polarisation current, which can either
be from free or bound charge, impressed by the external force per unit charge, ~Ei

e.

3. Geometric Phase of an Active Electric Dipole

The magnetic Aharonov–Bohm (AB) effect is a phenomenon where a charged par-
ticle’s wave function is affected by the magnetic vector potential, ~A, despite both the
electric and magnetic field being zero [54]. Underlying this effect is the general concept
of geometric or Berry phase [65] apparent in many areas of physics [66] and not restricted
to quantum mechanics, which includes optics [67,68], condensed matter physics [69,70],
fluid mechanics [71], and so forth. Other related effects include: (1) The Aharonov–Casher
effect [56,72–75], which describes the effect of neutral particles with magnetic moments,
affected by an isolated static positive or negative electric charge. The isolated electric
monopole charge distribution creates an effective charge vector potential experienced by
magnetic particles, and has been measured using magnetic flux vorticies [73] or neutrons
(with a dipole moment) [72]. Like the AB effect, the charge vector potential associated with
the Aharonov–Casher effect reveals a geometric phase in a charge–vortex interaction [76];
(2) The He–McKellar–Wilkens effect [77,78], dual to the Aharonov–Casher effect, which
looks at the effect of neutral particles with EDMs induced by a magnetic monopole, and
(3) the dual Aharonov–Bohm (DAB) effect, which associates a Berry phase with a permanent
polarisation (macroscopic collection of EDMs), such as that exhibited by an electret [79–81]
or ferroelectet [29] due to an electric vector potential.

Since we have defined a macroscopic polarisation with respect to a 3D electric vector
potential ~C, we may equate this to a 3D Berry connection, with the Berry curvature field
given by Equation (15), ~DT = ε~ET = ~Pi

e + ε~E. In fact, the electric dipole is dual to the
magnetic dipole, which was used in the original AB thought experiment, so on this premise
a dual electric effect should exist, and has been considered previously for an active dipole
system [79–81]. In the strict sense of duality, the DAB experiment requires monopoles to
measure the DAB effect. However, the DAB geometric phase should be equivalent to the
known one discovered in the 1990s [70,82], due to the spontaneous permanent polarisation
of a ferroelectric [29], or the permanent polarisation of an electret in general [25–27,29,80],
and a magnetic monopole was not necessary to prove the existence of this already widely
accepted geometric phase.

First, let us consider semi-classically the well known AB magnetic Berry phase of a
long cylindrical electromagnetic solenoid (or permanent magnet), ∆φBAB , and, with the use
of Equation (12), we can show

φBAB =
q
h̄

˛
P
~A · d~l =

q
h̄

ˆ
S
∇ × ~A · d~S =

q
h̄

ˆ
S
~B · d~S + µ0

q
h̄

ˆ
S

∂~C
∂t
· d~S. (21)

Here, the closed path, P , of integration of the magnetic vector potential on the LHS of
Equation (21) encloses the surface, S, in which the magnetic flux flows, with the first term
on the RHS the static contribution to the AB geometric phase, while the second term adds
the time dependent term. For the static case, if we consider P as the path at the mid point
of the solenoid around the the electric current boundary, the minimum value of enclosed
magnetic flux will be given by the flux quantum, Φ0 = h/(2e), so that

´
S
~B · d~S = nΦ0 for a

superconducting system with n Cooper pairs (q = 2e). In contrast, for a normal conductor
with free electrons (q = e),

´
S
~B · d~S = 2nΦ0 (measured by Webb et. al. [83]). Thus, in

general, the static AB phase in both the superconducting and normal conducting case is
given by φBAB = 2nπ.

Analogous to this, the dual electric phase φEAB combined with Equation (15) becomes

φEAB =
1
q

˛
P
~C · d~l =

1
q

ˆ
S
∇ × C · d~S =

1
q

ˆ
S
~DT · d~S +

ε

q

ˆ
S

∂~A
∂t
· d~S. (22)
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Here, the closed path, P , of integration of the electric vector potential on the LHS of
Equation (22) encloses the surface, S, in which the electric flux flows. Thus, in analogy,
the first term on the RHS gives the static dual geometric phase, while the second gives
the general time dependent term. For the static case, the geometric phase depends on the
enclosed electric flux, ΦE =

´
S
~DT · d~S, which for a path, P , at the mid point of the magnetic

current boundary, the minimum value should be equal to the quantum of electric charge,
q = e, for a single electron system or, q = 2e, for a paired electron system. These equations
should be valid for both bound-charge and free-charge actively polarized systems.

