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This paper proposes a fault tolerant control scheme based on an unknown input observer for a wind turbine system subject

to an actuator fault and disturbance. Firstly, an unknown input observer for state estimation and fault detection using a linear

parameter varying model is developed. By solving linear matrix inequalities (LMIs) and linear matrix equalities (LMEs),

the gains of the unknown input observer are obtained. The convergence of the unknown input observer is also analysed with

Lyapunov theory. Secondly, using fault estimation, an active fault tolerant controller is applied to a wind turbine system.

Finally, a simulation of a wind turbine benchmark with an actuator fault is tested for the proposed method. The simulation

results indicate that the proposed FTC scheme is efficient.
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1. Introduction

Due to a large number of consumption of fossil resources

and the increasing awareness of environmental protection,

wind energy as a sustainable renewable energy has been

attracted more and more attention. In the last decade,

the installed capacity of wind energy has been growing

rapidly and it becomes one of the most important energies

in the family of renewable energies (Khare et al., 2016).

A wind turbine system is nonlinear, high-order and easy

to be affected by disturbances. With the increasing

power of a standard wind turbine system, the system

becomes more and more complicated and the nonlinearity

of the wind turbine system gets increasingly prominent

(Jonkman et al., 2009). The demand for performance and

reliability in the closed-loop system becomes stronger.

In the wind turbine system, the components are

challenged by a variety of extreme climates and are

∗Corresponding author

subject to faults. If there is no action to be taken

in a fault situation, the system performance would be

degraded or it would even have to stop. In order to handle

faults caused by sensors, actuators or system components,

many fault detection and isolation (FDI) and fault tolerant

control (FTC) techniques have been put forward (Georges

et al., 2011; Chen and Saif, 2006; Kamal and Aitouche,

2013; Simani et al., 2015; Boulkroune et al., 2013).

Fault tolerant control schemes can maintain stability

and acceptable performance of the system and major

economic losses can be avoided. In active fault tolerant

control systems, faults can be estimated and compensated.

Odgaard et al. (2009) list over ten kinds of faults in a

benchmark model of wind turbine systems and these faults

cover different parts of a wind turbine, including sensors,

actuators and components.

The main problem of fault tolerant control in a wind

turbine system is that it is difficult to model the entire

system because of its strong nonlinearity and uncertainty.
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Besides, the uncontrolled wind with turbulence becomes

the most important source of disturbances and affects the

output performance. In recent years, many results have

been reported on FTC for wind turbine systems. Kamal

et al. (2012; 2014) present a robust fuzzy fault tolerant

control of wind energy conversion systems subject to

sensor faults. Also, in the works of Georg and Schulte

(2014; 2013), a Takagi–Sugeno fuzzy sliding mode

observer with a weighted switching action is considered

with fault diagnosis for wind turbines. Simani and

Castaldi (2014) present an active actuator fault tolerant

control based on adaptive filters obtained by the nonlinear

geometric approach.

Using virtual sensors/actuators to handle real sensor

and actuator faults and an interval observer, FDI and FTC

of wind turbines are developed by Blesa et al. (2014).

In the work of Shi and Patton (2015), an active fault

tolerant control approach to an offshore wind turbine

model is presented to deal with sensor and actuator faults.

Based on linear matrix inequality (LMI) techniques, a

robust and fault-tolerant linear parameter-varying (LPV)

control scheme is developed for the LPV system by Sloth

et al. (2011). In addition, using fuzzy logic theory, a

fault tolerant control based on data-drive for wind turbine

benchmark is presented by Simani and Castaldi (2012).

Generally, these approaches have some advantages to deal

with certain problems of wind turbine systems.

