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This paper describes the design of fault diagnosis and active fault tolerant control schemes that can be developed for
nonlinear systems. The methodology is based on a fault detection and diagnosis procedure relying on adaptive filters
designed via the nonlinear geometric approach, which allows obtaining the disturbance de-coupling property. The controller
reconfiguration exploits directly the on-line estimate of the fault signal. The classical model of an inverted pendulum
on a cart is considered as an application example, in order to highlight the complete design procedure, including the
mathematical aspects of the nonlinear disturbance de-coupling method based on the nonlinear differential geometry, as
well as the feasibility and efficiency of the proposed approach. Extensive simulations of the benchmark process and Monte
Carlo analysis are practical tools for assessing experimentally the robustness and stability properties of the developed fault
tolerant control scheme, in the presence of modelling and measurement errors. The fault tolerant control method is also
compared with a different approach relying on sliding mode control, in order to evaluate benefits and drawbacks of both
techniques. This comparison highlights that the proposed design methodology can constitute a reliable and robust approach
for application to real nonlinear processes.

Keywords: fault detection and isolation, nonlinear filter, nonlinear geometric approach, fault-tolerant control, cart-pole
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1. Introduction

Feedback control systems for mechatronic engineering
applications strongly rely on actuators, sensors and data
acquisition/interface components to ensure a proper inter-
action between the physical controlled system and control
devices. Faulty conditions of those system components
lead to a drastic reduction or loss of stability and perfor-
mance properties, which may even cause damages to the
physical system. Therefore, there is a growing demand
for reliability, safety and fault tolerance in control systems
for mechatronics. It is necessary to design control systems
which are capable of tolerating potential faults in order to
improve the reliability and availability, while providing a
desirable performance.

These types of control systems are often known as
fault-tolerant control systems, which possess the ability to
accommodate component faults automatically. They are

capable of maintaining the overall system stability and
acceptable performance in the event of such faults. In
other words, a closed-loop control system which can toler-
ate component malfunctions while maintaining desirable
performance and stability properties is said to be a fault-
tolerant control system. As shown in Fig. 1, fault-tolerant
control system design is based on a Fault Detection and
Diagnosis (FDD) scheme. Thus, since fault identification
is important, FDD is mainly used to highlight the require-
ment of fault estimation.

Over the last three decades, the growing demand
for safety, reliability, maintainability, and survivability in
technical systems has triggered off significant research in
FDD. Such efforts have led to the development of many
FDD techniques; see, e.g., the survey works by Simani
et al. (2003), Mahmoud et al. (2003), Korbicz et al.
(2004), Blanke et al. (2006), Isermann (2005), Witczak
(2007), Zhang and Jiang (2008), Ding (2008), Benini et al.
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(2009), Theilliol et al. (2008), Li et al. (2007) or Ro-
drigues et al. (2007).
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Fig. 1. Schematic diagram for the AFTCS with an actuator,
plant components, and sensor faults.

In general, fault tolerant control methods are clas-
sified into two types, i.e., Passive Fault Tolerant Con-
trol Schemes (PFTCSs) and Active Fault Tolerant Control
Schemes (AFTCSs) (Mahmoud et al., 2003; Blanke et al.,
2006; Zhang and Jiang, 2008; Noura et al., 2009; Edwards
et al., 2010).

In PFTCSs, controllers are fixed and designed to
be robust against a class of presumed faults. This ap-
proach needs neither FDD schemes nor controller re-
configuration, but it has limited fault-tolerant capabilities
(Mahmoud et al., 2003; Zhang and Jiang, 2008). In con-
trast to PFTCSs, AFTCSs react to system component fail-
ures actively by reconfiguring control actions so that the
stability and acceptable performance of the entire system
can be maintained.

A successful AFTCS design relies heavily on real-
time FDD schemes to provide the most up-to-date infor-
mation about the true status of the system. Therefore, the
main goal in a fault-tolerant control system is to design a
controller with a suitable structure to achieve stability and
satisfactory performance, not only when all control com-
ponents are functioning normally, but also in cases when
there are faults in sensors, actuators, or other system com-
ponents.

Regarding AFTCS design, Zhang and Jiang (2008)
argued that, in an AFTCS, good FDD is needed. They
claim that, for the system to react properly to a fault,
timely and accurate detection and location of the fault are
needed. The most researched area in fault diagnosis is the
residual generation approach using dynamic observers or
filters. Plant-model mismatches can cause false alarms or,
even worse, missed faults. Robustness issues in FDD are
therefore very important (Chen and Patton, 1999; Blanke
et al., 2006; Isermann, 2005; Witczak, 2007).

This paper is focused on the development of a novel
AFTCS that integrates a reliable and robust fault diagno-
sis scheme with the design of a controller reconfiguration
system. In particular, the methodology is based on a fault

detection and diagnosis procedure relying on adaptive fil-
ters designed via the nonlinear geometric approach. The
controller reconfiguration exploits a second control loop,
depending on the on-line estimate of the fault signal. One
of the advantages of this strategy is that, for example,
the structure of logic-based switching controller is not re-
quired.

The novelty of the proposed AFTCS lies in the feed-
back of the estimated fault signal, which is obtained by
adaptive filters designed via the nonlinear geometric ap-
proach. The achieved simulation results show how the
closed loop of a reconstructed fault signal not only en-
hances the feedback itself, but also improves the final per-
formances of the overall system. Compared with differ-
ent fault tolerant approaches, (e.g., Marcos et al., 2005),
the suggested AFTCS strategy can maintain performance
with significant actuator faults, since these signals are re-
constructed by the FDD logic with good accuracy.

Concerning the FDD procedure, the paper describes
a nonlinear scheme which provides the fault detection,
isolation and fault size estimation. The FDD nonlinear
method is based on the NonLinear Geometric Approach
(NLGA) developed by De Persis and Isidori (2001). By
means of this framework, a disturbance de-coupled adap-
tive nonlinear filter providing fault identification is devel-
oped. It is worth observing that the original NLGA FDD
scheme based on residual signals cannot provide, in gen-
eral, fault size estimation.

Both the NLGA Adaptive Filters (NLGA-AF) and
the AFTCS strategy are applied to the well-known model
of an inverted pendulum on a cart (also called a cart-
pole system), an underactuated mechanical structure that
is commonly used as a benchmark system for control de-
sign and mechatronics prototyping. A simulation model
for the complete AFTCS loop has been implemented in
the Matlab R© and Simulink R© environments, and tested
in the presence of actuator faults, disturbances, measure-
ment noise and modelling errors. The achieved results in
faulty conditions show asymptotic fault accommodation
and control objective recovery.

