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Abstract

Aircraft engine control is a crucial component for the safe and stable operation of

gas turbine engines which are complex nonlinear systems. As engines have evolved

to higher capabilities it is crucial to update the control strategy to ensure maximum

functionality of the engine. Current industrial baseline controllers are based in the

Proportional-Integral-Derivative (PID) control scheme along with individual limit

controllers having critically damped responses housed in the min-max architecture.

In light of the distributed engine control architecture that exploits digital elec-

tronics and hence higher on-board computational capabilities, the baseline controller

is replaced by a Model Predictive Control (MPC) law with on-line optimization.

MPC is a model based control technique that can handle complex constrained dy-

namics thus allowing the incorporation of component faults in the design process of

the controller. Component faults occur during an engine’s operation mainly due to

fan blade-shroud rubbing, structural wear and tear and foreign object ingestion thus

affecting the engine performance.

Simulations on the Linear Time Invariant (LTI) as well as the nonlinear tur-

bofan engine of the Commercial Modular Aero-Propulsion System Simulation (C-

MAPSS40k) tool are carried out. In the presence of a component fault, active fault

tolerant control using the multi-model MPC approach is applied by switching between

the MPC blocks, each using its respective LTI reference model.The control of both
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the fan speed as well as the thrust for a demand profile in the Power Level Angle

(PLA) is investigated and the MPC performance is compared with that of the PID

controller demonstrating the successful replacement of the baseline controller with an

on-line fault tolerant MPC. The thrust control approach using MPC consumes lesser

fuel when compared with the fan speed control approach.
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”For once you have tasted flight, you will always walk the earth with your eyes

turned skyward, for there you have been and there you long to return” - Leonardo

da Vinci.
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Chapter 1: INTRODUCTION

Turbofan engines are complex nonlinear systems that operate along profiles vary-

ing in environmental conditions and Mach number. As the aviation industry grew

larger, the operating profiles have become more demanding on jet engines financially

and physically. Engine control plays a crucial role in the safe and stable operation of

the engine within its operational and physical limits thus extending the operational

lifetime of the engine. Operational limits include thrust specific fuel consumption

(TSFC), spool acceleration and stall margins of the compressor and turbine while the

physical limits are structural due to the pressure and temperature within the engine.

As engines have evolved to higher capabilities, the control systems too have evolved

from hydro-mechanical to electronic systems, becoming more complex in terms of the

architecture, control law, sensors and actuators used.

The main aim of engine control has always been to achieve the desired thrust level

which is described in Eq. (1.2) [1] for a turbofan engine

Net Thrust = Gross Thrust−MomentumDrag (1.1)

τnet = ṁa[(1 + f)ue − u]− (Pe − Pa)Ae (1.2)
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f = ṁf/ṁa (1.3)

where ṁa [Kg/sec] is the air mass flow rate, f is the fuel-air ratio, ue [m/sec] is the

exit velocity of the gas in the nozzle section, u [m/sec] is the flight velocity, Pe [kPa] is

the exit pressure in the nozzle and Pa [kPa] is the ambient pressure outside the engine,

Ae [m2] is the exhaust area. For an ideal expansion of gases through the nozzle, the

momentum drag equals zero. For analyses purposes, the performance of the engine is

expressed as non-dimensional parameters one of them being the Propulsion Efficiency

ηp which is the ratio of the thrust power to the rate of production of propellant kinetic

energy [1].

ηp =
τ

ṁa[(1 + f)(u2
e/2)− u2/2]

(1.4)

For f << 1, this becomes

ηp =
2u/ue

1 + u/ue

(1.5)

Since thrust is not a directly measurable property, the traditional engine control

approach has been to control either the speed of the fan section or the engine pressure

through the manipulation of the fuel flow rate into the combustion chamber.

This thesis explores the application of model predictive control (MPC) on a high

bypass turbofan engine through simulations carried out in the MATLAB/Simulink en-

vironment. MPC is a control design technique that computes the control law through

the optimization of a quadratic cost function subject to system constraints over a fi-

nite horizon. The cost function generally includes the system outputs and the control

inputs. MPC has been successful mainly in the chemical and processing industry and

is starting to be an attractive control technique in the aerospace industry especially

for aircraft control.
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The rest of the thesis is organized as follows. Chapter 2 presents an introduction

to engine control systems along with the basics of their operation, evolution towards

modern day technological existence, recent work and the advancement towards future

architectures. Chapter 3 outlines the basics of the C-MAPSS40k simulation tool

developed by NASA GRC in terms of its user interface, controller architecture and

an overview of the turbofan engine being simulated.

Chapter 4 outlines the basic theoretical background of model predictive control

along with a literature review on the theoretical advancements of MPC and its ap-

plications in the Automotive and Aerospace industry. The fault tolerant control

approach applied in this thesis is introduced in this chapter along with the simulation

tool for realizing MPC.