In this paper, an active fault tolerant control scheme

for a wind turbine system with an actuator fault is

developed. Due to the advantage of the LPV model to

describe some nonlinear systems, the wind turbine system

will be modeled in LPV form by using a benchmark

model (Odgaard et al., 2009; 2013). Based on this LPV

model, an unknown input observer (UIO) is designed to

estimate the state variables and fault signals. In the UIO,

the estimation of the original state becomes associated

with a transformed state and the state estimates can be

calculated from the transformed state. By solving LMIs

and linear matrix equalities (LMEs), the solution of the

UIO can be obtained. As for disturbance and actuator

faults, the convergence of the UIO is also analysed using

Lyapunov and H∞ theories. The proposed method can

estimate not only a constant fault, but also those with a

bounded derivative. Finally, a wind turbine system with

disturbance and actuator faults is utilized to illustrate the

performance. From the results, it is clear that the proposed

UIO and fault estimation algorithm are efficient.

Therefore, the main objective of this paper is to

detect and compensate, in the control loop, actuator pitch

and torque faults of the wind turbine system based on the

unknown input observer to deal with nonlinearity in the

fault detecting and diagnosis approach. The principle of

the proposed method is to use an LPV model to represent

nonlinear dynamics of the WTS. The advantage of LPV

systems is that they make it possible to use linear-like

control theory. LMI methods have become very powerful,

in many areas, including network control design (Armeni

et al., 2009). Control systems subject to faults which can

be caused by sensors and actuators are an important issue

in fault tolerant control system design to keep the system

stable and to maintain acceptable performances when

failures occur. The results of this paper prove that the

proposed method is able to (i) detect and isolate actuator

faults of the wind turbine benchmark, and estimate their

amplitude, (ii) provide a control law able to compensate

the fault effect.

This paper is organized as follows. In Section 2,

problem formulation and preliminaries are presented.

Design and analysis of the UIO are provided in Section 3.

A benchmark model of the wind turbine system is

discussed in Section 4. Simulation results are presented

in Section 5. Finally, some conclusions are given in

Section 6.

2. Problem formulation and preliminaries

Consider a nonlinear system with the input, output and

unknown input vectors u ∈ R
m, y ∈ R

p and d ∈ R
l,

respectively. Assume that it can be expressed in LPV form

as

ẋ(t) = A(α)x(t) +B(α)u(t)

+D(α)d(t) + Ff(t),

y(t) = Cx(t),

(1)

where x ∈ R
n is the state vector, F is the fault matrix,

A(α) ∈ R
n×n, B(α) ∈ R

n×m, C ∈ R
p×n, D(α) ∈

R
n×l are matrices dependent on α, a time varying

parameter assumed to be bounded. Here d(t) and f(t)
are the disturbance and the fault vector, respectively.

We assume that the matrices A(α), B(α), D(α) can be

written as polytopic ones and are given by

A(α) =
r
∑

i=1

ρiAi,

B(α) =
r
∑

i=1

ρiBi,

D(α) =
r
∑

i=1

ρiDi,

(2)

where ρi are weights of the LPV subsystem,

r
∑

i=1

ρi = 1, 0 ≤ ρi ≤ 1. (3)

The polytopic representation of the system (1)

becomes

ẋ(t) =

r
∑

i=1

ρi(Aix(t) +Biu(t) +Did(t))

+ Ff(t),

y(t) = Cx(t),

(4)
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whereAi, Bi, Di are time invariant matrices. Assume that

the matrices Di have full column rank.

Assumption 1.

1. The pair (Ai, C) is observable for i = 1, . . . , r.

2. The matrix C is of full row rank. Di is also of full

column rank, i = 1, 2, . . . , r.

3. The disturbance d(t) and fault f(t) are functions

with a bounded first derivative.

3. Design and analysis of active fault

tolerant control for an LPV system

In this section, we will design an unknown input observer

for LPV system. The convergence of the unknown input

observer will be analyzed.