The proposed robustness and stability analysis
methodology is based on selected performance indices,
such as the mean squared reconstruction error and the
tracking error, which depend on the capabilities of the
AFTCS strategy. As this work deals also with the analysis
of the suggested AFTCS methodology, when applied to
the cart-pole benchmark system, economic cost software
algorithms to determine the overall performances of the
proposed method are described and implemented in the
Matlab R© and Simulink R© environments. They exploit a
detailed simulation of the cart-pole nonlinear model, with
different control strategies can be applied, and subject to
disturbance signals, model uncertainty and measurement
noise processes.

The initial performance analysis is carried out by ap-
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plying the suggested AFTCS to the nonlinear benchmark
controlled via a simple Linear Quadratic Regulator (LQR)
designed for the linearized model of the inverted pen-
dulum on a cart. Secondly, the model of the system is
simulated in connection with a Sliding Mode Controller
(SMC).

This comparison appears quite important, as the
SMC is an established method of controlling uncertain dy-
namical systems (Utkin, 1977; 1992; Edwards and Spur-
geon, 1998). Its invariance properties with respect to
the so-called matched uncertainty have encouraged re-
searchers to apply sliding mode techniques to a wide
variety of application areas (Slotine and Sastry, 1983;
Utkin, 1992; Su and Stepanenko, 1994; Edwards and
Spurgeon, 1998; Edwards, 2004). The early theory was
developed within a state-space framework and invariably
assumed that full state information was available for use
in the control law. The design of a (state feedback) SMC
traditionally involves first the selection of a sliding sur-
face, so that the associated reduced order sliding motion
has appropriate dynamics, then the design of a control
law to induce and maintain a sliding motion. Many ap-
proaches have been proposed for the design of the slid-
ing surface—these include pole placement, eigenstruc-
ture assignment, optimal quadratic and Linear Matrix In-
equality (LMI) methods (Utkin, 1992; Edwards and Spur-
geon, 1998; Edwards, 2004). The approach based on SMC
schemes shows that it is able to handle faults without re-
configuring the overall structure of the controller. Even
if the controller is relatively simple, it can work in sev-
eral operating points without any gain scheduling, while
maintaining performance with actuator faults without ex-
plicitly detecting them. In such a way, it is possible to
analyse, verify and compare the robustness and the stabil-
ity of the proposed AFTCS.

In particular, since the final AFTCS design relies
on both fault signal estimation and the disturbance de-
coupling, it is necessary to evaluate the impact of mod-
elling uncertainties, disturbance and measurement errors
on the AFTCS system. The overall AFTCS scheme ver-
ification uses extensive Monte Carlo simulations for the
analysis and assessment of design, robustness, stability,
and its final performance evaluation. This study also
describes simulated verification that this comprehensive
methodology can constitute a viable approach for real ap-
plication of the suggested AFTCS strategy.

It is worth noting that the paper presents a fault diag-
nosis method oriented to the design of an AFTCS, which
was already developed in works by the same authors,
but applied to aerospace examples (Bertoni et al., 2010a;
2010b; Baldi et al., 2010). However, the contribution of
the paper consists of the application of the AFTCS scheme
to a well-known benchmark, in order to highlight the com-
putational and mathematical aspects of nonlinear distur-
bance de-coupling design, which are particularly difficult

in the case of the benchmark considered; hence it can be
considered also a tutorial for researchers working in FDD
as well as FTC. It can be also observed that, for the first
time, the presented disturbance de-coupling problem has
been solved for the cart-pole system. This represents the
first contribution of the paper. Moreover, with reference
to the achieved performances of the overall fault toler-
ant control scheme, the advantages and drawbacks of the
complete design scheme applied to the nonlinear inverted
pendulum example are also discussed and compared with
reference to widely used control strategies. In particular,
two schemes have been used, namely, the LQR and the
SMC.

Note also how the proposed fault tolerant scheme al-
lows maintaining the existing controller, since a further
loop is added to the original scheme, thus providing in
the faulty case the feedback of the fault estimate pro-
vided by the nonlinear geometric approach fault diagno-
sis module. Many applications require not to change or
modify the existing controllers. With reference to the pro-
posed benchmark, the LQR is not fault tolerant, while the
SMC presents intrinsic fault tolerant capabilities. Thus,
the LQR acquires fault tolerant characteristics when the
further loop is implemented. In the authors’ opinion, this
point represents an important feature of the proposed FTC
scheme.

Finally, it is important to highlight that the final per-
formances of the proposed FTC strategy are mainly due
to the fault estimate that is unbiased thanks to the distur-
bance de-coupling method.

The work is organised as follows. Section 2 pro-
vides the description of the cart-pole nonlinear bench-
mark system. The analysis of the models for actuator fault
and disturbance signals acting on the systems is also per-
formed. Section 3 describes the implementation of the
FDD scheme and the structure of the AFTCS strategy. The
achieved results are reported in Section 4, where the sta-
bility, robustness analysis and capabilities of the devel-
oped AFTCS method with respect to measurement and
modelling errors are also investigated in simulation. Com-
parisons with a different FTC strategy relying on the SMC
are also reported. Finally, Section 5 summarises contribu-
tions and achievements of the paper, providing some sug-
gestions for possible further research topics.

2. Cart-pole nonlinear model

The dynamic model of a pendulum (or pole) on a cart
shown in Fig. 2 is a classical benchmark in systems and
control theory.

The interest in this mechanical system is motivated
by the similarity between its dynamic properties and those
of several real-world engineering applications like, for ex-
ample, aerospace vehicles during vertical take-off, cranes,
and many others.
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Fig. 2. Scheme of the inverted pendulum on a cart.

Assuming that the cart has mass M , the pendulum
mass m is concentrated at the tip of a pole of length L,
and that there are no friction effects, the dynamic model
obtained using Hamilton’s principle is the following:

⎧
⎨

⎩

(M + m)ẍ + mLθ̈ cos θ − mLθ̇2 sin θ = F,

mẍ cos θ + mLθ̈ − mg sin θ = τ,

(1)

in which g is the gravity constant, whilst F and τ are the
linear force acting on the cart, and the torque acting di-
rectly at the base of the pole, respectively.

If the state variables are

X = [x1 x2 x3 x4]T = [x ẋ θ θ̇]T , (2)

and considering u = F as the control input and d = τ as
a disturbance, the model can be rewritten in its state-space
input affine form as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2,

ẋ2 =
mLx2

4 sin x3 − mg sin x3 cosx3 + u − d cos x3
L

M + m sin2 x3

,

ẋ3 = x4,

ẋ4 =
(M + m)g sin x3 − mLx2

4 sinx3 cosx3

(M + m sin2 x3)L

− u cosx3 − d/L

(M + m sin2 x3)L
,

(3)
As can be seen, the dynamic model of the cart-pole system
fulfils the structural requirements described by De Persis
and Isidori (2001), concerning the following class of non-
linear systems:

Ẋ = N(X) + G(X)u + P (X) d, (4)

where N(X), G(X) and P (X) are smooth vector fields.
In the following section, the proposed solutions to FDD
and AFTC problems, based on the nonlinear geometric
approach introduced by De Persis and Isidori (2001), will
be developed.

