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ABSTRACT Vehicle-borne millimeter wave radar sensor may malfunction during signal acquisition and

transmission process, which will affect the decision of adaptive cruise control (ACC) system and the

safe driving of vehicles. However, adding other redundant environment-aware devices will increases costs.

Therefore, in this paper, an active fault tolerant control of ACC system considering vehicle-borne millimeter

wave radar sensor failure is proposed. Sensor faults are taken as discrete events, and the mixed logical

dynamical (MLD) model of ACC upper control system is built which includes both the fault-free dynamics

and the fault dynamics of the system. Then, the active fault tolerant control model of ACC system is

established based on model predictive control (MPC) framework. Compared with the existing researches,

this work emphasizes on the active fault tolerant control without adding other redundant environment-aware

devices, which has not been fully revealed by the existing researches and is important to the industrial

application. Moreover, the active fault tolerant control method can be easily ported to other driver assistance

system besides ACC. The simulation results show that the vehicle equippedwith the active fault tolerant ACC

system can still drive safely and smoothlywithout being affected by radar sensor failures, which demonstrates

its great significance to improve vehicle’s own intelligence and ensure the safe driving instead of relying

entirely on sensors.

INDEX TERMS Active fault tolerant, adaptive cruise control, intelligent vehicles, mixed logical dynamical

model, model predictive control.

I. INTRODUCTION

As the key to ensuring the highway traffic security, adaptive

cruise control (ACC), lane departure warning (LDW) and

other advanced driver assistance system (ADAS) technolo-

gies have increasingly attracted people’s attention [1]–[3].

ACC, also known as the active cruise control system, com-

bining the cruise control at constant speed and the control

of vehicle distance keeping, adopting vehicle-borne radar

for environmental perception, thus assists the driver to drive

the car safely and comfortably [4]–[6]. At present, the ACC

system is configured on some brands’ high-end cars, and its

functions are also expanding.

As an important part of ACC for environmental percep-

tion, vehicle-borne millimeter wave radar can detect obstacle

The associate editor coordinating the review of this manuscript and

approving it for publication was Bohui Wang .

targets within a certain range around the ego vehicle in real

time [7]. However, in the acquisition and transmission pro-

cess of millimeter wave radar signals, due to the interference

of the external environment or the failure of radar devices,

the measured value of the dynamics state of the target vehicle

will inevitably contain certain measurement noises, and the

fault conditions such as missing detection and false detection

may occur [8]. In this case, the accuracy of vehicle-borne mil-

limeter wave radar is relatively low and does not satisfy the

requirements of vehicle active safety control system [9]. Even

a very short failuremay cause a driving accident. One solution

is to use multi-sensor fusion, such as configuring lidar, but

requires a lot of cost. Another solution is to get information

about the surrounding vehicles through V2V communication,

but this technology is not yet popular and wireless communi-

cation network may temporarily fail [10]. Therefore, without

the addition of other redundant environment-aware devices,
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researching the active fault tolerant control of ACC system in

the condition of vehicle-borne millimeter wave radar sensor

faults is of great significance. This research can improve

vehicle’s own intelligence to ensure the safe driving instead

of relying entirely on sensors.

At present, there is not much research in this problem.

Guo and Yue [11] established a switched sampled-data coop-

erative adaptive cruise control (CACC) system model con-

sidering the effect of the onboard infrared sensor failure,

and then designed state feedback controllers to stabilize the

CACC system. They supposed that all following vehicles

have the same sensor failure and they divided sensor failure

into complete failure and partial failure, which values are all

smaller than the true value. However, that is almost impos-

sible in practice because the fault value of each sensor are

random. Nunen et al. [12] present an algorithm of a Safety

Checker which determines in real time the safe headway

time and safe standstill distance for an ACC system, but

they took the inaccuracies of radar failure as white noise

and ignored effects of missing detection and false detection.

Boukhari [13] presented two fault tolerant schemes to han-

dle the autonomous vehicle speed sensor’s additive faults,

but they didn’t consider sensor faults of vehicle-borne radar

which has serious impact on environmental perception.

The ACC system, enabling ACC-equipped vehicles to

drive safely on the condition of noise interference and failure

of vehicle-borne millimeter wave radar sensor. Based on this

purpose, in this paper, sensor faults are taken as discrete

events, and the mixed logical dynamical (MLD) model of

ACC upper control system is built which includes both the

fault-free dynamics and the fault dynamics of the system.

Based on model predictive control (MPC) framework and the

MLD model, the active fault tolerant control model of ACC

system is established. The main contributions of this study

are as follows:

1) Our work lays emphasis on the active fault tolerant con-

trol on the condition of vehicle-borne millimeter wave radar

sensor failure without adding other redundant environment-

aware devices, which has not been revealed by the existing

researches and is important to the industrial application.

2) Our work improves on the traditional MPC-based ACC

system, and fuses the MLD model with the MPC framework.

The method is simple and easy to understand, and achieves

sound effects of active fault tolerance control.

3) Besides ACC, methods of vehicle dynamic state esti-

mation, sensor fault recognition and the active fault tolerant

control model proposed in this paper can be easily ported to

other advanced driver assistance system technologies, such as

collision avoidance system and lane change assist system.

Combined with the PreScan vehicle simulation platform,

the application of the proposed active fault tolerant con-

trol algorithm of ACC system is tested in complex traffic

scenarios.

The simulation results show that for the millimeter wave

radar sensor failure in extreme cases, the active fault tolerant

ACC system can accurately recognize the false detection and

missing detection of the radar sensor, and then implement the

active fault tolerant control to maintain the desired relative

distance and smooth velocity response. This novel method is

of great significance to ensure the safe driving of intelligent

vehicles.

The structure of the paper is as follows. Section 2 presents

vehicle dynamic state estimation and sensor fault recogni-

tion based on vehicle-borne millimeter wave radar signal.

Section 3 builds the MLD model of ACC upper control

system considering sensor faults. Section 4 presents an active

fault tolerant control model of vehicle ACC system based

on the MPC framework. Section 5 presents the results of

simulation and analysis in complex traffic scenarios. Finally,

section 6 draws the conclusion.

II. VEHICLE DYNAMIC STATE ESTIMATION AND SENSOR

FAULT RECOGNITION BASED ON VEHICLE-BORNE

MILLIMETER WAVE RADAR SIGNAL

In complex traffic scenarios, an ACC-equipped vehicle needs

to rely on the vehicle-borne millimeter wave radar sensor to

detect surrounding vehicles, and determine whether to enter

a cruising mode or a following mode by detecting vehicles

in the same lane in a certain range ahead. In a following

mode, it is necessary to smoothly follow the change of the

target vehicle while maintaining the safe relative distance.

The target vehicle may change lane to leave, and the vehicles

in adjacent lanes may also be inserted.

However, in the acquisition and transmission process of

millimeter-wave radar signals, due to the interference of the

external environment or the failure of radar devices, mea-

sured values of the target vehicle moving state will inevitably

contain certain measurement noises, and fault conditions

such as missing detection and false detection may occur.

Measurement noises can be modeled as the white noise and

reduced by filtering. While, the occurrence of sensor failures

is random and unpredictable, which is difficult to describe

with specific mathematical models. Missing detection means

that the radar sensor signal is missing. False detection means

that signals detected by the radar sensor has large errors.