3.1. Design of the unknown input observer. For the

system (4), the unknown input observer can be written as

ż(t) =

r
∑

i=1

ρi(Niz(t) +Giu(t) + Liy(t))

+ T f̂(t),

x̂(t) = z(t)− Ey(t),

f̂(t) = ΓS(re + σ

∫

re dt),

(5)

where x̂(t) and f̂(t) are respectively the state estimate

vector and the fault vector, z(t) is a state vector

related to x̂(t), re = y − ŷ = y − Cx̂ is a

residual, Ni, Gi, Li, E, T, S,Γ are unknown matrices of

appropriate dimensions. They satisfy the following

conditions:

Ni = MAi −KiC,

Gi = MBi,

Li = Ki(I1 + CE)−MAiE,

MDi = 0,

MF = T.

(6)

Defining the state error vector e(t) = x(t) − x̂(t), we

obtain

e(t) = (EC + I2)x(t) − z(t)
∆
= Mx(t)− z(t), (7)

where M = EC + I2. I1 and I2 are identity matrices of

the appropriate dimensions.

If the conditions (6) are satisfied and the fault

estimation error is defined as f̃(t) = f(t) − f̂(t), the

derivative of the error becomes

ė(t) = Mẋ(t)− ż(t)

=

r
∑

i=1

ρi[Nie(t) + T f̃(t)

+ (MAi −NiM − LiC)x(t)

+ (MBi −Gi)u(t) +MDid(t)

+ (MF − T )f(t)].

(8)

Defining a matrix Ki = Li +NiE, we obtain

MAi −NiM − LiC

= MAi −NiM − (Ki −NiE)C

= (MAi −KiC)(I2 −M + EC) = 0.

(9)

Substituting (9) into (8), the error dynamic equation

can be simplified as

ė(t) =

r
∑

i=1

ρi(Nie(t) + T f̃(t)). (10)

3.2. Fault estimation and convergence analysis.

First, two auxiliary results are introduced

Lemma 1. (Zhang et al., 2008) Given a scalar µ and a

positive definite symmetric matrixP1, the following equal-

ity holds:

2xT y ≤
1

µ
xTP1x+ µyTP−1

1 y, x, y ∈ R
n. (11)

Lemma 2. If there exist positive definite symmetric ma-

trices P,Γ, such that the following LMI is satisfied for

i = 1, . . . , r:

Ψi =

[

NT
i P + PNi ∗
T TPNi

µ
σP1 −

2
σT

TPT

]

< 0, (12)

and

T TP − SC = 0, (13)

and the fault estimation algorithm is selected as

˙̂
f = ΓS(ṙe + σre), (14)

where re = y − ŷ = y − Cx̂ is a residual, then the state

error and the fault error converge to zero.

Proof. The candidate Lyapunov function is selected as

V = eTPe+
1

σ
f̃TΓ−1f̃ . (15)
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Then, we can obtain the derivative of the Lyapunov

function as

V̇ = ėTPe+ eTP ė+
1

σ
˙̃fTΓ−1f̃ +

1

σ
f̃TΓ−1 ˙̃f

=
r

∑

i=1

ρi(e
T (NT

i P + PNi)e + 2f̃T (T TPe

+
1

σ
Γ−1 ˙̃

f)

(16)

According to Eqn. (14) and the residual re = Ce, we

have

˙̃
f = ḟ −

˙̂
f = ḟ − ΓSC(ė+ σe). (17)

Substituting (17) in (16), the derivative of the Lyapunov

function becomes

V̇ =

r
∑

i=1

ρi(e
T (NT

i P + PNi)e+ 2f̃TT TPe

+
2

σ
f̃TΓ−1(ḟ − ΓSC(ė+ σe))))

=

r
∑

i=1

ρi(e
T (NT

i P + PNi)e+ 2f̃T (T TP − SC)e

+
2

σ
f̃TΓ−1ḟ −

2

σ
f̃TSCNie−

2

σ
f̃TSCT f̃).

(18)

According to the assumption, we have that the

derivative of fault f(t) is bounded, i.e., ‖ḟ(t)‖ < α1,

where 0 ≤ α1 < ∞. Using Lemma 1, we obtain

2

σ
f̃TΓ−1ḟ

≤
1

µσ
f̃TP1f̃ +

µ

σ
ḟTΓ−TP−1

1 Γ−1ḟ

≤
1

µσ
f̃TP1f̃ +

µ

σ
α1

2λmax(Γ
−TP−1

1 Γ−1).