It is worth noting that other types of disturbance
terms, different from the torque τ signal, can also be con-
sidered in (3). As an example, the case of longitudinal dv

and angular da velocity disturbances can be modelled as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2 + dv,

ẋ2 =
mLx2

4 sin x3 − mg sin x3 cosx3

M + m sin2 x3

+
u

M + m sin2 x3

,

ẋ3 = x4 + da,

ẋ4 =
(M + m)g sin x3 cosx3 − mLx2

4 sin x3 cosx3

(M + m sin2 x3)L

− u cosx3

(M + m sin2 x3)L
.

(5)
The term dv affects only the longitudinal velocity (with
the linear position x1), and the longitudinal acceleration
does not suffer from this signal. On the other hand, the
angular velocity x3 affects the angular acceleration, which
depends on da. However, as these disturbance signals can
be easily de-coupled for FDD purposes, as shown in Sec-
tion 3, only the model (3) with d = τ will be taken into
account. Moreover, a disturbance described in terms of a
torque acting at the base on the pole represents a more re-
alistic situation, since it may be related to the effect of an
impact between the pole and some kind of obstacle.

3. FDD design and the AFTCS scheme

This section describes the implementation of the FDD
scheme and the structure of the AFTCS strategy. Regard-
ing the presented FDD scheme, it belongs to the NLGA
framework, where a coordinate transformation, highlight-
ing a sub-system affected by the fault and de-coupled by
the disturbances, is the starting point to design a set of
adaptive filters. They are able both to detect an additive
fault acting on a single actuator and to estimate the mag-
nitude of the fault. It is worth observing that, by means of
this NLGA, the fault estimate is de-coupled from distur-
bance d.

The proposed approach has been properly applied to
the nonlinear model of the system considered in the form

⎧
⎨

⎩

ẋ = n(x) + g(x) c + �(x) f + pd(x) d,

y = h(x),
(6)

where the state vector x ∈ X (an open subset of R
�n),

c(t) ∈ R
�c is the control input vector, f(t) ∈ R is the

fault, d(t) ∈ R
�d the disturbance vector (embedding also

the faults which have to be de-coupled, in order to perform
the fault isolation) and y ∈ R

�m the output vector, whilst
n(x), �(x), the columns of g(x), and pd(x) are smooth
vector fields, with h(x) being a smooth map.
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The model (3) including an additive fault f can be
rewritten in the form
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2,

ẋ2 =
mLx2

4 sin x3 − mg sinx3 cosx3 + (u + f)
M + m sin2 x3

− d cosx3/L

M + m sin2 x3

,

ẋ3 = x4,

ẋ4 =
(M + m)g sin x3 − mLx2

4 sin x3 cosx3

(M + m sin2 x3)L

− (u + f) cosx3 + d
L

(M + m sin2 x3)L
,

(7)
where, with reference to the input-affine model (6), x =
[x1 x2 x3 x4]

T , c = u, and with

n(x) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x2

mLx2
4 sin x3 − mg sin x3 cosx3

M + m sin2 x3
x4

(M + m)g sin x3 − mLx2
4 sin x3 cosx3

L(M + m sin2 x3)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(8)
and

g(x) ≡ �(x) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

1
M + m sin2 x3

0

− cosx3

L(M + sin2 x3)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (9)

Moreover, pd(x) is defined as

pd(x) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

− cosx3

L(M + m sin2 x3)

0

1
L2(M + sin2 x3)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (10)

The design of the strategy for the diagnosis of the
fault f with disturbance de-coupling, by means of the
NLGA considered, is organised as follows:

• computation of ΣP
∗ , i.e., the minimal conditioned in-

variant distribution containing P (where P is the dis-
tribution spanned by the columns of pd(x));

• computation of Ω∗, i.e., the maximal observability
codistribution contained in (ΣP∗ )⊥;

• if �(x) /∈ (Ω∗)⊥, the fault detectability condition,
the fault is detectable and a suitable change of coor-
dinates can be determined.

ΣP
∗ can be computed by means of the following recursive

algorithm:
⎧
⎨

⎩

S0 = P̄ ,

Sk+1 = S̄ +
∑m

i=0

[
gi, S̄k ∩ ker {dh}] ,

(11)

where m is the number of inputs, S̄ represents the invo-
lutive closure of S, [g, Δ] is the distribution spanned by
all vector fields [g, τ ], with τ ∈ Δ, and [g, τ ] is the Lie
bracket of g and τ .

It can be shown that, if there exists a k ≥ 0 such
that Sk+1 = Sk, the algorithm (11) stops and ΣP

∗ = Sk

(De Persis and Isidori, 2001).
Once ΣP∗ has been determined, Ω∗ can be obtained

by exploiting the following algorithm:
⎧
⎨

⎩

Q0 = (ΣP
∗ )⊥ ∩ span {dh} ,

Qk+1 = (ΣP
∗ )⊥ ∩ ∑m

i=0 [LgiQk + span {dh}] ,
(12)

where LgΓ denotes the codistribution spanned by all co-
vector fields Lgω, with ω ∈ Γ, and Lgω is the derivative
of ω along g.

If there exists an integer k∗ such that Qk∗ = Qk∗+1,
Qk∗ is indicated as o.c.a.

(
(ΣP

∗ )⊥
)
, where the acronym

o.c.a. stands for the observability codistribution algo-
rithm.

It can be shown that Qk∗ = o.c.a.
(
(ΣP

∗ )⊥
)

repre-
sents the maximal observability codistribution contained
in P⊥, i.e., Ω∗ (De Persis and Isidori, 2001). Therefore,
with reference to the model (6), when �(x) /∈ (Ω∗)⊥, the
disturbance d can be de-coupled and the fault f is de-
tectable.