In this case, the accuracy of vehicle-borne millimeter wave

radar is relatively low and does not satisfy the requirement

of vehicle active safety control system. We cannot predict

in advance when radar sensor faults will occur, nor can we

predict in advance how much received signals deviate from

actual values. Therefore, in the complex traffic environment,

the millimeter wave radar data processing module applied to

the ACC system needs to estimate actual vehicle dynamic

states and recognize fault conditions of radar sensor when

they occur.

A. VEHICLE DYNAMIC STATE ESTIMATION

In this paper, the Sage-Husa adaptive Kalman filtering algo-

rithm is adopted to establish the vehicle dynamic state esti-

mation model [10], [14]. It should be noted here that in order

to avoid filter divergence problems and low estimation accu-

racy, we used Sage-Husa adaptive Kalman filtering algorithm
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rather than the simpler classical Kalman filter or extended

Kalman filter algorithm.

The vehicle-borne millimeter wave radar can detect the

longitudinal relative distance 1Sx_radar , longitudinal relative

velocity 1vx_radar , lateral relative distance 1Sy_radar and

lateral relative velocity 1vy_radar of a certain target vehicle

from the ego vehicle. Here, we take the longitudinal motion

state estimation as an example, the lateral motion state of

the target vehicle can also be estimated by the Sage-Husa

adaptive Kalman filtering algorithm in the same way.

Here, it is assumed that the longitudinal relative jerk

of the target vehicle from the ego vehicle is con-

stant and is subject to zero-mean system random noise

interference. Construct a continuous system state vec-

tor X (t) = [1Sx (t) , 1vx (t) , 1ax (t) , 1jx(t)
]T
, where

1Sx(t), 1vx(t), 1ax(t), 1jx(t) are respectively the true lon-

gitudinal relative distance, true longitudinal relative velocity,

true longitudinal relative acceleration, and true longitudinal

relative jerk of this target vehicle from the ego vehicle at

time t . According to the derivative differential relationship

between the above physical quantities, the continuous state

equation in the time domain of each physical quantity can be

listed:

Ẋ (t) = AX (t) + BW (t) (1)

where A is the continuous system matrix, and A =
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0
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0

0

1

0

0

0

0

0

0

0

0

1

0









. B is the continuous system noise driven

matrix, and B = [0, 0, 0, 1]T . W (t) is the system noise, here

is the zero-mean random relative jerk interference, which is a

scalar.

The discrete similar method [15] in time domain is used

to discretize the time domain continuous state equation in

Eq. (1) at the time interval T that is the millimeter wave

radar’s measurement frequency, and a discrete system state

space model is established:

system state equation:

X (k) = 8X (k − 1) + ŴW (k − 1) (2)

observation equation:

Z (k) = HX (k) + V (k) (3)

where X (k) =
[

1Sx(k), 1vx(k), 1ax(k), 1jx(k)
]T
. Z (k) =

[

1Sx_radar (k), 1vx_radar (k)
]T

is the observation vector.

1Sx_radar (k), 1vx_radar (k) are respectively the longitudinal

relative distance, longitudinal relative velocity of this target

vehicle from the ego vehicle detected by millimeter wave

radar in the k th detection period. 8 is the one-step state

transition matrix of the system from the k−1 th detection

period to the k th detection period, and 8 = eA·T =

∞
∑

k=0

Ak ·T k

k! =









1 T

0 1

T 2

2
T 3

6

T T 2

2
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1 T
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. Ŵ is the discrete system noise

drive matrix, and Ŵ =
∫ T
0 eA·T dt · B =

∞
∑

k=1

Ak−1·T k

k! · B =

[

T 4

24
, T

3

6
, T

2

2
,T

]T
. W (k − 1) is the value of system random

noise in the k−1 th detection period. H is the observation

matrix, and H =

[

1 0 0 0

0 1 0 0

]

. V (k) is the observation noise,

and V (k) =

[

v0(k)

v1(k)

]

. v0(k) is the error when measuring

1Sx , and v1(k) is the error when measuring 1vx .

The premise assumption of vehicle dynamic state esti-

mation based on the Sage-Husa adaptive Kalman filtering

algorithm is that the mean of system noise and observation

noise is 0, the statistical properties of observation noise are

approximately known and constant, and the statistical prop-

erties of system noise are unknown and time-varying. That is,

the statistical properties of W (k) and V (k) in the state space

model satisfy:

E [W (k)] = 0,Cov [W (k) ,W (j)]

= E
[

W (k) ·W (j)T
]

= Q(k)ηkj (4)

E [V (k)] = 0,Cov [V (k) ,V (j)]

= E
[

V (k) · V (j)T
]

=Rδkj≈

[

R0 0

0 R1

]

ηkj

(5)

Cov [W (k) ,V (j)] = E
[

W (k) · V (j)T
]

= 0 (6)

where ηkj =

{

0, k 6= j

1, k = j
. Q(k) is the variance of the system

random noiseW (k), and R is the variance of the observation

noise V (k). The approximate value of R can be obtained

through a large number of experimental statistical analysis.

In order to solve filter divergence problems, the variable

S (k) is introduced to adjust filter gains indirectly. At the

same time, when the statistical properties of system noise

are estimated, if Q̂ (k) loses positive semi-definite, the biased

valuation of Q̂ (k) is used instead of unbiased valuation

to ensure positive semi-definite of Q̂ (k). The steps of the

Sage-Husa adaptive Kalman filter algorithm are as follows:

1)One-step state prediction:

X̂ (k|k − 1) = 8X̂ (k − 1|k − 1) (7)

2)Innovations equation:

ε (k) = Z (k) − HX̂ (k|k − 1) (8)

3) Filter divergence criterion:

ε (k)T ε (k) ≤ ξ · Tr

[

HP (k|k − 1)HT + R
]

(9)

where ξ (ξ ≥ 1) is a tunable coefficient. When ξ = 1,

the above formula is the most stringent criterion. Tr is the

trace of a matrix. If Eq. (9) holds, the filter does not diverge,

but if Eq. (9) does not hold, the filter diverges.
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4)Calculate the value of S (k):

S (k) =























1, Eq. (9) holds

Tr

[

ε (k) ε (k)T−HŴQ̂ (k−1) ŴTHT−R
]

Tr
[

H8P (k − 1|k − 1) 8THT
] ,

Eq. (9) does not hold

(10)

5) One-step prediction covariance matrix:

P (k|k − 1) = S (k) 8P (k − 1|k − 1) 8T + ŴQ̂ (k − 1) ŴT

(11)

6) Filter gain:

K (k) = P (k|k − 1)HT [HP (k|k − 1)HT + R]
−1

(12)

7)State estimation:

X̂ (k|k) = X̂ (k|k − 1) + K (k)ε(k) (13)

8)Mean square error estimation:

P (k|k) = [I − K (k)H ]P (k|k − 1) (14)

9)Subtractive memory index weighted sequence:

d (k − 1) =
1 − b

1 − bk
(15)

where d (k − 1) is the subtractive memory index weighted

sequence, which is used to reduce the effect of obsolete obser-

vation data in the process of real-time estimation of noise

statistical properties and emphasize the effect of observation

data at a nearer time. b(0 < b < 1) is a forgetting factor,

indicating the speed of forgetting old data items. The larger b

is, the slower the forgetting speed is.