Chapter 5 is the main contribution of this thesis which describes in detail the

various MPC simulations carried out. First the design process is discussed followed

by the implementation of MPC. The ideal scenario as well as a scenario with the

occurrence of a fault in the fan are simulated and the ability of MPC to recover from

the induced faults is demonstrated using a multi-model approach. The traditional

fan speed control is followed, also highlighting its short comings. The thrust control

technique is investigated in a simplified manner. These simulation are carried out for

both the linear time invariant as well as the nonlinear C-MAPSS40k engine.

Finally in Ch. 6, the conclusions are listed and the future aspects of MPC in

engine control are briefly discussed followed by the source code implementation of

MPC in MATLAB in Ch. 7.
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Chapter 2: ENGINE CONTROL SYSTEMS

2.1 Introduction

Gas turbine engines due to their complex nature in design and varying operational

profiles in terms of altitude and Mach number require suitable control that ensure the

engine operation is sustained. In reality, no two engines are identical due to differences

that arise during their manufacturing process, largely owing them to differences in the

properties of the material stock being used. Therefore an engine control design should

be able to handle these manufacturing differences and hence should be robust [2].

Over several operational cycles the engine deteriorates due to regular wear and tear

of engine components slowly degrading the performance of the gas turbine engine.

Certain components such as the fan blades and turbine blades degrade faster than

others due to their physical location and this higher rate of health deterioration needs

to be accounted for.

In practical scenarios, ingestion of foreign objects such as birds or debris or passage

through storm clouds leads to a sudden shift in the engine performance due induced

sudden degradation in the components also termed as faults. Hence the control design

should be versatile in addition to being robust in the sense that either certain lines
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of codes or control gains can be modified easily on-the-fly so as to account for both

slow and fast degradation of engine components.

This modification is carried out once the actual fault or kind and amount of

degradation is known which usually carried out by the Fault Detection and Isolation

(FDI) diagnostics. FDI techniques generally monitor the health states of the engine

through feedback measurement and estimation and based on the residues obtained

when comparing the current health with that of a new engine are able to point out

the fault present and its significance.

2.2 Operation of Engine Control Systems

Jet engines are closed loop systems with automatic control systems that consist of

the four main control component namely actuators, controller, sensors and the engine

plant. Because the engine operational cycle is mainly thermodynamic in nature,

closed loop computation of the fuel flow rate is sufficient to achieve sustained operation

over most flight profiles with the variable stator vanes (VSV) and variable bleed valves

(VBV) scheduled in an open loop manner based on the spool speed and the Mach

number. However, military engines which can traverse complicated flight profiles in a

very short duration require the additional manipulation of VBV and VSV positions.

The main control objective in engine control is to ensure that a desired value of

thrust, governed by the PLA position, is maintained. However since the thrust cannot

be directly measured, the traditional approach has been controlling the fan speed or

the engine pressure ratio (EPR) which are measurable and the thrust can hence be

estimated using an on-board engine model. These control systems ensure safe and

stable engine operation through the following basic function [2]:
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• Set point control to evolve the engine performance to the desired values (Fan

speed or thrust)

• Limit control that ensure the system does not violate its physical and opera-

tional constraints

• Transient control to achieve the desired set-point within a reasonable time frame

It possible sometimes to have the set-point and transient control functions performed

by the same control module. Current industrial controllers consist of these modules in

a min-max architecture which will be discussed briefly in Ch 3. To achieve the desired

performance the positions of actuators such as the fuel metering valve (FMV), VBV

and VSV are manipulated. In current industrial standard controllers, while the VBV

and VSV positions are based on look-up tables, the FMV position is calculated by the

control design which takes into account the fuel flow rate of the existing system. The

complexity of jet engines demands thermodynamic properties of the engine such as

temperature and pressure to be measured at various stages of the engine in addition

to the measurement of the spool speeds.

2.3 Evolution of Engine Control Systems

The very first generation of gas turbine engines used control systems that were

hydro-mechanical in nature which helped overcome the complexity and weight of

purely mechanical systems. These systems are comprised of two of parts namely the

mechanical circuit and the hydraulic circuit. The mechanical circuit connects the

cockpit demand control interface to the hydraulic circuit which is made of hydraulic

valves and actuators. A control system of this kind is found in the SR-71 ”Blackbird”
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aircraft. The advent of transistor electronics allowed analog electronic control units

to be implemented in the 1970s where the amplitude of the electric control signals are

varied to manipulate the actuators. This eventually led towards the Full Authority

Digital Engine Control (FADEC) in the 1980s that uses digital electronics and as it

name suggests, is completely responsible for the operation of the gas turbine engine

and the first FADEC was tested on the PW F100 engine. During this time, the

increasing computational power available also made it feasible for extensive engine

modeling and simulations to be carried out making it possible to test novel strategies

at lower costs providing the foundation for current advanced jet engines such as the

PW F135.