As mentioned above, the examined NLGA to the
fault diagnosis problem, described by De Persis and
Isidori (2001), is based on a coordinate change in the state
space and in the output space, Φ(x) and Ψ(y), respec-
tively. They consist of a surjection Ψ1 and a function
Φ1 such that Ω∗ ∩ span {dh} = span {d (Ψ1 ◦ h)} and
Ω∗ = span {dΦ1}, where

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Φ(x) =

⎛

⎝
x̄1

x̄2

x̄3

⎞

⎠ =

⎛

⎝
Φ1(x)

H2h(x)
Φ3(x)

⎞

⎠ ,

Ψ(y) =
(

ȳ1

ȳ2

)

=
(

Ψ1(y)
H2y

)
(13)

are (local) diffeomorphisms, whilst H2 is a selection ma-
trix, i.e., its rows are a subset of the rows of the identity
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matrix. By using the new (local) state and output coordi-
nates (x̄, ȳ), the system (6) is transformed as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̄x1 = n1(x̄1, x̄2) + g1(x̄1, x̄2) c + �1(x̄1, x̄2, x̄3) f,

˙̄x2 = n2(x̄1, x̄2, x̄3) + g2(x̄1, x̄2, x̄3) c

+ �2(x̄1, x̄2, x̄3) f + p2(x̄1, x̄2, x̄3) d,

˙̄x3 = n3(x̄1, x̄2, x̄3) + g3(x̄1, x̄2, x̄3) c

+ �3(x̄1, x̄2, x̄3) f + p3(x̄1, x̄2, x̄3) d,

ȳ1 = h(x̄1),

ȳ2 = x̄2,
(14)

with �1(x̄1, x̄2, x̄3) not being identically zero. As de-
scribed by De Persis and Isidori (2001), in this way the
observable subsystem (14), which, if it exists, is affected
by the fault and not affected by disturbances and the other
faults to be de-coupled, is obtained.

This transformation can be applied to the system (6)
if and only if the fault detectability condition is satisfied.
The system (6) in the new reference frame can be decom-
posed into three subsystems (14), where the first one (the
so-called x̄1-subsystem) is always de-coupled from the
disturbance vector and affected by the fault as follows:

⎧
⎪⎨

⎪⎩

˙̄x1 = n1(x̄1, ȳ2) + g1(x̄1, ȳ2) c + �1(x̄1, ȳ2, x̄3) f,

ȳ1 = h(x̄1),
(15)

where, as the state x̄2 in (14) is assumed to be measured,
the variable x̄2 in (15) is considered an independent input
denoted by ȳ2.

In the case of (7), with reference to (6), and recalling
(10) and (9), the following is obtained:

S0 = P̄ = cl (pd(x))

= cl

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

− cosx3

L(M + m sin2 x3)

0

1
L2(M + sin2 x3)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

≡ pd(x).

(16)
By recalling that ker {dh} = ∅, it follows that ΣP

∗ = P̄ as
S̄0 ∩ ker {dh} = ∅. Thus, the algorithm (11) stops with
S1 = S0 = ΣP

∗ .

On the other hand, in order to solve (12), it is neces-
sary to compute the expression

(
ΣP

∗
)⊥ =

(
P̄

)⊥
.

However, it is worth noting that, for the case un-
der investigation, the determination of the codistribution
(
ΣP

∗
)⊥ =

(
P̄

)⊥
is enhanced due to the sparse struc-

ture of (16). Moreover, by means of (12), the com-

putation of
(
ΣP∗

)⊥ =
(
P̄

)⊥
leads to a codistribution

Ω∗ = o.c.a.
(
(ΣP∗ )⊥

)
spanned by exact differentials. Fi-

nally, any codistribution Ω which is a conditioned invari-
ant contained in P̄⊥ spanned by exact differentials, with
Ω = o.c.a. ((Ω) and �(x) /∈ (Ω)⊥, can be used to define
the coordinate change (13). Therefore, the computation of
the maximal observability codistribution is not required.

By observing that

(
P̄

)⊥ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

− cosx3

L(M + m sin2 x3)

0

1
L2(M + m sin2 x3)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⊥

=

⎡

⎣
1 0 0 0
0 0 1 0
0 1 −Lx4 sinx3 L cosx3

⎤

⎦

(17)

and noting that span {dh} = I4, from (12) it follows that

Ω∗ =
(
ΣP

∗
)⊥ =

(
P̄

)⊥
and (Ω∗)⊥ = ΣP

∗ = P̄ . The fault

in (7) is detectable if �(x) /∈ (Ω∗)⊥ = ΣP∗ = P̄ . This
condition is fulfilled due to the expression of �(x) in (9).

As dim {Ω∗} = 3 and dim {Ω∗ ∩ span {dh}} = 3,
it follows that Φ1(y) : R

4 → R
3. Moreover, as Ω∗ ∩

span {dh} = span {d (Ψ1 ◦ h)}, H2 y : R
4 → R

1. Thus,
as h(x) = I4 x, the surjection Ψ (y(x)) is given by

Ψ (y(x))

=
(

Ψ1(x)
H2 x

)

=

⎛

⎜
⎜
⎝

⎡

⎣
x2 + Lx4 cosx3

x1

x3

⎤

⎦

[
x4

]

⎞

⎟
⎟
⎠ , (18)

where H2 =
[

0 0 0 1
]
.

Note that, since dh = I4, the diffeomorphism Φ1(x)
such that Ω∗ = span {d (Φ1)} is given by

Φ1(x) = Ψ1 (y(x)) = Ψ1 (x) . (19)

Hence, the x̄1-subsystem state variable is

x̄1 =

⎡

⎣
x̄11

x̄12

x̄13

⎤

⎦ =

⎡

⎣
x2 + Lx4 cosx3

x1

x3

⎤

⎦ . (20)
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It is worth observing that only x̄11 is affected by the
faults, and that the differentials of x2 + Lx4 cosx3 span
an observability codistribution Ω contained in P⊥ with
Ω = o.c.a. (Ω). Hence, as previously remarked, in order
to estimate the fault, it is possible to use the scalar sub-
system defined by the coordinate x̄11 = x2 + Lx4 cosx3,
whose dynamics are defined by

˙̄x11 =
d (x2 + Lx4 cosx3)

dt
, (21)

from which, by assuming that the whole state is measured,
the NLGA-AF can be computed.

With reference to (15), the NLGA-AF can be de-
signed if the condition of De Persis and Isidori (2001) and
the following new constraints are satisfied:

• The x̄1-subsystem is independent of the x̄3 state
components.

• The fault is a step function of the time, and hence the
parameter f is a constant to be estimated.

• There exists a proper scalar component x̄1s of the
state vector x̄1 such that the corresponding scalar
component of the output vector is ȳ1s = x̄1s and the
following relation holds (Bonfè et al., 2007):

˙̄y1s(t) = M1(t) · f + M2(t), (22)

where M1(t) 	= 0, ∀t ≥ 0. Moreover, M1(t) and
M2(t) can be computed for each time instant, since
they are functions just of input and output measure-
ments. The relation (22) describes the general form
of the system under diagnosis.

Under these conditions, the design of the adaptive filter
is achieved, with reference to the system model (22), in
order to provide a fault estimation f̂(t), which asymptoti-
cally converges to the magnitude of the fault f .