10) Statistical properties estimation of system noise:

If ŴQ̂ (k) ŴT is positive semi-definite,

ŴQ̂ (k) ŴT

= [1 − d (k − 1)]ŴQ̂ (k − 1) ŴT + d (k − 1)

×
[

K (k) ε(k) ε(k)TK (k)T +P(k|k)−8P(k−1|k−1) 8T
]

(16)

If ŴQ̂ (k) ŴT loses positive semi-definite,

ŴQ̂ (k) ŴT = [1 − d (k − 1)]ŴQ̂ (k − 1) ŴT

+ d (k − 1)
[

K (k) ε (k) ε (k)TK (k)T
]

(17)

Eq. (16) is an unbiased estimate of the system noise vari-

ance matrix. However, because of the matrix subtraction

operation, it is easy to make ŴQ̂ (k) ŴT lose semi-positive

definiteness or positive definiteness, which may lead to filter

divergence problems. Therefore, if ŴQ̂ (k) ŴT loses semi-

positive definiteness or positive definiteness, we use a biased

estimate with only addition operation instead of the origi-

nal unbiased estimate to ensure the positive definiteness of

ŴQ̂ (k) ŴT , as shown in Eq. (17).

In the simulation calculation below, the initial conditions

of the filtering are explained.

Using the same method, the lateral motion state of the tar-

get vehicle can also be estimated by the Sage-Husa adaptive

Kalman filtering algorithm.

FIGURE 1. Complex traffic scenario.

B. FAULT RECOGNITION OF VEHICLE-BORNE

MILLIMETER WAVE RADAR SENSOR

The millimeter wave radar data processing module applied in

anACC system needs to identify the target vehicle in the same

lane of ego vehicle and the vehicles in adjacent lanes on both

sides of the ego vehicle among the numerous targets detected

by millimeter-wave radar, and then recognize conditions of

missing detection and false detection.

For the recognition of vehicles in the same lane and adja-

cent lanes, this paper adopts a simple method of lateral dis-

tance threshold, i.e.,

Nsame =
{

i|
∣

∣

∣
1Ŝ

i

y(k)

∣

∣

∣
≤ Ysame

}

(18)

Nadj =
{

i|Ysame <

∣

∣

∣
1Ŝ iy(k)

∣

∣

∣
≤ Yadj

}

(19)

where Nsame is the set of same lane vehicles, Nadj is the set of

adjacent lane vehicles, 1Ŝ iy(k) is the lateral relative distance

of the ith vehicle from the ego vehicle in the k th detection

period, i = 1, 2, . . .Rmax . Rmax is the maximum number of

objects that can be detected by vehicle-borne millimeter wave

radar, Ysame is the threshold value of the same lane, Yadj is the

threshold value of adjacent lanes. A vehicle with the closest

longitudinal relative distance from the ego vehicle in Nsame
is selected as the target vehicle. Vehicles with the closest

longitudinal relative distance from the ego vehicle in Nadj are

selected for state tracking.

For the fault recognition of vehicle-borne millimeter wave

radar sensor in the k th detection period, this paper adopts the

method shown in Fig.2.

According to Fig.2, firstly, the premise of sensor faults

identification is to judge whether there are lane changing

trends of the target vehicle and vehicles in the adjacent lanes.

Here, based on section II.A, dynamic state estimationmod-

els are built for lateral dynamic states of the target vehicle and

vehicles in adjacent lanes, respectively. Then we can obtain

predictive values of relative lateral distances and relative

velocities of these vehicles from the ego vehicle in the k+1

th detection period. According to the following method, lane

changing trends can be judged.

If

∣

∣

∣
1Ŝy_same (k + 1)

∣

∣

∣
> Ysame &

∣

∣1v̂y_same (k + 1)
∣

∣ 6= 0,

λsame(k) = 1 (20)
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FIGURE 2. Fault recognition method of vehicle-borne millimeter wave
radar sensor in the k th detection period.

If

∣

∣

∣
1Ŝ

i

y_adj
(k + 1)

∣

∣

∣
≤ Ysame &

∣

∣

∣
1v̂iy_adj

(k + 1)

∣

∣

∣
6= 0,

λiadj(k) = 1(i ∈ Nadj) (21)

where 1Ŝy_same(k+1) and 1v̂y_same (k+1) are predictive val-

ues of relative lateral distance and relative velocity between

the target vehicle and the ego vehicle in the k+1 th detection

period, respectively. λsame(k) is the warning sign signal of

the target vehicle in the k th detection period. If the target

vehicle has the lane changing trend, λsame(k) = 1, otherwise

λsame(k) = 0. 1Ŝ iy_adj (k + 1) and 1v̂
i
y_adj

(k + 1) are predic-

tive values of relative lateral distance and relative velocity

between the ego vehicle and the i th vehicle in adjacent lanes

in the k+1 th detection period, respectively. λiadj(k) is the

warning sign signal of this vehicle in the k th detection period.

Secondly, the fault recognition of radar sensor missing

detection is carried out as follows.

If λsame(k) = 0 & Zsame (k) = [], δ1same(k) = 1 (22)

If λiadj (k) = 0 & Z iadj (k) = [], δ1iadj (k) = 1
(

i ∈ Nadj
)

(23)

where Zsame (k) is the millimeter wave radar sensor observa-

tion of the target vehicle in the k th detection period, that is,

Zsame (k) = [1Sx_same , 1Sy_same, 1vx_same, 1vy_same]
T , and

Zadj (k) = [1Sx_adj , 1Sy_adj, 1vx_adj, 1vy_adj]
T .

On the premise that the target vehicle does not change

lane to leave, if Zsame (k) is empty, it can be recognized as

the condition of missing detection and the sign of missing

detection δ1same(k) = 1, otherwise δ1same(k) = 0. Z iadj (k) is

themillimeter wave radar sensor observation of the ith vehicle

in adjacent lanes in the k th detection period, and the same

method can be used to identify missing detection conditions

of this vehicle.

Finally, the fault recognition of radar sensor false detection

is carried out as follows.

If λsame(k)

= 0 & λadj(k) = 0 & Zsame (k)

/∈ [Zsame_min(k),Zsame_max(k)], δ2same(k) = 1 (24)

If λsame(k)

= 0 & λiadj(k) = 0 & Zadj(k)

/∈ [Zadj_min(k),Zadj_max(k)], δ2iadj (k) = 1 (25)

where in the k th detection period, on the premise that

the target vehicle does not change the lane to leave and

the vehicles in adjacent lanes do not change lanes to the

front of the ego vehicle, if Zsame (k) exceeds the threshold

range [Zsame_min(k),Zsame_max(k)], it can be recognized as the

condition of false detection and the sign of false detection

δ2same(k) = 1, otherwise δ2same(k) = 0.

Zsame (k) can be written as:

Zsame (k) =









1Sx_same(k)

1Sy_same(k)

1vx_same(k)

1vy_same(k)









=









Sx_same(k) − Sx_ego(k)

1Sy_same(k)

vx_same(k) − vx_ego(k)

1vy_same(k)









(26)

where, Sx_same and Sx_ego are respectively the longitudinal

distance of the target vehicle and the ego vehicle. vx_same and

vx_ego are respectively the longitudinal velocity of the target

vehicle and the ego vehicle.