(19)

Notice that if the fault is a constant, i.e., ḟ(t) = 0,

the inequality (19) is not required. The fault estimation

algorithm is to estimate a constant fault. In the work of

Hamdi et al. (2012), by assuming the fault as a step, i.e.,

ḟ(t) = 0, a method of fault detection and isolation via a

proportional integral observer has been proposed. In our

method, the condition for the fault is expanded, i.e., the

derivative of the fault is bounded.

Substituting (13) into (18) and using (19), we obtain

V̇ =

r
∑

i=1

ρi(e
T (NT

i P + PNi)e−
2

σ
f̃TT TPNie

+
2

σ
f̃TΓ−1ḟ −

2

σ
f̃TT TPT f̃)

≤
r

∑

i=1

ρi(e
T (NT

i P + PNi)e

+
µ

σ
α1

2λmax(Γ
−TP−1

1 Γ−1)

+
1

µσ
f̃TP1f̃ −

2

σ
f̃TT TPNie

−
2

σ
f̃TT TPT f̃).

(20)

Defining the vector ξ =
[

e f̃
]T

, V̇ can be written as

V̇ =

r
∑

i=1

ρiξ
TΨiξ +

µ

σ
α1λmax(Γ

−TP−1
1 Γ−1), (21)

where

Ψi =

[

NT
i P + PNi ∗
− 1

σT
TPNi

1
µσP1 −

2
σT

TPT

]

.

Using Lemma 2 and Eqn. (19), if the matrix Ψi < 0
exists, we have

V̇ ≤ −ε‖ξ‖
2
+

µ

σ
α1λmax(Γ

−TP−1
1 Γ−1), (22)

where ε = min(λmin(−Ψi)). Then V̇ < 0 for

ε‖ξ‖
2
>

µ

σ
α1λmax(Γ

−TP−1
1 Γ−1).

According to the Lyapunov stability theory, both the error

e(t) and the fault f(t) converge to a small set. �

Now, to guarantee the stability of the LPV system is

to find a suitable matrix by solving LMIs.

3.3. Active fault tolerant control for an actuator fault.

In this section, an active fault tolerant control subject to

an actuator fault is presented. The structure of the active

tolerance control for a wind turbine system is shown in

Fig. 1. The input of the baseline controller for the pitch

angle and the generator torque is denoted by ubase, which

it will be introduce in the following section. Then, for the

actuator fault, the input of the fault tolerant control is

uFTC = ubase +

r
∑

i=1

ρiKfif̂ , (23)

where matrix Kfi = −B†
iF is supposed to compensate

the actuator fault, and B†
i is a pseudoinverse of Bi.
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Fig. 1. Scheme of active fault tolerant control for the wind tur-

bine system.

3.4. Steps for calculating the solution of the UIO. In

this subsection, we will introduce a method for computing

the parameters of the UIO system. From the foregoing

condition for the UIO (Eqn. (6)), it is rewritten as follows:

M = EC + I2,
MDi = 0.

(24)

The expansion of (24) gives

[ M E ]

[

I2 D1 . . . Dr

−C 0 . . . 0

]

=
[

I2 0 . . . 0
]

. (25)

Define matrices

H = [ M E ],

Y =

[

I2 D1 . . . Dr

−C 0 . . . 0

]

,

Q =
[

I2 0 . . . 0
]

.

Y,Q are known matrices and H is an unknown matrix

that needs to be solved. The condition for solvability of

Eqn. (25) is that Y has full column rank (Hassanabadi

et al., 2016). Then it satisfies

rank(Y ) = rank(I2) + rank(D1) + . . .