The use of digital electronics has not only made the control unit lighter and smaller

but has also allowed the feasibility of complex control designs including advanced

functionality as seen in the dual channel FADECs that have embedded engine models

allowing engine health monitoring and multi-variable control. An example of these

FADECs are found in the GE F110, PW F119 and PW F135 engines. A detailed

evolution of engine control systems and engine modeling are described in Jaw et

al [2].

2.4 Recent Advancements in Engine Control

Concerns over fuel efficiency and the emissions of Nitrous Oxide (NOX) and Car-

bon dioxide (CO2) and improvements in the thrust produced have led to advance-

ments in gas turbine engine designs which require advanced robust control techniques

to be applied to ensure a stable and sustained jet engine operation. Although PID

7



based controllers have been performing well, additional design and performance con-

straints increase the controllers complexity especially when transitioning towards a

distributed control architecture.

Over the last decade, the engine control community has published rich literature

on various engine control methodologies while also paving the path for future devel-

opments. Richter [3] proposes a novel control technique using a mixed H∞/H2 multi-

objective feedback gain synthesis with sliding mode controllers ensuring the system is

within design constraints and the proposed technique is applied on C-MAPSS. In ref-

erence [4] Richter provides a comprehensive literature on various control concepts ap-

plied to turbofan engines using the C-MAPSS40k simulation tool. These include clas-

sical frequency domain methods, Linear Quadratic Regulator (LQR), mixed H∞/H2,

simplified H∞, Linear Parameter Varying (LPV) methodologies, Sliding Mode Con-

trol and Model Predictive Control (MPC). Hacker [5] applies a L1 adaptive controller

to the turbofan engine model in C-MAPSS40k while handling system constraints and

nonlinear uncertainties.

Han [6] presents a new parameter-scheduled control design where parameterized

linear matrix inequalities (PLMI) are reduced to linear matrix inequalities (LMI)

based on a improved convex polyhedron construction algorithm and show satisfactory

global control performance. Samar [7] propose a 2 degree-of-freedom (DOF) multi-

mode controller designed through discrete time H∞ optimization and use a simple

strategy for anti-windup and bumpless transfer between controllers for the Rolls Royce

Spey turbofan engine.
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Hu et al. [8] use a fuzzy controller that includes a fuzzy integral mixed controller,

smith forecast and compensation with the fuzzy rules optimized through genetic algo-

rithms. Simulations show fast high precision system response without any oscillations

and overshoot. Similarly, Shuqing et al. [9] present a control scheme for the whole

flight envelope where the control gains are optimized using genetic algorithms for

a certain turbofan engine model. Then a neural network approximation is trained

to relate the PID control gains with altitude and mach number to obtain a neural

network based optimal PID controller. In references [10, 11] Wang et al. develop a

2DOF H∞ based control law for a complete flight envelope. The envelope is divided

into eight subregions with their corresponding controllers which are switched using a

bumpless switch logic.

There is also rich literature on the active control of phenomena which are required

due to the complex flow patterns present within the engine. Decastro [12] proposes

a rate-based model predictive control on a linear parameter varying (LPV) turbofan

engine model for active tip clearance control while also suggesting the same method for

engine control. The LPV model is obtained by differentiating the linear time invariant

(LTI) engine model from C-MAPSS40k. Similarly, Liu et al. [13] demonstrate active

compressor stability management using C-MAPSS40k and the simulations show an

improvement in the emergency response of the engine.

2.5 Transition in Control Architecture

So far, controllers have been designed with the pure intention of accomplishing

solely engine functionality within its limits only and not performance [14, 15] while the

engines themselves have evolved to higher complexity. However, the mass and heat
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dissipation by the control unit affect the aerodynamic drag of the aircraft indirectly

affecting the engine performance. The use of new technologies in the current central-

ized architecture where the FADEC interfaces directly with the system effectors in a

star topology [14] is limited and leads to increased weight and integration complexity.

Hence there is the necessity to change the architecture of the control system for a

safer and stable sustained operation. Culley et al [14, 15, 16] present a strong case for

the Distributed Engine Control (DEC) architecture, outlying a road map for the pro-

gressive transition from the centralized architecture to a fully distributed architecture

and highlighting the financial and technological benefits of doing so.

A distributed architecture permits the use of off-the-shelf and future commercial

technologies [17] on current jet engines namely high speed, high temperature and

low power digital integrated circuits while also providing ease of integration and

segregation of actuators and sensors over a common digital network interface with a

computationally heavy controller thus avoiding compatibility issues and making the

control unit lighter in weight. The complexity of a jet engine requires additional

robust active control of local phenomena such as combustion and tip clearance whose

states are to be relayed with the FADEC. A fully distributed architecture has local

processing capabilities [18] allowing for the active control of localized phenomena as

mentioned in reference [15] and the efficient integration between the FADEC and sub

controllers. A basic schematic of the centralized and distributed architure is shown

in Fig. 2.1 [18].