It can be considered that during one detection period,

the target vehicle is doing uniform accelerationmotion. Then,

Sx_same (k) and vx_same (k) are described based on the kine-

matic distance and velocity formula:

Sx_same (k) = vx_same (k − 1) ·T +
1

2
ax_same(k − 1)T 2 (27)

vx_same (k) = vx_same (k − 1) + ax_same (k − 1)T (28)

where, vx_same (k − 1) is the longitudinal velocity of the tar-

get vehicle in the k−1 th detection period. ax_same is the

longitudinal acceleration of the target vehicle. According

to references [16]–[18], in the normal braking process of

ordinary vehicles (without considering super cars), the brak-

ing deceleration should generally not be greater than 0.4g,

otherwise tires will be severely worn and passengers will

feel uncomfortable. While, in the process of emergency brak-

ing, the maximum deceleration generally does not exceed

0.8g. Then, we set ax_min ≤ ax_same ≤ ax_max . Where,

ax_min = −8m/s2, and ax_max = 4m/s2. Then, Zsame_min(k)

and Zsame_max(k) can be calculated by:

Zsame_min(k)

=









vx_same (k − 1) · T +
1

2
ax_minT

2 − Sx_ego(k)

−Ysame
vx_same (k − 1) + ax_minT − vx_ego(k)

−Ysame/T









(29)

Zsame_max(k)

=









vx_same (k − 1) · T +
1

2
ax_maxT

2 − Sx_ego(k)

Ysame
vx_same (k − 1) + ax_maxT − vx_ego(k)

Ysame/T









(30)
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FromEq. (29) and Eq. (30), it can be seen that the threshold

setting is related to the velocity of the target vehicle in the

k−1 th detection period, the set acceleration limit, the veloc-

ity and distance of the ego vehicle in the k th detection period.

Such a threshold settingmethod can avoidmistaking potential

abrupt braking event or lane departure of the target vehicle for

radar sensor false detection.

Similarly, the condition of false detection of vehicles in

adjacent lanes can be recognized.

Note here that if the condition of radar sensor failure is

recognized, when estimating the vehicle dynamic state, it is

necessary to eliminate the erroneous observation data to avoid

the influence of the abnormal measurement data on the state

estimation accuracy.

In this section, driving scenarios are defined, vehicle

dynamic states are estimated adopting the Sage-Husa adap-

tive Kalman filtering algorithm, and fault conditions of

vehicle-borne millimeter wave radar sensor are recognized

using above methods. Signs of missing detection and false

detection in each detection period are obtained, which will

be used for MLD modeling of ACC upper control system in

section 3.

III. MLD MODELING OF ACC UPPER CONTROL SYSTEM

A. VEHICLE-TO-VEHICLE LONGITUDINAL KINEMATICS

MODEL

The longitudinal kinematics model of the ego vehicle and the

vehicle in front of the same lane is built. The schematic dia-

gram is shown in Fig.3. The vehicle in front of the same lane

is the target vehicle mentioned above, and it is represented by

subscript p in the following text.

It can be seen from Fig.3 that there are following longitudi-

nal kinematics relationships between the ego vehicle and the

front vehicle, as described in Eq. (31), Eq. (32), Eq. (33).

1s (k) = sp (k) − sego(k) (31)

1sdes (k) = d0 + th · vego(k) (32)

σ (k) = 1s (k) − 1sdes (k) (33)

where sp is the longitudinal distance of the target vehicle;

sego is the longitudinal distance of the ego vehicle; 1s is the

actual longitudinal relative distance of these two vehicles;

1sdes is the desired longitudinal relative distance of these

two vehicles; d0 is a fixed longitudinal distance between

two vehicles; th is the expected time headway; vego is the

longitudinal velocity of the ego vehicle; σ is the error between

1s and 1sdes.

The value of the fixed longitudinal distance d0 between

two vehicles depends on the braking process and the vehicle

following process. In the braking process, d0 is the product of

time-to-collision (TTC) and the velocity of the ego vehicle.

In the vehicle following process, d0 is the minimum safe

distance dc between two vehicles, which usually includes a

vehicle length and a fixed distance value [3] as described

in Eq. (34).

d0 = max
{

tTTC · vego (k) , dc
}

(34)

The expected time headway th is related to factors such as

the longitudinal velocity of the ego vehicle, the longitudinal

velocity and acceleration of the target vehicle. If the fixed th
is used, the influence of different driving conditions on time

headway will be ignored [19], [20]. Therefore, variable th is

adopted as described in Eq. (35).

th = b1 − b2∗vrel − b3 ∗ ap (35)

where ap is the longitudinal acceleration of the target vehicle,

which is considered as the disturbance of the ACC system and

is denoted as w in the following text; vrel is the longitudinal

relative velocity of the target vehicle and the ego vehicle; b1,

b2, b3 are parameters greater than 0.

According to the reference [21], the actual longitudinal

acceleration aego and the desired longitudinal acceleration

ades of the ego vehicle satisfy the Eq. (36).

aego (k + 1) =

(

1 −
Ts

τ

)

aego (k) +
Ts

τ
ades (k) (36)

where Ts is the sampling period of the ACC system; τ is the

time constant of ACC lower control; the desired longitudinal

acceleration ades is denoted as u in the following text which

is the control input of ACC upper control model.

Following equations can be obtained from mutual longitu-

dinal kinematics characteristics between the ego vehicle and

the target vehicle:

1s (k + 1) = 1s (k)+vrel (k)Ts+
1

2
w(k)T 2

s −
1

2
aego(k)T

2
s

(37)

vrel (k + 1) = vrel (k) + w (k)Ts − aego(k)Ts (38)

vego (k + 1) = vego (k) + aego(k)Ts (39)

aego (k + 1) = (1 −
Ts

τ
)aego (k) +

Ts

τ
u(k) (40)

jego (k + 1) = −
1

τ
aego (k) +

1

τ
u(k) (41)

where jego is the actual longitudinal jerk of the ego vehicle.

The state variable is defined as follows:

x(k) = [1s (k) , vego (k) , vrel (k) , aego (k) , jego (k)]T (42)

The controlled output vector is defined as follows:

y(k) = [σ (k) , vrel (k) , aego (k) , jego (k)]T (43)

Then from Eq. (37) - Eq. (43), state-space equations which

represent longitudinal kinematics of an ACC-equipped vehi-

cle and its preceding vehicle are presented:

x (k + 1) = A0x (k) + B0u (k) + G0w(k) (44)

y (k) = C0x (k) − Z0 (45)
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FIGURE 3. The schematic diagram of Vehicle-to-vehicle longitudinal
kinematics model.

FIGURE 4. The hierarchical control structure of the ACC system.

where

A0 =





















1 0 Ts
0 1 0

0 0 1

−
1

2
T 2
s

Ts
−Ts

0

0

0

0 0 0 1 −
Ts

τ
0

0 0 0 −
1

τ
0
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0
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0
Ts

τ
1
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,
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, Z0 =









d0
0

0

0









.

B. MLD MODELING OF ACC UPPER CONTROL SYSTEM

CONSIDERING SENSOR FAULTS

The ACC system typically use a hierarchical control struc-

ture [22], as shown in Fig.4.