Considering modern polarisation theory based on Berry phase, the definition of
polarisation was developed through the microscopic crystal lattice surface and volume
charge distributions. As discussed by Vanderbuilt [82], modern polarisation theory is based
on the heuristic replacement of the position vector,~r → i∇~k, by the~k-derivative operator.
Thus, Berry phase is considered in momentum space rather than position space, and the
polarisation is quantised, so that ~P → ~P + ∆~Pi

e corresponds to φEAB → φEAB + 2π [27,82].
In contrast, our approach allows us to relate the same quanta of polarisation to the electric
Berry phase in position space. In a similar way, Onoda et al. [29] have described the
topological nature of polarisation and charge pumping [84] in ferroelectrics using an
analogy to magnetostatics, by introducing a vector field with a Berry phase as a linear
response of the covalent part of polarisation, which has incorporated a generalization of the
Born charge tensor. In principle, this microscopic type of description should be equivalent
to a semiclassical emergent macroscopic description of polarisation with a non-zero curl
and an electric vector potential as introduced in this work. A similar strategy has also been
presented in [53,85], and suggests the magnetic current boundary source is an instanton,
with a Berry phase, which carries non zero crystal momentum.

4. Motive Force Equations from the Time Dependence of Geometric Phase

Previously, an equivalence between the Aharonov–Bohm effect of a solenoid and
the Aharonov–Casher effect of a charged rod has been demonstrated, where the time-
dependent Aharonov–Casher phase was shown to induce a motive force via the SU(2) spin
gauge field [55]—in a similar way to the time dependence Aharonov–Bohm effect that
derives Faraday’s law, responsible for electromagnetic induction and the electromotive
force (emf). Here, we show that the time dependence of the dual electric phase derives
Ampere’s law, the equation responsible for magnetomotive force (mmf).

First, we consider the time rate of change of Equation (21), combining it with (12),
we obtain

− 1
ε

˛
P
∇ × ~C · d~l −

˛
P
~ET · d~l =

∂

∂t

˛
S
~B · d~S + µ0ε

˛
S

∂2~C
∂t2 · d~S, (23)

which becomes

E =

˛
P
~ET · d~l = −

∂

∂t

˛
S
~B · d~S− 1

ε

˛
S

(
∇×∇× ~C + µ0ε

∂2~C
∂t2

)
· d~S

= −∂ΦB
∂t
−
˛

S
~Ji

m · d~S.
(24)

Here, E , is defined as the electromotive force (emf), then, from Equation (24), we obtain

ET = −Imenc = −
˛

S
~Ji

m · d~S = E + ∂ΦB
∂t

, (25)

which is Faraday’s law [1]. Here, Imenc is the enclosed effective current boundary source,
and ET , the voltage across a dipole or total emf.
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Next, we consider the time rate of change of Equation (22) and, combining it with (15)
we obtain

− 1
µ0

˛
P
∇ × ~A · d~l +

1
µ0

˛
P
~B · d~l = ε

∂

∂t

˛
S
~ET · d~S + ε

˛
S

∂2 ~A
∂t2 · d~S, (26)

which becomes

F =
1

µ0

˛
P
~B · d~l = ε

∂

∂t

˛
S
~ET · d~S +

1
µ0

˛
S

(
∇×∇× ~A + µ0ε

∂2 ~A
∂t2

)
· d~S

= ε
∂

∂t

˛
S
~ET · d~S +

˛
S
~J f · d~S,

(27)

which is the integral form of Ampere’s law [1]. Here, F is defined as the magnetomotive
force (mmf); then, by rearranging Equation (27), we obtain

FT = I fenc =

˛
S
~J f · d~S = F − ∂ΦE

∂t
. (28)

Here, FT = I fenc = N × I, for an electric coil (some times referred as an elctromagnet)
is the enclosed electrical current boundary source of a magnetic dipole or inductor coil
with N turns. This could also be delivered by a permanent magnet, which has a fictitious
bound magnetic current,~Jb, due to the permanent magnetisation ~M, where~Jb = ∇× ~M, so
FT = Ibenc =

¸
S
~Jb · d~S.