The advantage with digital networks is their high tolerance towards high tempera-

ture signal corruption and significantly lower attenuation per unit length. This allows

placing the FADEC outside the harsh operational environment of an engine thereby
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(a) Centralized engine control architecture

(b) Fully distributed engine control architecture

Figure 2.1: (a) Point-to-point analog harness interfacing between FADEC and system
effectors in a star topology (b) FADEC communication with system effectors over a
common digital network in a ring topology.
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improving the control system cooling which was previously limited by using the fuel

as a coolant. Since data has to be transmitted over digital networks, the choice of

the appropriate communication protocol is crucial. Current protocols include the

MIL-STD-1553, control area network (CAN), SPIDER, SAFEbus, and TTTech Time

Triggered Architecture (TTA) of which time triggered protocols offer performance

of high reliability and robustness towards faults [17]. Additionally, the communica-

tion protocols used should be able to support Fault Detection and Isolation (FDI)

schemes, be highly modular and have a high throughput.

However, constraints on the channel bandwidth limit the performance of digital

networks thus affecting the control action. While different protocols present various

degrees of performance, the control design and analyses is independent of the protocols

being used and should be able to handle all the current protocols in existence. The

use of digital networks induces time delays in the network due to serial transmission

of packets. Further, packet collisions or node failures result in loss of information.

These packet dropouts and time delays are investigated in Yedavalli et al. [17].

If the control design is based on a min-max algorithm, the induced time delays

due to a digital network can cause a lag in the min-max switching thus affecting the

controller output and hence the engines response. Therefore switching techniques of

this kind are best not to be used in systems having time delays and a different control

law would allow for better distributed engine control.
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Chapter 3: OVERVIEW OF C-MAPSS40K

3.1 Introduction

Every engine manufacturer has their own individual engine simulation environ-

ment which differ from each other due to component dynamics, control gains and

design specifications. With the increasing need for the application of novel control

techniques and a transition in control architecture, technological breakthroughs would

be on different platforms and hence relative in nature and would be difficult to validate

for industrial application.

In order to normalize these differences NASA Glenn Research Center developed

the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) which is a

component level physics based simulation that can be used as a reference platform to

test control designs on a validated and verified platform. C-MAPSS is a simulation of

a large turbofan engine producing a maximum of 90,000 lbf of thrust . C-MAPSS40k

is based on a generic high bypass two spool turbofan engine of the 40,000 lbf thrust

class engines producing maximum of 35,000 lbf of thrust at take-off conditions [19].

The engine’s bypass ratio is 6:1 with an overall pressure ratio (OPR) of 25 [20].

The C-MAPSS simulation series is the successor of the previously designed MAPSS

which represents a low bypass military turbofan engine with an afterburner. The
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40,000 lbf thrust class engines include the CFM56/F108 series of commercial turbo-

fan engines used mainly on the A320, A340 and the Boeing 737 commercial aircrafts

3.2 C-MAPSS40k GUI

3.2.1 Closed loop interface

The C-MAPSS40k graphical user interface (GUI) allows for simulations over a

variety of dynamic operating profiles by specifying different ambient conditions such

as altitude, Mach number and power level angel (PLA). Engine health deterioration

can be simulated either by specifying overall engine degradation or individual com-

ponent faults by specifying component health parameters at desired points along the

profile [21] as shown in Fig. 3.2.1. The health parameters are specified as a percent-

age with 0 being nominal, 1 being 100% degradation and -1 being -100% degradation

affecting the component properties as shown in Eq. 3.1. The parameters specified

should also be rational.

component property = component propertynominal ∗ (1 + healthparameter) (3.1)

3.2.2 Linearization routine

The linearization tab of the GUI generates linear time invariant (LTI) state space

models at user defined equilibrium conditions [20] with choices between a single vari-

able (Wf ) and multivariate (Wf , VBV and VSV) control. The linearization routine

uses a Jacobian scheme to generate LTI state space models of the form given in Eq. 3.2

and Eq. 3.3 where x is the state vector formed by the fan speed Nf and core speed Nc,

u is the input vector. 13 health parameters are provided by the linearization routine

in the form of the L and M matrices with h as the health parameter vector that can
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be used for fault diagnostics.

ẋ(t) = Ax(t) + Bu(t) + Lh(t) (3.2)

y(t) = Cx(t) +Du(t) +Mh(t) (3.3)

3.3 C-MAPSS40k Controller Design

C-MAPSS40k has a FADEC-like controller with a min-max architecture, similar

to those in the industry [20], consisting of a gain scheduled PID controller for ma-

nipulating either the fan speed or the engine pressure. In addition, there are a set of

individual limit controllers that have critically damped responses ensuring safe and

stable operation of the engine within its operational and physical limits [19]. These

limiters typically maintain design limits on the fan speed, core speed, engine pressure

and acceleration of the high speed spool. The main PID controller and the individual

limiters are arranged in a min-max architecture as shown in Fig. 3.3 [19].