It can be seen from Fig.4 that inputs of the ACC upper

control system are motion information of the ego vehicle and

surrounding vehicles acquired by each vehicle-borne sensor,

and the output is the desired longitudinal acceleration which

is the control input to be solved by the ACC upper control

model. In order to realize the active fault tolerant ACC sys-

tem, it is necessary to consider conditions of sensor faults

when establishing the ACC upper control model.

The mixed logical dynamical (MLD) model is a kind

of hybrid system which was first introduced by Bempo-

rad et al. [23]. It can integrate the continuous state, discrete

state, and constraints of the system into a unified framework,

and then find a control sequence to satisfy the constraint and

optimize the control objective function [24]. In this paper,

sensor faults are taken as discrete events, and aMLDmodel of

ACC upper control system is built which includes both fault-

free dynamics and fault dynamics of the system.

When establishing the MLD model of ACC upper control

system, a binary logic variable δ is introduced to describe the

system’s switching in conditions of no sensor fault and sensor

faults:

δ (k) = 1 ↔ δ1same (k) = 1orδ2same(k) = 1 (46)

Then Eq. (44) is expressed as:

x (k + 1) = {A0x (k) + B0u (k) + G0w (k)} (1 − δ(k))

+ {A1x (k) + B1u (k) + G1w (k)} δ(k) (47)

Sensor faults would cause the state variable x(k) and the

disturbance variable w (k) to be discontinuous with the con-

dition of no sensor fault. Therefore, when sensor faults occur,

the dynamic state of the target vehicle is estimated according

to the state estimation method in section II, i.e.:
{

x (k) = x̂(k)

w (k) = ŵ(k), δ = 1,
(48)

Then Eq. (47) is simplified as:

x (k + 1) = A0
[

x (k) (1 − δ) + x̂(k)δ
]

+B0u (k) + G0

[

w (k) (1 − δ) + ŵ(k)δ
]

(49)

y (k) = C0

[

x (k) (1 − δ) + x̂(k)δ
]

− Z0 (50)

Introducing an auxiliary variable z(k) = [z1(k), z2(k),

z3(k), z4(k), z5(k), z6(k)]
T :







































P1z(k) =

















z1 (k)

z2 (k)

z3 (k)

z4 (k)

z5 (k)

















= x (k) (1 − δ) + x̂(k)δ

P2z(k) = [z6 (k)] = w (k) (1 − δ) + ŵ(k)δ

(51)

where P1 =













1 0 0 0 0 0

0 1 0 0 0 0

0 0

0 0

0 0

1 0

0 1

0 0

0 0

0 0

1 0













, P2 =

















0

0

0

0

0

1

















T

.

Then,

x (k + 1) = A0P1z(k) + B0u (k) + G0P2z(k) (52)

y (k) = C0P1z(k) − Z0 (53)

Express Eq. (52) and Eq. (53) as standard forms of MLD

model:

x(k + 1) = Ax(k) + B1u (k) + B2δ (k) + B3z (k) (54)

y (k) = Cx (k) + D1u (k) + D2δ (k) + D3z (k) + D4 (55)

where A = 0, B1 = B0, B2 = 0, B3 = A0P1 + G0P2, C = 0,

D1 = 0, D2 = 0, D3 = C0P1, D4 = −Z0.
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Convert the above propositional logic into followingmixed

integer inequalities:

1) Inequality constraints caused by introducing the auxil-

iary variable z (k):



















(m12 −M11) δ(k) + P1z(k) ≤ x(k)

(m11 −M12) δ (k) − P1z (k) ≤ −x(k)

(m11 −M12) (1 − δ (k)) + P1z(k) ≤ x̂(k)

(m12 −M11) (1 − δ (k)) − P1z (k) ≤ −x̂(k)

(56)



















(m22 −M21) δ(k) + P2z(k) ≤ w(k)

(m21 −M22) δ (k) − P2z (k) ≤ −w(k)

(m21 −M22) (1 − δ (k)) + P2z(k) ≤ ŵ(k)

(m22 −M21) (1 − δ (k)) − P2z (k) ≤ −ŵ(k)

(57)

where M11=maxx̂ (k)= [1ŝ (k) , vmax , v̂rel (k) , amax , jmax]
T ,

m11 = minx̂ (k) = [1ŝ (k) , vmin, v̂rel (k) , amin, jmin]
T ,

M12 = maxx (k) =
[

1smax , vmax , vrel_max , amax , jmax
]T
, and

m12 = minx(k) =
[

dc, vmin, vrel_min, amin, jmin
]T
.

w is ap, which is the longitudinal acceleration of the target

vehicle. When the millimeter wave radar sensor is operat-

ing normally, M22 = maxw (k) = ax_max , and m22 =

minw (k) = ax_min. When false detection or missing detec-

tion of radar sensor occurs, the estimated value of the longi-

tudinal relative acceleration of the target vehicle 1âx(k) can

be obtained by the method in section II.A, and then ŵ (k) =

1âx (k) + aego(k). Then, we take M21 = maxŵ (k) = ŵ (k),

and m21 = minŵ (k) = ŵ (k).

2)value range constraints of the state variable x(k) and the

control input u (k) of the ACC upper control model:

m12 ≤ x(k) ≤ M12 (58)

umin ≤ u(k) ≤ umax (59)

Convert the above inequality constraints into the standard

constraint form of MLD model:

E2δ (k) + E3z (k) ≤ E1u (k) + E4x (k) + E5 (60)

where

E2 =
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,
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−umin
umax









































.

Eq. (54), Eq. (55) and Eq. (60) are the MLDmodel of ACC

upper control system that contains conditions of sensor faults.

IV. ACTIVE FAULT TOLERANT CONTROL MODEL OF

VEHICLE ACC SYSTEM BASED ON THE MPC FRAMEWORK

In section 3, sensor faults are taken as discrete events, and

the MLD model of ACC upper control system is built which

includes both fault-free dynamics and fault dynamics of the

system. In section 4, based on a model predictive control

(MPC) framework and theMLDmodel of ACC upper control

system, an active fault tolerant control model of vehicle ACC

system is established, so that the ACC-equipped vehicle can

still drive safely and steadily when the millimeter-wave radar

sensor fails.

MPC has three basic characteristics: model prediction,

rolling optimization and feedback correction. Based on the

standard MLD model of Eq. (54) and Eq. (55), and consider-

ing the feedback correction, the following prediction model

can be recursively obtained:

x̂ (k + p)

= Apx (k) +

[

∑p−1

i=p−m
AiB1u (k + p− 1 − i)

+
∑p−m−1

i=0
AiB1u (k + m− 1)

]

+
∑p−1

i=0
Ai [B2δ (k + p− 1 − i)

+ B3z (k + p− 1 − i)] + ex(k) (61)

ŷ (k + p)

= CApx (k) +

[

∑p−1

i=p−m
CAiB1u (k + p− 1 − i)

+
∑p−m−1

i=0
CAiB1u (k + m− 1)

]

+
∑p−1

i=0
CAi[B2δ (k + p− 1 − i)+B3z (k + p− 1 − i)

+ ex(k + p− 1 − i)] + ex(k) + D1u (k + p)

+D2δ (k + p) + D3z (k + p) + D4 (62)

where p is the prediction horizon, m is the control horizon.