+ rank(Dr).
(26)

Notice that the condition ensures the solvability of

Eqn. (26). The solution is given as

H = QY †, (27)

where Y † is a pseudoinverse of Y . If Y has full column

rank, we get

Y † = (Y TY )−1Y T . (28)

The matrix Y † can be partitioned into parts H1 and

H2 of the appropriate dimensions. Equation (27) can be

rewritten as

H =
[

M E
]

= Q
[

H1 H2

]

. (29)

Thus, the solution of M and E is given as follows:

M = QH1,

E = QH2.
(30)

Substituting (30) in (6), we obtain

Ni = QH1Ai −KiC,

Li = Ki(I1 + CE)−QH1AiQH2,

T = QH1F.

(31)

Since the inequalities in Eqn. (12) are bilinear matrix

ones, using Theorem 1, we can calculate the solution.

Theorem 1. If there exists a positive definite symmetric

matrix P and matrices K̄i, for i = 1 , . . ., r , such that

[

Ψ ∗
− 1

σT
TPMAi −

1
σT

T K̄iCi
1
µσP1 −

2
σT

TPT

]

< 0,

(32)

where Ψ = (MAi)
T
P+PMAi−CT K̄T

i −K̄iC, then the

UIO (Eqn. (5)) exists and the estimation error converges

to zero.

Proof. The proof is straightforward if we make

the substitutions K̄i = PKi (Eqn. (32)), according to

Lemma 2. �

Notice that by solving the LMI (32), the matrices P
and K̄i can be obtained. Then the remaining matrices can

be calculated. The technique for designing the unknown

input observer can be summarized as Algorithm 1.

Algorithm 1. Unknown input observer design.

Step 1. Compute H from Eqn. (27), and obtain the

matrices M,E.

Step 2. Solve the LMI from the inequalities (32) and

obtain the matrices P , Then calculate Ki = P−1K̄i and

S = T TPC†.

Step 3. Calculate the matrices Gi from Eqn. (6).

Step 4. Calculate the matrices Ni, Li, T from Eqn. (31).

4. Wind turbine system description

Usually, a typical wind turbine system consists mainly

of an aerodynamic subsystem, a drive train subsystem, a

pitch subsystem and a generator subsystem. A benchmark

wind turbine system model is described by Odgaard

et al. (2009) and Simani et al. (2013). The benchmark

model can deal with system level faults in different

subsystems. The purpose of the benchmark model is

to test and evaluate different kinds of fault detection

and accommodation schemes on a realistic wind turbine

system.
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4.1. Aerodynamic subsystem. The aerodynamics of

the wind turbine system are modeled as a torque Ta(t)
acting on the rotor blades. For three blades with small

differences between the values of βi, where i = 1, 2, 3,

the torque can be given as

Ta(t) =
1

6λ

3
∑

i=1

ρπR3v2Cp(λ, βi), (33)

where Cp is the power coefficient, v is the wind speed, R
is the rotor-plane radius, λ is the tip speed ratio, ρ is the air

density, β is the pitch angle. If the pitch angles are equal,

the aerodynamic torque can be rewritten as

Ta(t) =
1

2λ
ρπR3v2Cp(λ, β). (34)

4.2. Drive train subsystem. For the gearbox in the

wind turbine system, a two-mass drive train model can be

obtained as
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

θ̇(t) = ωr −
ωg

ng
,

Jtω̇r(t) = Ta −Ksθ −Bsωr +Bsωg,

Jgω̇g(t) =
1

ng
(Ksθ +Bsωr − Bsωg)− Tg,

(35)

where ng is the gearbox ratio, Ks and Bs are the stiffness

and the damping coefficient, respectively. Jt and Jg are

respectively the inertia of the rotor and the generator, θ is

the torsion angle of the drive train and ωg is the generator

speed.

4.3. Generator and converter subsystem. The

generator and the converter can be simplified as a first

order system and given as

Ṫg(t) = −
Tg

τ1
+

Tg,ref

τ1
, (36)

where Tg,ref is the reference generator torque signal and

τ1 is the time parameter of the electrical subsystem. The

potential fault in this system caused by the converter fault

may result in an actuator offset.