5. Electronic Properties of an Active Cylindrical Dipole

In this section, we analyze the electronic properties of a static (or quai-static) cylindrical
active electronic dipole of varying aspect ratios (AR = 2ae

L ), in terms of the fields and
potentials as described in Section 3. Here, L is the axial length, and ae the radius of the
cylinder as shown in Figure 1. The aspect ratio was varied and the resulting electric scalar,
V, and vector, ~C, potentials, as well as the electric field, ~E, and electric flux density, ~D
were calculated, ranging from a flat pancake-like structure (AR→ ∞) to a long needle-like
structure (AR→ 0), with vector and density plots for some of these aspect ratios shown
in Figures 2 and 3, while the values plotted against radial and axial positions are plotted
in Figures 4 and 5. Assuming a constant impressed polarisation of ~Pi

e = σi
e ẑ within the

boundaries of the active cylindrical dipole, a resulting constant impressed surface charge
density will exist at each axial end face of, ±σi

e, Correspondingly, an impressed surface
magnetic current density at the radial boundary (r = ae) of value, ε~κi

m = −δ(r− ae)σi
eφ̂ [1]

will be present. The potentials and field can be calculated from the surface charge density
and the surface magnetic current density using the following equations:

(1) The electric scalar potential,

V(~r) =
1

4πε

¨ ′

S

σi
e(~r′)dA
|~r−~r′| , (29)

so the normalized value in cylindrical coordinates is given by

εV(~r)
σi

e
=

1
4π

ˆ ae

0

ˆ 2π

0

δ(z′ − L
2 )− δ(z′ + L

2 )

|~r−~r′| r′dφ′dr′. (30)

(2) The electric vector potential,

~C(~r) =
ε

4π

ˆ ′
S

~κi
m(~r′)
|~r−~r′|d

2r′, (31)
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so the normalized value in cylindrical coordinates is given by

~C(~r)
σi

e
= − aeφ̂

4π

ˆ L
2

− L
2

ˆ 2π

0

δ(r′ − ae)

|~r−~r′| dφ′dz′. (32)

(3) The electric field vector (~E = −~∇V),

~E(~r) =
1

4πε

¨ ′

S

σi
e(~r′)dA

(~r′ −~r)2~̂r
′ (33)

so the normalized value in cylindrical coordinates is given by

ε~E(~r)
σi

e
=

1
4π

ˆ ae

0

ˆ 2π

0

δ(z′ − L
2 )− δ(z′ + L

2 )

(~r′ −~r)2 ~̂r′r′dφ′dr′. (34)

(4) The electric flux density (~D = −~∇× C ),

~D = − ε

4π

ˆ
~κi

m × (~r−~r′)
|~r−~r′|3

dr′2 (35)

so the normalized value in cylindrical coordinates is given by

~D(~r)
σi

e
=

1
4π

ˆ L
2

− L
2

ˆ 2π

0

δ(r′ − ae)φ̂′ × (~r−~r′)
|~r−~r′|3

dφ′dz′. (36)

To verify this calculation, we also used the relation, ~DT(~r) = ε~ET(~r) + ~Pi
e , which leads

to the following normalized values:

~D(~r)
σi

e
=

ε~E(~r)
σi

e
+ ẑ inside the dipole (37)

~D(~r)
σi

e
=

ε~E(~r)
σi

e
outside the dipole (38)

Both Equations (37) and (38) give the same result as (35) verifying our calculations.