When p > m − 1, u (k + p) = u(k + m − 1). ex (k) is

the error between measured system state value and predicted

system state value in the k th period. ex (k) = x (k) −

x̂ (k |k − 1 ). The prediction model can be feedback corrected

through ex(k).
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In the k th period, the performance indicator for MPC is:

minJ =

m−1
∑

i=0

‖u(k + i)‖2Ru + (1 − δ(k))

m−1
∑

i=0

‖1u(k + i)‖2R1u

+

p
∑

j=1

∥

∥y (k + j) − yref (k + j)
∥

∥

2

Qy
(63)

where Ru, R1u, Qy are weight coefficients, 1u(k) is the

change rate of u (k): 1u(k) = u (k) − u(k − 1), yref (k) is

the reference trajectory of controlled output vector y(k).

yref (k + i) = (1 − δ (k)) ϕiy (k) + δ (k) ye (64)

When there is no sensor failure, according to the

reference [25], the smoother the change of parameters such

as speed and acceleration, the lower the fuel consumption,

and the better the fuel economy. Therefore, make y approach

to the optimal value along the smooth reference trajectory to

smooth the response curve and improve the fuel economy.

When sensor faults occur, the safety of the ego vehicle is the

primary consideration.

In Eq.(63), ϕ =









ρσ 0

0 ρv

0 0

0 0

0 0

0 0

ρa 0

0 ρj









, ρσ = e
−Ts
ασ (0 <ρσ < 1),

ρv = e
−Ts
αv (0 <ρv< 1), ρa = e

−Ts
αa (0 <ρa< 1), ρj =

e
−Ts
αj (0 <ρj< 1) are coefficients of the reference trajectory

corresponding to σ (k), vrel (k), aego (k), jego (k). ασ , αv, αa,

αj are time constants of the reference trajectory. ye (k) =

[0, 0, 0, 0]T .

One of constraints is the constraint of the MLD model

described above which contains conditions of sensor faults:

E2δ (k) + E3z (k) ≤ E1u (k) + E4x (k) + E5 (65)

Meanwhile, in order to limit the fluctuation of u(k), 1u(k)

is constrained as follows:

1umin ≤ 1u(k) ≤ 1umax (66)

Under the framework of MPC, the ACC upper control

system is transformed into the online quadratic optimization

problem with constraints, as shown by equations (63), (65),

and (66). In the k th period, we solve the above optimization

problem by the quadratic programming solver in the Matlab

Optimization Toolbox, and obtain optimal control sequences

of the future system: u(k), u(k + 1), . . . ,u(k + m − 1), then

apply the first control variable u(k) to the system. Repeat

the above operations in the k+1 th period to achieve rolling

optimization.

Note here that active fault tolerant control model is aimed

at the ACC upper control. The MPC framework is used to

perform rolling real-time optimal control of the ACC upper

system. As hierarchical control is adopted, after the desired

longitudinal acceleration ades and the desired velocity vdes of

the ego vehicle are obtained by the upper control, increment

PID control algorithm is adopted in lower control to calculate

FIGURE 5. The structure diagram of this active fault tolerant control
model of vehicle ACC system based on the MPC framework.

the desired throttle opening θdes and the desired brake pres-

sure Pb_des. θdes and Pb_des are used as inputs to the vehicle

dynamics model in order to control the actual acceleration

following the desired acceleration ades.

The essence of the above active fault tolerant control model

of ACC system is: introduce sensor faults into the model of

ACC upper control system. When radar faults occur, the sys-

tem is switched to the fault state on the model side, and

the model and constraints are changed to reconstruct the

model predictive controller. The new performance indicator

is optimized, and the control input value in the fault state is

solved to achieve the purpose of fault tolerant control. The

structure diagram of this active fault tolerant control model of

ACC system based on the MPC framework shown in Fig.5.

V. SIMULATION AND ANALYSIS

A. SIMULATION PLATFORM AND PARAMETERS

In this paper, PreScan is used to test the active fault tolerant

control model of ACC system based on the MPC framework.
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FIGURE 6. The simulation scene of the ACC system.

FIGURE 7. Structure diagram of the Co-simulation interface.

PreScan is a kind of software applied in advanced auxiliary

driving system and intelligent vehicle system studied by the

Netherlands national academy of applied sciences [26]. Due

to simple operation and good real-time performance, it has

been widely used in researches and tests of auxiliary driving

and driverless cars.

The modeling process of PreScan is divided into four parts:

the construction of simulation scene, the establishment of

sensor model, the addition of control system and the running

of simulation experiment. For the ACC system to be simu-

lated, this paper built a multi-lane complex driving scenario in

the GUI of PreScan, including 8-lane dual carriageway with

traffic signs, as shown in Fig.6. The ego vehicle is equipped

with millimeter wave radar to obtain the relative distance and

relative velocity between the ego vehicle and surrounding

vehicles. Observation noises are added to the radar sensor.

The control system is added to the Co-simulation interface of

PreScan and Simulink, as shown in Fig.7.

Simulation parameters are shown in Table 1.

According to the road width standard of motorway in

China, the lane width in simulation is 3.5 meters.

When the Sage-Husa adaptive Kalman filter algorithm is

used to estimate states of the target vehicle, initial conditions

of the filtering are selected as follows: Q̂0 = 0.85, R =
[

R0 0

0 R1

]

=

[

0.01 0

0 0.001

]

, P0 = I , b = 0.985, ξ = 1.15,

and X̂0 = [57.47, −7, 0, 0]T .

According to the structure diagram and simulation param-

eters, the proposed active fault tolerant control algorithm

of vehicle ACC system was tested in the simulation traffic

environment. Test results are as follows.

B. SIMULATION AND ANALYSIS

Through multiple simulation experiments and analyses,

we found that in following extreme cases, even a short-term

TABLE 1. Simulation parameters.

false detection and missing detection of the millimeter wave

radar sensor would have a serious impact on vehicles. The

definition of extreme cases is as follows:

If the velocity of the target vehicle decreases, the relative

distance between two vehicles will decrease. When no sensor

fails, under the control of ACC system, the velocity will be

adjusted to maintain the desired relative distance. However,

if sensor fails at this time, for example, the relative distance

measured by the sensor is much larger than the actual relative

distance, then ACC system will decide to accelerate. Then

the actual relative distance will become too small, and even a

rear-end collision will occur. In this paper, we show simula-

tion results in these extreme cases.

In the simulation, we select two periods in which the target

vehicle slowed down, and add sensor faults respectively. The

false detection of radar sensor is added from 6.5s to 8.5s,

which makes the relative distance and relative velocity mea-

sured by the millimeter wave radar sensor change radically.

The missing detection of radar sensor is added from 28s to

30s, which makes the sensor’s measurement value null. The

simulation results are shown in Fig. 8-Fig.11.

Fig.8 is the velocity response curve of the vehicle equipped

with the conventional ACC system in the condition of false

detection. Fig.9 is the velocity response curve of the vehicle

equipped with the conventional ACC system in the condition

of missing detection. Fig.10 is the velocity response curve

of the vehicle equipped with the fault tolerant ACC system

proposed in this work in the conditions of false detection

and missing detection, and the sign value of sensor faults.