4.4. Pitch subsystem. According to Shi and Patton

(2015) or Odgaard et al. (2009), the hydraulic pitch

subsystem is modeled as a second order system with

reference pitch angle βref,

β̈ = −2ζωnβ̇ − ω2
nβ + ω2

nβref, (37)

where ωn, ζ are the natural frequency and damping ratio

parameters, respectively. In the work of Shi and Patton

(2015), the increased air content or the drop of oil pressure

will change the dynamics of the pitch system and cause an

actuator failure.

Having defined the fault effectiveness parameter θf ,

θf ∈ [0, 1], the parameters of the pitch system become

ωn = ωnf , ζ = ζf correspond to a full fault on the

actuator with θf = 1 and ωn = ωn0, ζ = ζ0 correspond to

a fault-free on the actuator with θf = 0. The parameters

of the pitch system can be rewritten as with the actuator

fault:

ω2
n = (1− θf )ω

2
n0 + θfω

2
nf ,

ζωn = (1− θf )ζ0ωn0 + θfζfωnf ,
(38)

If the pitch angle β is treated as an output and xβ =
[

β β̇
]T

is treated as a state variable, the model of the

pitch system can be rewritten in state space form as

ẋβ =

[

0 1
−ω2

n0 −2ζn0ωn0

]

xβ

+

[

0
ω2
n0

]

βref +

[

0
1

]

fβ,

(39)

where

fβ = ((ω2
nf − ω2

n0)β + 2(ζnfωnf − ζn0ωn0)β̇

+ (ω2
nf − ω2

n0)βref)θf

is the pitch actuator fault. Remark that dropped main line

pressure or high air content in oil yield changes in the

parameter of the hydraulic pitch system and cause a failure

in the pitch actuator. The faults considered only change

the parameters and do not change the model structure. The

other faults, such as sensor faults, etc., are not discussed

in this study.

4.5. Baseline control for the wind turbine system. In

this subsection, a baseline control strategy for the power

will be introduced. With the power of the wind turbine

increasing, the system is usually designed to work in

different regions. According to the wind speed, it can

be divided into two main regions: a high speed region

(HSR) and a low speed region (LSR). In the HSR, the

main objective is to maintain the output power within the

rating value by adjusting the pitch angle, while in the LSR

the objective is to track the optimal power by changing the

generator torque. Therefore, the reference signals for the

controller in the different regions are

βref(t) =

{

0 for LSR,

βnon-zero for HSR,

Tg,ref(t) =

{

Tg,opt for LSR,

Tg,rat for HSR,

(40)

where βnon-zero is obtained by using the classical

proportional-integral (PI) controller, Tg,rat is the rating

torque corresponding to the rating power, Tg,opt is the
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Fig. 2. Partial derivatives of aerodynamic torque Ta.

optimal torque which can be calculated by the wind speed

and the tip speed ratio. The PI controller is given as

ubase(t) = kp

(

e(t) + 1/Ti

∫

e(t) dt
)

, (41)

where kp, Ti are the parameters of the PI controller.

The switching rules in the different regions are given by

Odgaard et al. (2009).

Since the aerodynamic torque can be usually

approximately equivalent to a nonlinear function (cf.

Bianchi and De Battista, 2007), it can be linearized as

follows:

Ta(̟) = Br(̟)ωr + krb(̟)β + krv(̟)v, (42)

where ̟ = (v, ωr, β) and

Br(̟) =
∂Ta

∂ωr

∣

∣

∣

∣

̟

=
Ta

ω̄r

∂Cq/∂λ

Cq/λ

∣

∣

∣

∣

̟

,

krv(̟) =
∂Ta

∂v

∣

∣

∣

∣

̟

=
Ta

v̄

(

2−
∂Cq/∂λ

Cq/λ

∣

∣

∣

∣

̟

)

,

krb(̟) =
∂Ta

∂β

∣

∣

∣

∣

̟

=
Ta

β̄

∂Cq/∂β

Cq/λ

∣

∣

∣

∣

̟

.