Implementing a controller of this architecture with multiple components in reality

is complex and expensive and hence alternative control designs which are easier to

implement and offer similar or perhaps better performance need to be considered to

address the issues mentioned in Ch 2.

3.4 C-MAPSS40k Engine

As mentioned earlier, C-MAPSS40k uses a nonlinear physics based engine modeled

at the component level. Each component is described through the thermodynamic

relations of the corresponding stage and the components are modeled in C ensuring

faster than real-time simulation. A point to note is that the fan tip is described as

the fan from here on (and in C-MAPSS40k) while the fan hub is considered as an

15



additional stage of the low pressure compressor. A representation of the engine used

in C-MAPSS40k is shown in Fig. 3.4 [19].

The application of C-MAPSS40k for engine control purposes is still in its infancy

with limited literature [3, 4, 19, 20, 21]. C-MAPSS40k has a realistic FADEC like

controller in a min-max architecture and a user friendly GUI. Further advantages

include the realization of an actual nonlinear engine with ability to generate linear

models as well as the inclusion of actuator and sensor dynamics that follows the full

flight envelope due to atmospheric modeling. In addition, the programming of the

engine components in C enables the simulation to run faster than real time thus

making C-MAPSS40k an attractive tool to utilize its open source nature for either

designing new engine controllers or adding additional modules for active phenomena

control.

Therefore this thesis which exploits C-MAPSS40k and employs the MPC control

technique for engine control significantly contributes to the engine control community

and supports the cause for the development of C-MAPSS40k by NASA GRC.
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Figure 3.1: Closed loop interface of the C-MAPSS40k GUI.

17



Figure 3.2: Linearization interface of the C-MAPSS40k GUI.
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Figure 3.3: MIN-MAX architecture of the C-MAPSS40k baseline controller .

Figure 3.4: C-MAPSS40k engine with numbered stations.
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Chapter 4: MODEL PREDICTIVE CONTROL

4.1 Motivation and Problem Formulation

The need to apply a different control technique arises from three main issues

namely:

• Avoid the use of multiple individual limit controllers

• Avoid the use of the min-max architecture in a distributed control environment

• Exploit the computational power available in a distributed control environment

In order to address these issues, a model based control technique that incorporates

the system constraints into the control design needs to be chosen. Model predictive

control (MPC) is one such control design technique which calculates the control law

subject to system constraints through the optimization of a quadratic cost func-

tion and hence is computationally intensive. MPC has been used successfully in the

chemical and process industry and is being studied by the automotive as well as the

aerospace industry for applications including gas turbine engines.

Decastro [12] has used MPC for active tip clearance control and has suggested

that his proposed technique can be applied for the control of jet engines. Richter [4]

has demonstrated the application of MPC on C-MAPSS40k. This thesis extends the
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application of MPC on the C-MAPSS40k engine for a profile with varying throttle

positions (PLA) in the presence of component faults while simultaneously addressing

the traditional fan speed control as well as the thrust control approach in a simplified

scenario. In addition to simulations being carried out on a LTI engine model, the

application of MPC on the non-linear C-MAPSS40k engine is also demonstrated for

a flight profile from take-off to cruise conditions with the occurrence of faults.

4.2 Overview of MPC

Traditional control involves the design of a controller for a given system to get a

desired closed loop performance and subsequent integration of limiters to ensure safe

operation [22]. The Model Predictive Control (MPC) technique allows the incorpora-

tion of system constraints in the optimization problem where generally a set-point is

being tracked. Hence, the need to use separate limit controllers is avoided simplifying

the control design and its implementation.

MPC is a model based control scheme where a linear model of the plant is used

to predict the behavior of the plant denoted by ŷk+i|k(i = 0, 1, ...NP ), starting at the

current time instant, over a finite prediction horizon NP . In order for the plant to

reach the desired set-point rk|k, the optimum input ûk+i|k(i = 0, 1, ...NU) trajectory

is chosen such that it minimizes the cost function given by Eq. (4.1) subject to the

constraints described by Eq. (4.2)-(4.4)

min
uk,uk+1,...uk+NU

J =

NP
∑

i=1

(rk+i − ŷk+i)
TQ(rk+i − ŷk+i) +

NU
∑

j=1

uT
k+jRuk+j (4.1)

Subject to:

M1 ≤ y ≤ γ1 (4.2)
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Figure 4.1: Control trajectories in a MPC optimization problem (NU < NP ).