Fig.11 is the relative distance response curve in the conditions

of false detection and missing detection. In those figures, VA
is the velocity of the ego vehicle, VB − sensor is the velocity

of the target vehicle detected by the millimeter wave radar

sensor, VB− actual is the actual velocity of the target vehicle,
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FIGURE 8. The velocity response curve of the vehicle equipped with the
conventional ACC system in the condition of false detection.

FIGURE 9. The velocity response curve of the vehicle equipped with the
conventional ACC system in the condition of missing detection.

FIGURE 10. The velocity response curve of the vehicle equipped with the
active fault tolerant ACC system in the conditions of false detection and
missing detection, and the sign value of sensor faults.

and VB−FT is the velocity of the target vehicle calculated by

fault tolerant control method.

It can be seen from Fig.8 and Fig.11 that when false

detection of radar sensor occurs (6.5s to 8.5s), the relative

FIGURE 11. The relative distance response curve in the conditions of
false detection and missing detection.

distance (black solid line in Fig.11) and the velocity of the

target vehicle (blue solid line in Fig.8) are detected as abrupt

changes. The conventional ACC system will consider it as

a new target vehicle, and control ego vehicle to follow this

fake target vehicle. When the radar sensor returns to normal,

the actual relative distance and the velocity of the target

vehicle are detected as abrupt changes again. Because during

the period of false detection, the true target vehicle is decel-

erating, while ego vehicle is accelerating, the actual relative

distance between the two vehicle drops rapidly. Although

the conventional ACC system decides to decelerate when

the radar sensor returns to normal, the relative distance still

drops to the minimum safe distance dc, which causes the

conventional ACC system to fail to solve the control sequence

that satisfies the constraints. That is to say, if ego vehicle

continues drive, a real-end collision will occur.

It can be seen from Fig.9 and Fig.11 that when missing

detection of radar sensor occurs (28s to 30s), the relative

distance (blue solid line in Fig.11) and the velocity of the

target vehicle (blue solid line in Fig.9) cannot be detected.

The conventional ACC system will consider that there is no

target vehicle in front, and switches to cruising mode, then

controls the ego vehicle to drive at the set velocity 15m/s.

When the radar sensor returns to normal, the actual relative

distance and the velocity of the target vehicle are detected.

During the period of missing detection, the actual target

vehicle is decelerating, so the actual relative distance between

the two vehicle decreases. Although the conventional ACC

system decides to decelerate when the radar sensor returns

to normal, the velocity of ego vehicle is still large. When

the velocity of the target vehicle reduced to 0, the relative

distance drops to the minimum safe distance dc, which will

also cause the conventional ACC system to fail to solve the

control sequence that meets the constraints and lead to a real-

end collision will occur.

For the same false detection and missing detection,

the active fault tolerant control algorithm of ACC system

proposed in this paper is used for simulation. It can be seen

from Fig.10 and Fig.11 that when the false detection (6.5s

to 8.5s) and missing detection (28s to 30s) of radar sen-

sor occurs, the active fault tolerant ACC system recognizes
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the false detection and missing detection respectively, and

sets the sign value of sensor faults to 1. From the velocity

curve of the target vehicle processed by active fault tol-

erant control algorithm (blue solid line in Fig.10) and the

relative distance processed by active fault tolerant control

algorithm (solid red line in Fig.11), it can be seen that the

velocity after fault tolerance is basically the same as the

actual velocity (red dotted line in Fig.10), and the relative

distance is also always within a relatively stable range. That

is to say, faults of the millimeter wave radar sensor don’t

cause any danger after using the active fault tolerant ACC

algorithm.

VI. CONCLUSION

In this paper, sensor faults are taken as discrete events, and

the MLD model of ACC upper control system is built which

includes both fault-free dynamics and fault dynamics of the

system. Based on the MPC framework, the active fault toler-

ant control model of ACC system is established. Combined

with the PreScan vehicle simulation platform, the application

of the proposed active fault tolerant control algorithm of ACC

system is simulated and verified.

The simulation results show that the vehicle equipped with

the active fault tolerant ACC system still drive safely and

smoothly without being affected by radar sensor failures,

while the vehicle equipped with the conventional ACC sys-

tem is affected in these cases. Therefore, the active fault

tolerant control model of ACC system proposed in this paper

is of great significance to ensure the safe driving of intelligent

vehicles.

It should be noted that since our work is a series of exper-

iments, the simulation verification of the algorithm is cur-

rently carried out. Tests in the PreScan simulation platform

can be done in real time. In the subsequent work, we will

verify the proposed active fault tolerant control algorithm and

its real-time performance on the actual vehicle. Of course,

the model in this paper is not only used for ACC, but can

also be used for other advanced driver assistance system

technologies, such as collision avoidance system and lane

change assist system.

REFERENCES

[1] G. Q. Wu, L. X. Zhang, and Z. Y. Liu, ‘‘Research status and development

trend of vehicle adaptive cruise control systems,’’ J. Tongji Univ. (Natural

Sci.), vol. 45, no. 4, pp. 544–553, Apr. 2017.

[2] N. Lydie and S. Mammar, ‘‘Experimental vehicle longitudinal control

using a second order slidingmode technique,’’Control Eng. Pract., vol. 15,

no. 8, pp. 943–954, Aug. 2007.

[3] L.-H. Luo, H. Liu, P. Li, and H.Wang, ‘‘Model predictive control for adap-

tive cruise control with multi-objectives: Comfort, fuel-economy, safety

and car-following,’’ J. Zhejiang Univ. Sci. A, Appl. Phys. Eng., vol. 11,

no. 3, pp. 191–201, Mar. 2010.

[4] S. Li, K. Li, R. Rajamani, and J. Wang, ‘‘Model predictive multi-objective

vehicular adaptive cruise control,’’ IEEE Trans. Control Syst. Technol.,

vol. 19, no. 3, pp. 556–566, May 2011.

[5] R. Dang, J. Wang, S. E. Li, and K. Li, ‘‘Coordinated adaptive cruise control

system with lane-change assistance,’’ IEEE Trans. Intell. Transp. Syst.,

vol. 16, no. 5, pp. 2373–2383, Oct. 2015.

[6] R. Schmied, H. Waschl, and L. Del Re, ‘‘Comfort oriented robust adap-

tive cruise control in multi-lane traffic conditions,’’ IFAC-PapersOnLine,

vol. 49, no. 11, pp. 196–201, 2016.

[7] J. Hasch, E. Topak, R. Schnabel, T. Zwick, R.Weigel, and C.Waldschmidt,

‘‘Millimeter-wave technology for automotive radar sensors in the 77 GHz

frequency band,’’ IEEE Trans. Microw. Theory Techn., vol. 60, no. 3,

pp. 845–860, Mar. 2012.

[8] Z. H. Gao, J. Wang, and J. Tong, ‘‘Target motion state estimation for

vehicle-borne millimeter-wave radar,’’ J. Jilin Univ. (Eng. Technol. Ed.),

vol. 44, no. 6, pp. 1537–1544, Nov. 2014.

[9] H. Guo, D. Cao, H. Chen, C. Lv, H. Wang, and S. Yang, ‘‘Vehicle dynamic

state estimation: State of the art schemes and perspectives,’’ IEEE/CAA J.

Autom. Sinica, vol. 5, no. 2, pp. 418–431, Mar. 2018.