The proposed adaptive filter is based on the least-
squares algorithm with a forgetting factor (Ioannou and
Sun, 1996), and it is described by the following adapta-
tion law:

⎧
⎪⎨

⎪⎩

Ṗ = β P − 1
N2 P 2M̆2

1 , P (0) = P0 > 0,

˙̂
f = P ε M̆1, f̂ (0) = 0,

(23)
with the following equations representing the output es-
timation and the corresponding normalised estimation er-
ror: ⎧

⎨

⎩

ˆ̄y1s = M̆1 f̂ + M̆2 + λ ˘̄y1s,

ε = 1
N2

(
ȳ1s − ˆ̄y1s

)
,

(24)

where all the involved variables of the adaptive filter are
scalar. In particular, λ > 0 is a parameter related to the

bandwidth of the filter, β ≥ 0 is the forgetting factor and
N2 = 1 + M̆2

1 is the normalisation factor of the least-
squares algorithm. Moreover, the proposed adaptive filter
adopts the signals M̆1, M̆2, ˘̄y1s, which are obtained by
means of a low-pass filtering of the signals M1, M2, ȳ1s

as follows:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

˙̆
M1 = −λ M̆1 + M1, M̆1(0) = 0,

˙̆
M2 = −λ M̆2 + M2, M̆2(0) = 0,

˙̄̆y1s = −λ ˘̄y1s + ȳ1s, ˘̄y1s(0) = 0.

(25)

Thus, the adaptive filter considered is described by the
systems (23)–(25).

It can be proved that the asymptotic relation between
the normalised output estimation error ε(t) and the fault
estimation error f − f̂(t) is the following:

lim
t→∞ ε(t) = lim

t→∞
M̆1(t)
N2(t)

(
f − f̂(t)

)
. (26)

Moreover, it can be proved that the adaptive filter de-
scribed by the relations (23)–(25) provides an estimate
f̂(t) that asymptotically converges to the magnitude of the
step fault f . The proofs are similar to those by Castaldi
et al. (2010) and have been omitted here.

In order to design the NLGA-AF scheme, it is possi-
ble to design a 4 NLGA adaptive filter in the form of (23)–
(25), allowing estimating the magnitude of a step fault act-
ing on the linear force actuator of the inverted pendulum,
as shown in (7).

In order to de-couple the effect of the disturbance d
from the fault estimator, it is necessary to select from the
x̄1-subsystem the following state component:

x̄1s = x̄11 = x2 + Lx4 cosx3. (27)

Hence, it is possible to describe the specific expression of
the fault dynamics (22). The design of the NLGA-AF for
f is based on

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̄y1s = M1 · f + M2,

M1 =
1 − cos2x3

M + msin2x3

,

M2 =
mLx2

4 sin x3 − mg sinx3 cosx3

M + msin2x3

+
(M + m) g sin x3cos2x3

M + msin2x3

−mLx2
4 sin x3cos2x3

M + msin2x3

−x2
4 sinx3 +

1 − cos2x3

M + msin2x3

u.

(28)
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It is worth noting that, if the disturbance model (5) had

been considered, the matrix pd and
(
P̄

)⊥
would have been

computed as follows:

p(x) = pd(x) =

⎡

⎢
⎢
⎣

1 0
0 0
0 1
0 0

⎤

⎥
⎥
⎦ (29)

and

(
P̄

)⊥ =

⎡

⎢
⎢
⎣

1 0
0 0
0 1
0 0

⎤

⎥
⎥
⎦

⊥

=
[

0 1 0 0
0 0 0 1

]

. (30)

It is easy to verify that, also in this situation, the condi-
tion �(x) /∈ (Ω∗)⊥ =

(
P̄

)
=

(
ΣP

∗
)

still holds. Thus,
when both longitudinal and angular velocity disturbance
are present, the design of the NLGA–AF is based on the
following terms:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

M1 =
1

M + msin2x3

,

M2 =
mLx2

4 sin x3 − mg sinx3 cosx3

M + msin2x3

+
u

M + msin2x3

.

(31)

However, only the NLGA-AF described by the system
(28) will be considered in the following.

In order to compute the simulation results described
in next section, the AFTCS scheme has been completed by
means of an optimal state feedback control law, designed
on the basis of the linear approximation of the model (3)
in a neighbourhood of Xo = [x1d 0 0 0]T , in which x1d

can be any value. In fact, the linear approximation is inde-
pendent of x1, so that the input vector of the optimal con-
troller can be calculated as X̃ = [(x1 − x1d) x2 x3 x4],
and the cart-pole system will be stabilised in the upright
position at any linear position reference.

The logic scheme of the integrated adaptive fault tol-
erant approach is shown in Fig. 3.

With reference to Fig. 3, the following nomenclature
and symbols have been used:

x1d: desired value of the linear position,

u: actuated input,

uc: controlled input,

ul: output signal from the optimal controller,

y: measured outputs,

f : actuator fault,

f̂ : estimated actuator fault.
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Fig. 3. Logic diagram of the integrated AFTCS strategy.

Therefore, the logic scheme depicted in Fig. 3 shows
that the AFTCS strategy is implemented by integrating
the FDD module with the existing control system. From
the controlled input and output signals, the FDD module
provides the correct estimation f̂ of the f actuator fault,
which is injected to the control loop, in order to compen-
sate the effect of the actuator fault. After this correction,
the optimal controller provides the exact tracking of the
reference signal x1d.

Regarding the analysis of the stability of the over-
all AFTCS, the simulation results shown in the following
highlight that the model state variables remain bounded
in a set, which assures control performance, even in the
presence of large fault sizes. Moreover, the assumed fault
conditions do not modify the system structure, thus guar-
anteeing the global stability.

Finally, Section 4 will show the simulation results
that have been achieved by implementing the presented
integrated FDD and AFTCS strategy.

4. Simulation results

To show the diagnostic characteristics brought by the ap-
plication of the proposed AFTCS and FDD schemes to the
inverted pendulum on a cart, the nonlinear dynamic model
of the mechanical system was implemented in Matlab/Si-
mulink R©.

The following values of the system parameters were
assumed: M = 1 kg, m = 0.1 kg, L = 0.3 m, g = 9.81
m/s2.

The optimal controller was designed using the LQR
approach in order to minimize the cost function:

J =
∫ +∞

0

(X̃T QX̃ + uRu) dt (32)

with Q = 10 I4 and R = 1.
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In order to show the capabilities of the proposed
AFTCS strategy, the system was tested setting as a ref-
erence x1d a square-wave with a 0.2 m amplitude and a
50 sec period.

A random disturbance d modelled as a zero-mean
band-limited noise was applied. It is worth noting that
the filter is structurally de-coupled from this disturbance
torque, while the measurement noise and the modelling
errors may affect the fault estimation.