M2 ≤ u ≤ γ2 (4.3)

M3 ≤ ∆u ≤ γ3 (4.4)

where Q and R are the output and input weighting matrices respectively with appro-

priate dimensions and the Mi and γi are the minimum and maximum constraints on

the system. NU is the control horizon representing the length of the input trajectory

and NU ≤ NP . Only the first element of this trajectory is applied to the plant i.e.

uk|k = ûk+0|k. At the next sampling interval, the whole process is repeated and hence

MPC is also referred to as receding horizon control. Equation (4.1) represents a gen-

eral cost function used in most aerospace application [23]. The physical interpretation

of the horizons in terms of the actual system is shown in Eq. (4.5).
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Horizon[sec] = Sampling T ime[sec] ∗Horizon[−] (4.5)

The optimization problem involves finding the minimum of a quadratic function

subject to the (in)equality constraints. Therefore the solution is within a convex

polytope. It should be noted that the minimum value of the cost function satisfying

the constraints need not be the actual minimum value of the quadratic function i.e.

the cost after optimization in MPC is generally higher due to imposed constraints.

Since Eq. (4.1) is quadratic in nature, the optimization problem becomes a Quadratic

Program (QP). An infinite horizon unconstrained MPC is equivalent to a LQR prob-

lem [24] and therefore inherits the benefits of optimization control theory.

4.3 MPC Analogy

An even simpler way of understanding MPC is through the many analogies that

exist pertaining to action taken after prediction using a certain reference model.

One such analogy is that of driving a car depicted in Fig. 4.3 [25] where the MPC

equivalent would be the driver predicting/estimating the path ahead over a finite

horizon through the windshield and then deciding upon the necessary set of control

actions based on the cars limitations and its current conditions and applying only

the first of the control actions at that time instance. The PID equivalent would be

deciding upon the control action sequence based on past events or rather by looking

into the rear view mirror. This is however a harsh method of explaining the PID

scheme.

Another analogy which is even more effective in comparison is that of playing

chess. Here one predicts the opponent’s moves, using the previous games of the
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Figure 4.2: Car driving MPC analogy.

opponent as the reference models, over a certain number of moves in the game (finite

horizon) and then accordingly plans his/her next few moves (control horizon) taking

into consideration the available pieces and moves left (constraints) and plays out

only the first move at the current time instant. The chess analogy for the PID

control scheme would be to calculate your next move based on only what has occurred

previously in the game till the current time instant.

4.4 Recent advancements in MPC

There is rich literature that has been published over the last two decades that de-

scribe the mathematical aspects and implementation of MPC. Bemporad [26] presents

a survey on MPC regarding uncertainty descriptions and techniques for handling ro-

bust constraints. Wang [24] demonstrates the application of MPC using offline compu-

tations that exploit discrete Laguerre functions which are used to replace the discrete

pulse inputs. Both Camacho [25] and Rossiter [27] present extremely good literature

on the theoretical concepts involved in MPC. Model predictive control has reached

theoretical maturity and the performance largely depends on the chosen control and
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prediction horizons in addition to the weighting matrices as shown by Rossiter [27].

Mayne et al.[28] survey the issues on the stability and optimality on the MPC problem

applied to both linear as well as nonlinear systems.

Both Qin [29] and Darby [30] present a survey on the current MPC techniques used

in the industry and the challenges that lie ahead. Since MPC is based on iterative

on-line optimization, the inherent computational burden previously limited its use

to low-bandwidth applications mainly in the chemical and process industry. One of

the key issues in current research is aimed at reducing the computational burden

as demonstrated by Wang [31]. Alessio [32] presents a survey on explicit MPC, a

technique which addresses the computational burden, one of the main drawbacks of

MPC. In explicit MPC, the control law is calculated off-line as an explicit piecewise

affine function of the reference and state vectors for a certain range of operational

conditions thereby reducing the computational time required. Gawthrop [33, 34]

present another approach in the implementation of MPC by combining intermittent

control and the ability of MPC to handle constraints via quadratic programming.

4.5 High Speed Applications of MPC

Technological advancements in integrated circuits over the last decade have led to

improved computational hardware and thus have extended the use of MPC to high-

bandwidth applications in the automotive and electronic industry. Kouro et al. [35]

have demonstrated the application of Finite Control Set (FCS) MPC to control power

converters present in power systems. Similarly Xie et al. [36] present the control of

a three-phase inverter system using an improved MPC that predicts at one sampling

time instant and translates the voltage into control signals at the next instant thereby
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avoiding the switching delay caused by traditional MPC. In addition, Zong et al. [37]

demonstrate the application of MPC for the active load management of a distributed

power system.

Cairano et al. [38] apply MPC to control magnetically actuated mass spring

dampers where first they demonstrate linear MPC followed by the application of

a hybrid MPC taking into account the all the system constraints and the electrical

dynamics. Bolognani et al. [39] demonstrate MPC as applied to permanent magnet

synchronous motor drives. Similarly Santana et al. [40] show the control of speed

and rotor flux of an induction motor using MPC where the speed and rotor flux are

estimated using an extended Kalman filter.