(43)

This can be evaluated at the equilibrium point ̟ along

the normal operating trajectory. If the wind turbine is

operating in the nominal region (Bianchi et al., 2007),

the variables β and ωr at the equilibrium point ̟ can

be described uniquely by the wind speed, i.e., ̟ = v.

Figure 2 shows the partial derivatives of the aerodynamic

torque. Thus, defining the state vector,

x = [θ ωr ωg Tg

β1 β̇1 β2 β̇2 β3 β̇3]
T ,

the LPV model of the wind turbine system can be

parameterized by the wind speed and is given by

ẋ(t) = A(v)x(t) +Bu(t) +D(v)v,
y(t) = Cx(t),

(44)

where

A(v) =

[

A11 A12

A21 A22

]

,

A11 =

⎡

⎢

⎢

⎢

⎣

0 1 −1/ng 0

−Ks

Jt
− (Bs+Br(v))

Jt

Bs

ngJt

krb(v)
Jt

Ks

ngJg

Bs

ngJg
−

(Bs/n
2

g+Bg)

Jg
0

0 0 0 − 1
τ1

⎤

⎥

⎥

⎥

⎦

,

A12 =

⎡

⎢

⎢

⎣

0 0 0 0 0 0
Krb

3Jt
0 Krb(v)

3Jt
0 Krb(v)

3Jt
0

0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎦

,

A21 =
[

0
]

6×4
,

A22 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0
−ω2

n 2ζnωn 0 0
0 0 0 1
0 0 −ω2

n 2ζnωn

0 0 0 0
0 0 0 0

0 0
0 0
0 0
0 0
0 1

−ω2
n 2ζnωn

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

B =

⎡

⎢

⎢

⎣

0 0 0 1
τ1

0 0 0

0 0 0 0 0 ω2
1,ref 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0
0 0 0

ω2
2,ref 0 0

0 0 ω2
3,ref

⎤

⎥

⎥

⎦

T

,

C =

⎡

⎢

⎢

⎣

0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0

⎤

⎥

⎥

⎦

,

D(v) =
[

0 krv(v)
Jt

0 0 0 0 0 0 0 0
]T

.

Since during normal operation the wind speed varies

within a certain range (i.e., v ∈ [vmin, vmax]) and
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Fig. 4. Generator torque fault and its estimate.

is the only variable in the LPV model, the polytopic

representation of the LPV model of wind turbine system

has two subsystems. According to the range of the wind

speed, the weight of the subsystem can be calculated as

ρ1(v) =
vmax − v

vmax − vmin
,

ρ2(v) =
v − vmin

vmax − vmin
,

(45)

In the wind turbine system, the pitch subsystem starts to

work only if the wind speed is up to a rating value. When

the wind speed is over a cut-off wind speed, the pitch

subsystem will stop working. In this paper, the variation

range in the wind speed is chosen from (6, 25).

5. Simulation and results

In this paper, the proposed approach is tested in the

Matlab/Simulink environment with a benchmark model.

The detailed the parameters of wind turbine system are

given after Odgaard et al. (2009), and the main parameters

of wind turbine system are R = 57.5, ng = 95, Jt =
55×106 kg·m2 Jg = 390 kg·m2, Ks = 2.7×109 Nm/rad,

Bs = 9.45Nm/(rad/s), ωn = 11.11, ζn = 0.6, τ1 = 0.1.
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Fig. 5. Generator torque and the corresponding estimate.
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Using the Matlab/Yalmip toolbox (Lofberg, 2004) to

solve the LMIs, the matrices of the UIO can be obtained;

see Eqns. (46)–(51).

The baseline controller is given after Odgaard et al.

(2009). The parameters of the controller for the pitch

angle are kp = 4, Ti = 4. In the simulation, a random

wind speed is selected and shown in Fig. 3.

In the following, two cases are considered to verify

the proposed approach.

5.1. Generator and converter subsystem with an ac-

tuator fault. An offset in the internal converter control

loops, results in an offset in the torque input. The

generator and converter subsystem fault occurred in the

period from 2500 to 2600 s. In the torque fault situation,

the value of the torque input is offsetting with 900 Nm.