The following results refer to the simulation of a fault
f modelled as a step signal with a size of 0.1 N, commenc-
ing at t = 66 s. Figure 4 shows the estimate of the actuator
fault f (solid line), when compared with the simulated ac-
tuator fault (dashed line). The fault estimate was achieved
by using the logic scheme represented in Fig. 3, and from
the FDD module described in Section 3.

As will be shown also in the performance evaluation
described in Section 4.1, after a suitable choice of the pa-
rameters of the filter (23)–(25), the FDD module provides
a quite accurate estimate of the fault size, with a minimal
detection delay. Residual errors are due to both the mea-
surement noise and the mismatch between the parameters
in the plant and those in the NLGA adaptive filters.

Fig. 4. Real-time estimate f̂ of the actuator fault f .

Figure 5 shows the cart position x1 compared with
its desired value x1d. When the fault is not acting on the
system, the position error is quite small and is affected
mainly by the disturbance torque d. The fault commences
at t = 66 s, but the fault estimate feedback is applied after
t = 110 s.

As highlighted in Fig. 5, during the time interval 66 s
< t < 110 s, the steady-state error cannot be eliminated
by the optimal controller without the AFTCS. On the other
hand, when the proposed AFTCS scheme is switched on,
the steady-state error due to the fault is almost zero.

The achieved simulation results summarised in Figs.
4 and 5 show the effectiveness of the presented integrated
FDD and AFTCS strategy, which is able to improve the
control objective recovery and the reference tracking in
the presence of actuator fault. However, the asymptotic

Fig. 5. Linear position x1 of the cart in the fault-free and faulty
cases, with and without the AFTCS.

fault accommodation, the transient and the asymptotic sta-
bility of the controlled system, which in this paper are
assessed in simulation, require further theoretical studies
and investigations.

It is worth observing that the suggested NLGA-AF
provides not only the fault detection and isolation, but
also the fault estimate. For this reason, it could also be
compared e.g., with the fault identification scheme pro-
posed by Kaboré and Wang (2001) or Kaboré et al. (2000).
However, the proposed NLGA-AF is less sensitive to mea-
surement noise, which allows obtaining a smaller minimal
detectable fault. On the other hand, the fault estimation
technique of Kaboré and Wang (2001) can provide a faster
response and, therefore, a lower detection time.

Note finally that a fault modelled as an additive step
function has been considered, since it represent the most
used fault situation in connection with the FDD scheme,
as reported, e.g., by Edwards et al. (2010). Moreover, the
FDD module can be easily generalised to estimate, for ex-
ample, a polynomial function of time, or a generic fault
signal belonging to a given class of faults, if the NLGA-
AF contains the internal model of the fault itself. Gen-
eralisation to more general fault functions is beyond the
scope of this paper, and it will be investigated in further
works. However, a more realistic fault scenario for the in-
verted pendulum has been considered in the following. In
particular, taking into account also the capabilities of the
FDD module considered, the case of an intermittent fault
is presented in the following.

Thus, the results refer to the simulation of a fault f
modelled as a sequence of rectangular pulses with variable
sizes, commencing at t = 66 s. Figure 6 shows the esti-
mate of the intermittent actuator fault f (solid line), when
compared with the simulated actuator fault (dashed line).
Also in this case, after a suitable choice of the parameters
of the NLGA-AF, the FDD module provides a quite good
estimate of the fault signal.

Under this condition, Fig. 7 shows the cart position
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Fig. 6. Real-time estimate f̂ of the intermittent fault f .

x1 compared with its desired value x1d. The intermittent
fault commences at t = 66 s, but the fault estimate feed-
back is applied after t = 110 s.

Fig. 7. Linear position x1 of the cart for the case of an intermit-
tant fault, with and without the AFTCS.

Also for the situation of an intermittent fault, Fig. 7
shows that during the time interval 66 s < t < 110 s a
steady-state error is present, without applying the AFTCS
strategy. However, when the AFTCS scheme is working,
the steady-state error due to the intermittent fault is almost
eliminated.

Therefore, the achieved simulation results highlight
that the presented FDD and AFTCS integrated strategy is
effective also for the case of intermittent faults with vari-
able amplitudes.

4.1. Performance evaluation. In this section, further
experimental results are reported. They regard the perfor-
mance evaluation of the developed AFTCS scheme with
respect to modelling errors and measurement uncertainty.
In particular, the simulation of different fault-free and
faulty data sequences was performed by exploiting the
cart-pole benchmark simulator and a MATLAB R© Monte
Carlo analysis. In fact, the Monte Carlo tool is useful at

this stage as the AFTCS strategy performance depend on
the residual error magnitude due to the model approxima-
tion as well as on the input-output measurement errors.

In particular, the nonlinear cart-pole simulator devel-
oped in SIMULINK R© is able to vary the statistical proper-
ties of the signals used for modelling both possible process
parameter uncertainty and measurement errors. Thus, in
this case, Monte Carlo analysis represents a viable method
for analysing some properties of the developed AFTCS
scheme when applied to the process considered. Under
this assumption, Table 1 reports the nominal values of
the examined cart-pole model parameters with their un-
certainty.

Monte Carlo analysis was performed by describing
these variables as Gaussian stochastic processes, with
zero-mean and standard deviations corresponding to min-
imal and maximal error values in Table 1.

Table 1. Simulated cart-pole parameter uncertainties.
Variable Nominal value Min. error Max. error

M 1 kg ± 0.1% ± 50%
m 0.1 kg ± 0.1% ± 50%
u uo ± 0.1% ± 25%
y yo ± 0.1% ± 25%
f 0 0.1 N 1 N

Moreover, it is assumed that the input and the out-
put signals u and y are affected by measurement errors,
expressed as percentage standard deviations of the corre-
sponding nominal values uo and yo, also reported in Ta-
ble 1.

Thus, for the performance evaluation and robustness
analysis of the AFTCS scheme, some indices were used,
and thus experimentally evaluated on 500 Monte Carlo
runs.

These indices are defined as follows:

Fault reconstruction relative error, εmf : it represents
the mean value of the relative error between the ex-
amined fault size f and the estimated fault size f̂ .

Reference tracking relative error, εmr: it represents
the mean value of the relative error between the ref-
erence signal x1d and the controlled output x1.

Settling time, Tms: it represents the mean value of the
settling time of the controlled output x1 with respect
to the set-point signal x1d.

Fault detection delay, τmf : it represents the mean value
of the time delay required for detecting the consid-
ered fault signal.

Computation time, τc: it represents the mean value of
the length of the time required to perform the com-
putational process.
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Control signal energy, Emu: it represents the mean
value of energy of the control input signal u.

These criteria are computed for several possible com-
binations of the parameter values reported in Table 1. Ta-
ble 2 summarises the results obtained by considering the
FDD module and the FTC strategy described in Section 3.