Scenarios such as the active control of noise and vibration exist where these phe-

nomena need to be kept under certain limits. These limits can be translated into

constraints and MPC be exploited as demonstrated by Wills et al. [41]. MPC which

traditionally exploits LTI models has also been extended to linear time varying (LTV)

systems. Falcone et al. [42] apply a LTV MPC scheme to the active front steering

(AFS) system of an autonomous vehicle.

4.6 MPC in Nonlinear Applications

The growing popularity of MPC due its ability to compute a control law that obeys

system constraints is seen in its application to large systems as well. To control large

transportation networks that include power grids, road traffic and communication

networks, Negenborn et al. [43] propose a multi-agent control scheme with coordina-

tion among the agents to improve decision making. Each agent employs MPC for the

control of a corresponding subsystem. In addition, two architectures for the decision
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making process namely the serial and parallel schemes with the serial scheme showing

more preferable properties than the parallel scheme.

Similarly Scattolini [44] reviews decentralized, distributed and hierarchical archi-

tectures for MPC. A decentralized architecture has individual regulators controlling

a corresponding subsystem whereas a distributed architecture would have these indi-

vidual controllers or agents communicating with each other directly. A hierarchical

architecture on the other hand has an additional coordinator unit for the coordina-

tion between the agents. Additionally, this architecture can be used in a multilayer

scheme where the control action is carried out by a number of agents working at

different time scales i.e. system either has a combination of fast and slow dynamics

or the optimization and control algorithms operate at different rates. This kind of

coordination would also require an appropriate communication protocol which would

determine the performance of the entire controller unit.

An alternative approach to using multiple agents parallely is to switch between the

agents or controllers based on an event where each controller is solely responsible for

the control law when triggered. Magni et al. [45] present a research finding on switched

MPC for a nonlinear thermal system whose algorithm exploits the concept of multiple

cost functions. To summarize their algorithm, an appropriate region is selected and

optimization is then carried out after having chosen the correct weighting matrices

Q and R. The first element of the control trajectory is applied only if switching is

feasible.

Similarly, Zanma et al. [46] demonstrate switching MPC for the control of a non-

linear system where the switching algorithm is based on a maximal constrained posi-

tively invariant (CPI) set. Mhaskar et al. [47] present a mathematical paper on MPC
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for a switched nonlinear system. They propose an algorithm where a controller is de-

signed for each constituent mode and the predictive control of the switching system

is carried out upon ensuring the transitions between the modes maintain stability of

the system.

4.7 MPC in Aerospace Applications

The success of MPC in automotive applications has attracted the aerospace com-

munity in recent years for its application. Gavilan et al.[48] present the application

of MPC for a spacecraft rendezvous using a chance constrained approach. In this

technique, disturbances are incorporated into the system constraints using a proba-

bilistic formulation which are then translated into a set of algebraic equations. The

control law is computed such that a desired probability for the constraints is satisfied.

Lopes et al.[49] demonstrate attitude control and stabilization of a VTOL (Vertical

Take-off and Landing) quad-rotor aircraft using MPC which utilizes a LTI model for

computation.

Model predictive control has also been successful for non-linear systems as demon-

strated by Slegers et al.[50] for UAVs (Unmanned Air Vehicles) with 6DOF. As men-

tioned earlier, the application of MPC using a rate based approach for the tip clear-

ance control of a turbofan engine is described in DeCastro [12]. The model used for

computation is a linear parameter varying (LPV) model which is differentiated so

that non-homogeneous terms are canceled out in a Taylor series expansion. DeCastro

also suggests this method be used for the control of gas turbine engines.

Kestner [23] describes a detailed application of MPC to a tip jet reaction drive used

in a helicopter. The distributed architecture employed here has individual controllers
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for the right and left engines and the tip jet. Richter[51] proposes a multiplexed

approach for a multivariate MPC law of a jet engine. In his approach, the three control

variables are updated one at a time in a cyclical manner easing the computation

burden. van Soest et al. [52] demonstrate the control of a nonlinear re-entry flight

by combining feedback linearization (FBL) with MPC. In FBL a nonlinear state

feedback is exploited that cancels the nonlinearities of a system. Alexis et al. [53]

demonstrate the experimental application of switched MPC for the attitude control

of a quadrotor helicopter. Their prediction is based on piecewise affine (PWA) models

and the switching is governed by the rotation angle rates of the helicopter.

While Richter[4] demonstrates MPC for an aircraft engine, the approach used to

calculate the input trajectories is analytical or off-line. Turbofans engines are highly

complex systems with much faster dynamics than an aircraft and so far MPC has not

been implemented practically for engine control due to limited on-board capabilities.

The distributed control architecture allows computationally heavy control techniques

like MPC to exploit the high speed processing capabilities available on-board the air-

craft thus making on-line computation, a faster than real time optimization feasible.

The advantage of on-line optimization is that the current state of the system is con-

sidered thus avoiding conservative control approaches and allowing for more robust

control.