The estimated fault of the torque is illustrated in Fig. 4.

The estimate tends to the reference rapidly. Since the

torque fault is a constant, it indicates that the proposed

method performs well with constant faults. The generator

torque and its estimated value are shown in Figs. 5 and 6.

Comparing the results, we see that the performance of the

fault estimation algorithm is proved.
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N1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1.0 −0.01053 0 0
−49.09 −0.000007 0.000000 0.000001 0.000098
70699.0 0.0203 −0.1136 0.0001218 0.005775

0 0 0 −5.155 −0.000000
0 0 0 0.000000 −52.57
0 0 0 −0.000001 1088.0
0 0 0 0.000000 −0.000017
0 0 0 −0.0000006 0.000439
0 0 0 0.000000 −0.000017
0 0 0 −0.000001 0.000439

0 0 0 0 0
0 0.000098 0 0.000098 0

−0.000000 0.005775 0 0.005775 0
−0.000000 −0.000000 0 −0.000000 0

0.5 −0.000017 0 −0.000017 0
−13.33 0.000439 0 0.000439 0

0 −52.57 0.5 −0.000017 0
0 1088.0 −13.33 0.000439 0
0 −0.000017 0 −52.57 0.5
0 0.000439 0 1088.0 −13.33

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (46)

5.2. Pitch subsystem with an actuator fault. The

pitch actuator fault caused by the high air content in oil or

dropped main line pressure results in changed dynamics.

This type of fault is possible in all three blades. In this

paper, the second and third pitch subsystems are selected

as a case for the pitch actuator fault. The effectiveness

parameter θf of the second pitch subsystem is set as 1. In

the period from 2700 to 2800 s. The actuator fault of the

third pitch subsystem is taken as

fβ3
(t) =

{

4 sin(0.2t) + 5, 2900 ≤ t ≤ 3000,

0, otherwise.
(52)

The simulation results are illustrated as follows.

Figures 7 and 8 show the reference and the estimated

values of faults. Figures 9 and 11 display the simulated

and estimated values of the pitch angle. Figures 10 and

12 show the result of the pitch angle with and without

FTC. From the fault estimation of the third pitch angle,

we can see that an error appears in the estimation of the

pitch fault. This illustrates that, for a fault with a bounded

derivative, the proposed method can estimate the fault

with a small error. From these figures, we can see that

the estimation faults slightly change within the scope of

the simulation value after the faults occur. The estimation

algorithm for both the faults and states is efficient.

6. Conclusions

In the paper, an active fault tolerant control for a wind

turbine system with an actuator fault was proposed. First,

using linearization, a benchmark model of the wind

turbine system was converted into LPV form. Considering

both a disturbance and an actuator fault in the system, an

unknown input observer based on the LPV model and an

actuator fault estimation algorithm were designed. We

analyzed the convergence of the observer using Lyapunov

stability theory. In order to verify the proposed method,

a wind turbine system with actuator faults, a torque

actuator and a pitch actuator, was tested in a benchmark

model. From the results, we have that both fault and

state estimation algorithms perform well. The proposed

fault tolerance control method is efficient, especially for

an actuator fault with an offset.
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Fig. 7. Second pitch angle fault and its estimate.
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Appendix

Table A1. Nomenclature.
Parameter Description

v wind speed

Cp power coefficient

τ1 time constant

λ tip speed ratio

βi i-th pitch angle

ωr, ωg rotor, generator speeds

ωn, ζn natural frequency, damping ratio

Ta, Tg aerodynamics, generator torques

Jt, Jg rotor, generator inertias

Ks, Bs stiffness, damping coefficients

d, f disturbance, fault vectors

Di, F disturbance, fault matrices

Ai, Bi, Ci system matrices

Ni, Gi, Li, T, E observer gains

x̂ estimate of x
x̃ result of x̃ = x− x̂
x† pseudoinverse of x
ẋ derivative of x
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