Table 2. Monte Carlo analysis for the suggested AFTCS
scheme.

Index Best case Average case Worst case

εmf 3% 9% 18%
εmr 13% 14% 15%
Tms 18.04 s 18.20 s 18.60 s
τmf 0.65 s 1.20 s 2.16 s
Emu 0.05 0.06 0.07
τc 0.015 s 0.017 s 0.019 s

In particular, Table 2 summarises the values of the
performance indices considered according to the best,
worst and average cases, with reference to the possible
combinations of the parameters described in Table 1.

Table 2 shows that, with the proper design of the
FDD logic in connection with the FTC scheme, it is possi-
ble to achieve reference tracking errors less than 15%, set-
tling times smaller than 19 s, with minimal control input
energy, 0.07, low detection delay, and computation time
smaller than 0.017 s. The simulations showed that these
values are almost independent for the actuator fault size,
which varies in the range from 0.1 N. to 1.0 N.

The results demonstrate that Monte Carlo simula-
tion is an effective tool for experimentally testing the de-
sign robustness, stability and reliability of the proposed
AFTCS method with respect to modelling uncertainty.
This last simulation technique example hence facilitates
an assessment of the performances of the developed and
employed FDD and FTC strategies.

Finally, it is worth noting that, when the case of step
fault signals is considered, the perfect knowledge of the
system parameters allows settling the optimal threshold
logic and therefore providing the analytical estimate of the
performance indices (detection time, false alarm rate, etc).
On the other hand, when the parameters of the nonlinear
model are uncertain, the performance indices are repre-
sented by stochastic variables, whose probability distribu-
tions can be evaluated only by means of approximations,
due to the nonlinearity of the model itself. However, these
approximations are not required if the Monte Carlo tool is
exploited, since nonlinear maps of stochastic variables do
not have to be managed in an analytical way.

4.2. Comparative studies. This section provides some
comparative results with respect to other FDD and FTC
schemes. In particular, advantages and drawbacks of the

AFTCS method suggested in this paper are analysed with
respect to the alternative approach, in particular, relying
on the SMC.

The SMC can be designed on the basis of a linear
or a nonlinear model. In both cases, the design proce-
dure is based on the selection of an appropriate switching
manifold, and then on the determination of a control law,
including a discontinuous term, which ensures the slid-
ing motion in this manifold. However, SMC design for
the nonlinear case is generally applied to systems in the
so-called regular form, which consists of two blocks: one
depending on the control, with the same dimension of the
control vector, and the other one independent. Such a reg-
ular form may be obtained by means of a nonlinear coordi-
nate transformation. On the other hand, if a linear model
is used, the transformation into the regular form and the
design of the sliding mode dynamics are simpler, since
known results from linear control techniques (i.e., pole
placement, eigenstructure assignment, optimal quadratic)
are applicable.

Even if the cart-pole benchmark has been studied for
SMC design for both its nonlinear model and its linear
approximation (Utkin et al., 1999, Par. 4.2 and 5.4), the
proposed AFTCS strategy is compared here with SMC de-
sign based on Ackermann’s formula (Utkin et al., 1999,
Par. 5.4). This approach allows determining a state-space
discontinuity plane equation in a explicit form, without
transforming the original system in a regular form, such
that the sliding motions on that plane are governed by lin-
ear dynamics with desired eigenvalue placement, indepen-
dent of disturbances.

This design procedure is therefore inherently fault
tolerant, since the disturbance torque and actuator faults
are both de-coupled from the sliding motion. The sliding
surface based on Ackermann’s formula for a linear system
ẋ = Ax + bu (with A ∈ R

n×n) is designed as follows:

s = cT x = 0,

cT = eT P (A),

eT = [0 . . . 0 1][b Ab . . .An−1b]−1,

P (A) = (A − λ1I)(A − λ2I) . . . (A − λn−1I),

(33)

where λ1, λ2, . . . , λn−1 are the desired eigenvalues of the
sliding mode. The control law defined as

u = −Msign(s) (34)

enforces a sliding motion in the plane s = 0 if

M > |cT Ax| + fM , (35)

where fM is an upper bound on an additive disturbance
on the control input. In the case of the linearized model
of the cart-pole system, such disturbance plays the role of
both the disturbance torque and the actuator fault.
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In order to provide a brief but clear insight into the
above mentioned FDD techniques, the comparison has
been performed in the same previous working conditions
and based on the indices suggested at the beginning of
Section 4.1. It is worth noting that the FTC scheme im-
plemented via the SMC does not exploit the FDD module
for fault estimation shown in Fig. 3. In fact, as previously
remarked, the SMC strategy is inherently fault-tolerant, as
disturbance and fault are de-coupled via the sliding mo-
tion. Moreover, the discontinuous control action gener-
ated from the SMC, and used by the FDD module, would
inevitably worsen the fault reconstruction.

As an example, Fig. 8 shows the linear position x1 of
the cart in the fault-free and faulty cases, when the SMC
is used for a step fault situation.

Fig. 8. Linear position x1 of the cart in the fault-free and faulty
cases, with the SMC and for the step fault case.

On the other hand, Fig. 9 depicts x1 when the SMC
is exploited in connection with the intermittent fault case.

Fig. 9. Linear position x1 with the SMC and an intermittent
fault situation.

Figures 5, 8, and 9 highlight the fact that FTC
schemes with different controllers are approximately
equally able to accommodate the actuator fault cases con-
sidered.

Table 3. Monte Carlo analysis with the sliding mode controller.

Indices Best case Average case Worst case

εmr 9% 10% 11%
Tms 20 s 21 s 22 s
Emu 20 20.5 20.8
τc 0.082 s 0.084 s 0.087 s

However, the comparison between Tables 2 and 3
shows that the FTC scheme using the SMC allows achiev-
ing better performances in terms of tracking errors εmr

and settling times Tms. However, as reported in Table 3
and depicted in Fig. 10, the control input energy Emu re-
quired by the SMC is much bigger than in the case of the
suggested AFTCS, and summarised in Table 2. Moreover,
the SMC increases the computational time τc consider-
ably.

Fig. 10. Control signal activity of the SMC.

As an example, Fig. 10 shows the control signal ac-
tivity generated by the SMC, which can be compared with
the one from the LQR, depicted in Fig. 11.

Fig. 11. Control signal from the LQR.

A few comments can be finally drawn here. When
the modelling of the dynamic system can be perfectly ob-
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tained, the suggested AFTCS allows achieving good per-
formances. This scheme showed also interesting robust-
ness properties in the presence of unmodelled disturbance,
modelling mismatch and measurement errors. However,
with a scheme relying, e.g., on an SMC, the tracking
relative error can fall below the value for the suggested
AFTCS scheme. The SMC strategy takes advantage of
its intrinsic robustness capabilities, even if with an in-
creased control effort, and an average computation time
about 3.59 times bigger than the one required by the sug-
gested AFTCS scheme. However, it represents the time
required for computing both the controller and process
simulations.