Some interesting points come out of these simulations, and the potential difference
(∆Vi

e across the active dipole has both a scalar and vector potential component, and is equal
to the electromotive force. Because ~Ei

e only exists within the active dipole source (~Ei
e = 0

outside), the closed integral for the emf can be replaced by a definite integral to give

∆Vi
e = E =

ˆ L
2

− L
2

~Ei
e · d~l = ∆V~C + ∆V (39)

where

∆V~C =

ˆ L
2

− L
2

~ET · d~l and ∆V = −
ˆ L

2

− L
2

~E · d~l. (40)

As shown in Figure 6, as AR → 0, the ±σi
e charges will be separated by large distances

when compared to the radius of the charge. In this case, both ~E→ 0 and ∆V → 0 (also see
Figures 4 and 5) so ∆V~C is the main component of the voltage output. The opposite occurs
for large aspect ratios for pancake-like structures. In this case, the total electric field, ~ET → 0
or electric flux density ~DT → 0. For this case, because ~Ei

e ≈ −~E inside the dipole, and the
potential difference between the axial end faces due to the scalar potential is equivalent
to the emf generated across the dipole, and ∆V~C → 0. This finding is consistent with [1],
which determined that the magnetic current boundary source best describes the output
voltage of an AC or DC generator, rather than the electric field. Many authors assume
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~ET = 0, so, under this assumption, the emf is only generated by a scalar potential, and
if this were true, the near field of the active dipole in the quasi-static regime should be
zero (screened). However, this is known to be generally not true, and it is well known that,
for long thin dipoles, such as an active dipole antenna, the near field is dominated by an
electric field.

Figure 2. Field and potential plots for a cylindrical dipole with AR = 1. (A) 2D vector plot of the nor-

malized electric flux density ~DT
σi

e
at y = 0, in the (r− z) plane, calculated from Equations (37) and (38);

(B) 2D vector plot of the normalized electric field ε~E
σi

e
at y = 0, in the (r− z) plane, calculated from

Equation (34); (C) 2D colour density plot of the normalized electric scalar potential εV
σi

e
at y = 0, in

the (r− z) plane, calculated from Equation (30); (D) 3D vector plot of the normalized electric vector
potential, ~C

σi
e
; (E) 2D vector plot of the normalized electric vector potential, at z = 0, in the (r− φ)

plane, one can see that the electric vector potential is maximum at the radial boundary where the
magnetic current exists.

Figure 3. Not to scale field and potential plots for a cylindrical dipole. (Above) AR = 10: (A) 2D

vector plot of the normalized electric flux density ~DT
σi

e
at y = 0, in the (r− z) plane, calculated from

Equations (37) and (38); (B) 2D vector plot of the normalized electric field ε~E
σi

e
at y = 0, in the (r− z)

plane, calculated from Equation (34); (C) 2D colour density plot of the normalized electric scalar
potential εV

σi
e

at y = 0, in the (r− z) plane, calculated from Equation (30). (Below) similar plots to

(above) but with AR = 0.1: (D) ~DT
σi

e
at y = 0, in the (r− z) plane; (E) ε~E

σi
e

at y = 0, in the (r− z) plane;

(F) εV
σi

e
at y = 0, in the (r− z) plane.
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Figure 4. (Above): Normalized electric vector potential versus normalized radial distance, (at z = 0
centre of the dipole) for various aspect ratios, compared to the infinitely long dipole (AR → 0).
(Below): Normalized electric scalar potential, versus normalized axial position, (at r = 0 centre of the
dipole) for various aspect ratios, compared to the infinitely wide dipole AR→ ∞. Here, the length of
the dipole is L, where AR = 2ae

L , so the end face of the dipole are at z/L = ± 1
2 .