[10] C. Wu, Y. Lin, and A. Eskandarian, ‘‘Cooperative adaptive cruise control

with adaptive Kalman filter subject to temporary communication loss,’’

IEEE Access, vol. 7, pp. 93558–93568, 2019.

[11] G. Guo and W. Yue, ‘‘Sampled-data cooperative adaptive cruise control of

vehicles with sensor failures,’’ IEEE Trans. Intell. Transp. Syst., vol. 15,

no. 6, pp. 2404–2418, Dec. 2014.

[12] E. V. Nunen, J. Ploeg, and A. M. Medina, ‘‘Fault tolerancy in

cooperative adaptive cruise control,’’ presented at the 16th Int. IEEE

Conf. Intell. Transp. Syst. (ITSC), 2013. [Online]. Available: https://

ieeexplore.ieee.org/document/6728393/

[13] M. R. Boukhari, A. Chaibet, M. Boukhnifer, and S. Glaser, ‘‘Two longitu-

dinal fault tolerant control architectures for an autonomous vehicle,’’Math.

Comput. Simul., vol. 156, pp. 236–253, Feb. 2019.

[14] H. Fang, N. Tian, Y. Wang, M. Zhou, and M. A. Haile, ‘‘Nonlin-

ear Bayesian estimation: From Kalman filtering to a broader horizon,’’

IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 401–417, Mar. 2018.

[15] T. Y. Xiao, Y. Y. Zhang, and J. D. Chen, Introduction to System Simulation.

Beijing, China: TUP, 2000, pp. 56–72.

[16] C. Miyajima, H. Ukai, A. Naito, H. Amata, N. Kitaoka, and K. Takeda,

‘‘Driver risk evaluation based on acceleration, deceleration, and steer-

ing behavior,’’ presented at the IEEE Int. Conf. Acoust., Speech, Signal

Process. (ICASSP), 2011. [Online]. Available: https://ieeexplore.ieee.org/

document/5946860

[17] X. Y. Lu and J. Wang, ‘‘Multiple-vehicle longitudinal collision avoid-

ance and impact mitigation by active brake control,’’ presented at the

IEEE Intell. Vehicles Symp., 2012. [Online]. Available: https://ieeexplore.

ieee.org/document/6232246

[18] Z. W. Feng, X. H. Ma, X. C. Zhu, and Z. X. Ma, ‘‘Analysis of driver

brake behavior under critical cut-in scenarios,’’ presented at the IEEE

Intell. Vehicles Symp. (IV), 2018. [Online]. Available: https://ieeexplore.

ieee.org/document/8500438

[19] Y. H. Chiang and J. C. Juang, ‘‘Longitudinal vehicle control with the

spacing policy in consideration of brake input limits,’’ presented at the

IEEE Int. Conf. Syst., Man, Cybern., 2007. [Online]. Available: https://

ieeexplore.ieee.org/document/4413810

[20] V. Rajaram and S. C. Subramanian, ‘‘Heavy vehicle collision avoidance

control in heterogeneous traffic using varying time headway,’’Mechatron-

ics, vol. 50, pp. 328–340, Apr. 2018.

[21] J.-J. Martinez and C. Canudas-de-Wit, ‘‘A safe longitudinal control for

adaptive cruise control and stop-and-go scenarios,’’ IEEE Trans. Control

Syst. Technol., vol. 15, no. 2, pp. 246–258, Mar. 2007.

[22] G. Feng, ‘‘Multi-model based hierarchical switching control for vehicle

longitudinal motion,’’ Ph.D. dissertation, Dept. Autom. Eng., Tsinghua

Univ., Beijing, China, 2006.

[23] A. Bemporad and M. Morari, ‘‘Control of systems integrating logic,

dynamics, and constraints,’’ Automatica, vol. 35, no. 3, pp. 407–427,

Mar. 1999.

[24] X. Sun, Y. Cai, S. Wang, X. Xu, and L. Chen, ‘‘Optimal control of intelli-

gent vehicle longitudinal dynamics via hybrid model predictive control,’’

Robot. Auto. Syst., vol. 112, pp. 190–200, Feb. 2019.

[25] S. E. Li, Z. Jia, K. Li, and B. Cheng, ‘‘Fast online computation of a

model predictive controller and its application to fuel economy–oriented

adaptive cruise control,’’ IEEE Trans. Intell. Transp. Syst., vol. 16, no. 3,

pp. 1199–1209, Jun. 2015.

[26] G. Xiong, H. Li, Z. Ding, J. Gong, and H. Chen, ‘‘Subjective eval-

uation of vehicle active safety using PreScan and Simulink: Lane

departure warning system as an example,’’ presented at the IEEE Int.

Conf. Veh. Electron. Saf. (ICVES), 2017. [Online]. Available: https://

ieeexplore.ieee.org/document/7991927

VOLUME 8, 2020 11239



H. Zhang et al.: Active Fault Tolerant Control of ACC System Considering Vehicle-Borne Millimeter Wave Radar Sensor Failure

HUA ZHANG (Fellow, IEEE) was born in

Xi’an, Shanxi, China, in 1992. She received the

B.Tech. andM.S. degrees from theCollege of Con-

trol and Computer Engineering, North China Elec-

tric Power University, Beijing, China, in 2014 and

2017, respectively. She is currently pursuing the

Ph.D. degree with the College of Control Science

and Engineering, Zhejiang University.

Her research interest includes fault-tolerant con-

trol of intelligent vehicle and driver-assistance

systems.

JUN LIANG was born in May 1963. He received

the B.Tech. degree from the Department of

Automation, Tsinghua University, in 1984, and the

M.S. and Ph.D. degrees from the College of Con-

trol Science and Engineering, Zhejiang University,

Hangzhou, China, in 1988 and 1993, respectively.

He has been a Professor and the Ph.D.

Tutor with the College of Control Science and

Engineering, Zhejiang University.

ZHIYUAN ZHANG was born in Taiyuan, Shanxi,

China, in 1995. He received the B.Tech. degree

from the College of Electronic Information,

Sichuan University, Chengdu, China, in 2017.

He is currently pursuing the Ph.D. degree with

the College of Control Science and Engineering,

Zhejiang University.

11240 VOLUME 8, 2020


	INTRODUCTION
	VEHICLE DYNAMIC STATE ESTIMATION AND SENSOR FAULT RECOGNITION BASED ON VEHICLE-BORNE MILLIMETER WAVE RADAR SIGNAL
	VEHICLE DYNAMIC STATE ESTIMATION
	FAULT RECOGNITION OF VEHICLE-BORNE MILLIMETER WAVE RADAR SENSOR

	MLD MODELING OF ACC UPPER CONTROL SYSTEM
	VEHICLE-TO-VEHICLE LONGITUDINAL KINEMATICS MODEL
	MLD MODELING OF ACC UPPER CONTROL SYSTEM CONSIDERING SENSOR FAULTS

	ACTIVE FAULT TOLERANT CONTROL MODEL OF VEHICLE ACC SYSTEM BASED ON THE MPC FRAMEWORK
	SIMULATION AND ANALYSIS
	SIMULATION PLATFORM AND PARAMETERS
	SIMULATION AND ANALYSIS

	CONCLUSION
	REFERENCES
	Biographies
	HUA ZHANG
	JUN LIANG
	ZHIYUAN ZHANG