It is worth noting also that the FDD unit was not
modified while changing the control strategy. Moreover,
one of the advantages of the suggested AFTCS scheme
consists in improving the fault tolerance characteristics of
those controllers that are not intrinsically fault tolerant.
However, for control schemes that are already fault toler-
ant, the proposed AFTCS method enhances the behaviour
of the complete system in transient conditions.

5. Conclusion

This paper described the development of an active fault
tolerant control scheme which integrates a robust fault di-
agnosis method with the design of a controller reconfig-
uration system. The methodology was based on a fault
detection and diagnosis procedure relying on disturbance
de-coupled adaptive filters designed via the nonlinear geo-
metric approach. The fault tolerant strategy was applied to
a classical control design benchmark, namely, the inverted
pendulum on a cart, which was simulated in the presence
of actuator faults, disturbing forces, measurement noise,
and modelling errors.

It is worth observing that the suggested active fault
tolerant control was already developed in works by the
same authors but applied to aerospace examples. Thus,
the contribution of this paper consists in the application
of the active fault tolerant control scheme to the well-
known benchmark, in order to highlight the computa-
tional and mathematical aspects of nonlinear disturbance
de-coupling design, which is particularly difficult in the
case of the benchmark considered, and hence it can be
considered also a tutorial for researchers working in the
field of fault detection and isolation as well as fault toler-
ant control. Note also that, for the first time, the presented
disturbance de-coupling problem was solved for the cart-
pole system. This represents the first contribution of the
paper.

With reference to the achieved performances of the
overall fault tolerant control scheme, the advantages and
drawbacks of the complete design scheme applied to
the nonlinear inverted pendulum example are also dis-
cussed and compared with reference to widely used con-

trol strategies. In particular, two schemes were used,
namely, linear quadratic and sliding mode controllers. The
proposed fault tolerant scheme allows maintaining the ex-
isting controller, since a further loop is added to the origi-
nal scheme, thus ensuring, in the faulty case, the feedback
of the fault estimate provided by the nonlinear geometric
approach fault diagnosis module. Many applications re-
quire not to change or modify the existing controllers.

On the other hand, with reference to the proposed
benchmark, the linear quadratic controller is not fault tol-
erant, while the sliding mode controller presents intrinsic
fault tolerant capabilities. Thus, the linear quadratic reg-
ulator acquires fault tolerant characteristics when the fur-
ther loop is implemented. The sliding mode controller,
which is already fault tolerant by itself, improves the per-
formance in transient conditions, during the occurrence of
faults. This point represents an important feature of the
proposed fault tolerant control scheme. The final perfor-
mances of the developed fault tolerant control strategy are
mainly due to the fault estimate that is unbiased thanks to
the disturbance de-coupling method.

The stability and robustness of the developed fault
tolerant control scheme, together with the evaluation of
the achievable performance, are estimated in simulation,
by using also the Monte Carlo tool. Results of the nu-
merical simulations show that the proposed active fault
tolerant control strategy is robust against disturbances and
uncertainties. Comparisons with an alternative fault tol-
erant control strategy based on a sliding mode controller
are also provided. Based on the numerical simulations,
the work highlights that the suggested active fault toler-
ant control strategy exhibits excellent performance in the
presence of uncertainties in system parameters. More-
over, the exploited controller shows robust performance in
the presence of external disturbances and actuator faults.
Thus, the overall design strategy and simulation tool can
be regarded as a viable procedure for feasibility analysis
of fault tolerant control schemes in achieving prescribed
performances, mainly in connection with real applica-
tions.

Finally, further investigations will be carried out to
evaluate the effectiveness of the suggested approach when
applied to real case studies.
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Marcello Bonfè received his M.Sc. degree
in electronic engineering from the University of
Ferrara, in 1998, and the Ph.D. degree in infor-
mation engineering from the University of Mod-
ena and Reggio Emilia, Italy, in 2003. Currently,
he is an assistant professor of automatic control
at the Department of Engineering of the Univer-
sity of Ferrara, Italy. He has published about 50
refereed journal and conference papers. His cur-
rent research interests include fault detection and

isolation, modelling and control of mechatronic systems, and formal ver-
ification methods for discrete event systems.

Paolo Castaldi was born in Bologna, Italy. He
received the Laurea degree (cum laude) in elec-
tronic engineering in 1990 and the Ph.D degree in
system engineering in 1994, both from the Uni-
versity of Bologna, Padova and Firenze. Since
1995 he has been an assistant professor at the De-
partment of Electronics, Computer Science and
Systems of the University of Bologna. Since
2009 he has been a member of the IFAC Techni-
cal Committee on Aerospace. His research inter-

ests include fault diagnosis and fault tolerant control, adaptive filtering,
system identification, and their applications to aerospace and mechanical
systems. He is a reviewer of many international journals (awarded as an
“outstanding reviewer” of Automatica in 2004 and 2005), and an author
of about 90 refereed journal and conference papers.

Nicola Mimmo was born in San Severo, Italy,
in 1983. In 2006 he received his B.Sc. degree in
aerospace engineering from the Second Univer-
sity of Naples, Faculty of Engineering, Aversa,
Italy, and in 2009 the M.Sc. degree in aerospace
and astronautic engineering from the Univer-
sity of Bologna, Second Faculty of Engineering,
Forli, Italy. He has cooperated with several na-
tional and international aircraft and aerospace in-
dustries, and is currently a research fellow at the

University of Bologna. His research interests include fault diagnosis
and fault tolerant control, adaptive filtering, and their applications to
aerospace and mechanical systems.

Silvio Simani was born in Ferrara, Italy, in
1971. In 1996 he received the Laurea degree
(cum laude) in electrical engineering from the
Department of Engineering at the University of
Ferrara, and in 2000 the Ph.D. in information sci-
ence (automatic control) at the University of Fer-
rara and Modena. Since 2006 he has been an
IEEE Senior Member, and from 2000 a mem-
ber of the SAFEPROCESS Technical Commit-
tee. Since 2002 he has been an assistant profes-

sor at the Department of Engineering of the University of Ferrara. His
research interests include fault diagnosis and fault tolerant control, and
system identification. He is the author of about 100 refereed journal and
conference papers, as well as two books on the above topics.

Received: 11 March 2010
Revised: 8 January 2011


	Introduction
	Cart-pole nonlinear model
	FDD design and the AFTCS scheme
	Simulation results
	Performance evaluation
	Comparative studies

	Conclusion