Figure 5. (Above): Normalized z component of the electric field, Ez, versus normalized radial
distance, at z = 0, from the centre of the electric dipole for various aspect ratios. Note, for the infinite
dipole (AR → 0), that the electric field is zero for all r. (Below): Normalized z component of the
electric flux density, DTz , versus normalized axial distance, at r = 0, from the midpoint of the electric
dipole for various aspect ratios. Note, for the infinitely wide dipole (AR→ ∞), DTz is zero for all z.
Note the tangential Ez field across the radial boundary of the dipole, at r

ae
= 1, is continuous, while

the normal DTz field is continuous across the axial boundary at z
L = ± 1

2 .
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Figure 6. Normalized potential difference across the terminals an active cylindrical dipole generator
versus aspect ratio. The normalized emf or voltage output, εE

σi
e L is shown in green and is equal to

unity independent of aspect ratio when setting the radius of the dipole to unity. The output voltage
in general has both a scalar potential and vector potential as given by Equations (39) and (40) and are
plotted in orange and blue, respectively. Results show that the vector potential dominates for small
aspect ratios while the scalar potential dominates for large aspect ratios.

6. Discussion

A macroscopic, time-independent, active magnetic dipole can in principle exist with-
out loss as a persistent DC current in a superconducting wire loop or coil not requiring any
extra energy or power input. For this situation, all parts of Faraday’s law in Equation (25)
are zero, as there is no voltage or emf required. The strength of the magnetic dipole depends
on the enclosed electrical current in the loop. For a superconducting coil, a current may
be trapped with the use of a persistent switch, and the strength of the magnetic field will
depend on the applied mmf, FT = NI before switching, as given by Ampere’s law in
Equation (28). Thus, once trapped, the mmf exists as stored energy, Em = 1

2 LI2 (L is the
inductance of the loop or coil), and no work is required to keep the dipole energised.

The electromagnetic dual of the active macroscopic magnetic dipole (or permanent
magnet) is the active macroscopic electric dipole. This type of dipole is a permanent
dipole, such as a macroscopic electret, polar molecule, or atomic system with a dipole
moment determined by the first-order linear Stark effect. This description does not include
instantaneous or induced dipoles, which are not permanent. However, for the macroscopic
electric dipole (or an electret) to exist, an emf must be generated to force separation of
charges, unlike the magnetic dipole, this charge separation requires an impressed force
per unit charge from an external energy source. For example, a solar cell contains a p-
n junction, where an array of bound dipoles existed in the depletion region and, when
photons enter this region, the dipoles are polarized to essentially form an electret and an
electromotive force. Conversely, once an electret is polarized, the natural tendency is for
the active electric dipole to discharge or decay and emit a photon [86], which means the
active electric dipole is intrinsically metastable and are less common in nature. At the
atomic scale, a non-vanishing electric dipole moment is a much more rare occurrence than
a magnetic dipole, which all particles with spin exhibit. By definition, a non-vanishing
electric dipole moment is proportional to a non-vanishing first-order linear Stark shift,
which only occurs if some of the wavefunctions with degenerate energies have opposite
parity; i.e., have different symmetry under inversion. This what happens for the excited
H-atom, where 2s and 2p states are “accidentally” degenerate and have opposite parity
(2s is even and 2p is odd). In this paper, we have presented a semiclassical emergent
macroscopic description of EMF generation, where the voltage supplied by the active
macroscopic electric dipole is determined by the enclosed effective magnetic current at
the tangential boundary given by Equation (25). In this dual system, the electric vector
potential exists, and has a geometric phase.

An interesting point in understanding the physics of an emf generator is to understand
the microscopic description, which will be a different description for each type of generator,
which inevitably involves quantum mechanics [19–24] or a non-trivial microscopic material
topology [30]. Our work unifies this description with a simple emergent macroscopic
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description involving the modification of the Maxwell–Faraday law. Another related
question is: can we devise an experiment to measure the electric geometric phase in a
similar way to the well-known AB experiment, which measures the magnetic geometric
phase? Any experiment will need a full quantum mechanical description to understand if
it would work, and act on the interference fringes of a passing particle such as an electron
or a particle with an electric or magnetic dipole moment [79,81]. From Figure 2, we notice
the vector potential is maximum just outside the rim of the dipole at the centre; at this same
place, the electric field is minimum. Passing particles around different directions would be
the dual of the original AB experiment. Another way would be to configure an experiment
which generates emf in the regime dominated by the electric vector potential, and confirm
the voltage output; this has already been undertaken with energy harvesters and Lorentz
force generators, where electricity is generated by a bound or free charge polarisation in
the absence of an applied electric field [1].
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