4.8 Fault Tolerant Control using MPC

In realistic flight scenarios, there is the possibility of component faults occurring

within the engine due to regular component wear and tear, structural and thermal

stresses and ingestion of foreign objects such as birds, debris and sand particles. While
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regular wear and tear lead to slow health deterioration over engine lifetime, a fault is

an abrupt or sudden deterioration in components due to stress or more likely foreign

object ingestion.

There are two main methods for automated fault tolerant control (FTC) [54] . In

passive methods, a robust controller is designed which can tolerate faults and com-

pute a control law that accommodates the faults. The second technique is active FTC

which assumes FDI i.e. Fault Detection and Isolation. Appropriate fault compensa-

tion/recovery is then carried out. Fault detection and isolation (FDI), forms a strong

basis for engine health management and is of keen research interest among engine

manufacturers. Once a fault has been detected and identified, appropriate action is

taken to ensure safe and stable operation of the system.

This fault recovery process can be easily incorporated into MPC by modifying the

cost function, system constraints or the reference model [55] since a fault is a dis-

turbance or an uncertainty larger in magnitude. Prakash et al. [56] integrates model

based FDI with MPC where both schemes exploit Kalman filters. Both Camacho et

al. [55] and Prakash et al. propose multi-model MPC for fault tolerant control where

each reference model corresponds to a fault that is likely to occur. The multi-model

approach which is an active FTC technique is followed in this paper. Since only a

certain number of faults can be accounted for, the occurrence of an unmodeled fault

should be compensated by a reference model that corresponds to a fault which corre-

lates strongly with the unmodeled fault. This avoids redundancy and over modeling

of faults.

Fault tolerant model predictive control has been successful in aircraft dynamics

where faults occur in the presence of external disturbances that either damage the
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actuators and sensors or cause instability to the aircraft. Maciejowski [57] presents a

case study of flight 1862 and shows that the crash could have been avoided using fault

tolerant MPC (FTMPC). An inner MPC loop is used to track a reference updating

itself based on a FDI module. Joosten et al. [54] present FTMPC using dynamic

inversion which is the most basic form of FBL.

Almeida [58] demonstrates a FTMPC technique in the presence of actuator faults

by redistributing the control effort among the healthy actuators enabling the con-

troller to still track the reference. The aircraft model of the controller is modified

to perform fault recovery along with the modification of the cost function. Simi-

lar research is presented by Zhang et al. [59] although with a different inner loop

architecture and realization.

4.9 MPC Simulation Tool

With the increasing availability of high computational power and the widespread

application of MPC, research groups have also been involved in translating the break-

throughs in MPC into applicable software simulation tools such as those developed

by Bemporad et al. [60] for extending the research and application of MPC. A more

recent version of the MPC simulation tool (Version 3.2) in MATLAB developed by

Bemporad is used for the simulations carried out in this thesis. This tool uses a cost

function similar to Eq 4.1 where the model used for computation is a LTI state space

model. The MPC can be either designed via a GUI or through the command window.

The implementation of MPC is discussed in detail in Ch. 5.
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Chapter 5: LINEAR SIMULATIONS OF MPC ON

C-MAPSS40K

This chapter describes the main contribution of this thesis including a detailed dis-

cussion on the realization of model predictive control and its application to a turbofan

engine engine for different scenarios. First a discussion on the linear simulations is

presented followed by the application of MPC on the nonlinear C-MAPSS40k engine.

5.1 Linear Simulations

5.1.1 Linearization

In Sec 5.1 a discrete LTI state space model of the C-MAPSS40k engine is used

for the plant model as well as the MPC reference model. In order to demonstrate

the constrained performance of MPC over a time varying demand profile in terms of

varying power level angle (PLA), the nonlinear C-MAPSS40k engine is linearized at

operating conditions at which the baseline limit controllers are active i.e. at these

conditions the engine would violate its limits in the absence of the limiters. The

nominal linearization operating conditions are:

• Altitude: 10,000 ft (3048 m)

• Mach: 0.8
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• PLA: 68o

The demand profile for the simulations to follow is a PLA transient of 58-80-63

denoting a flight from cruise conditions to a maximum thrust condition and then back

to cruise conditions at slightly higher thrust. Hence it is very crucial to choose the

most accurate PLA linearization point or a set of them for a given demand profile.

In the linear simulations to follow, only the one linearization point mentioned above

is chosen. Based on the environmental conditions, C-MAPSS40k translates a PLA

demand to a demand in the fan speed Nf dmd. Linearizing the nonlinear engine

at the specified operating point mentioned above, a continuous linear time invariant

state space equation described by Eq 5.1 and Eq 5.2 are obtained where Ac, Bc, Cc

and Dc are of the appropriate dimensions.

ẋ(t) = Acx(t) + Bcu(t) (5.1)

y(t) = Ccx(t) +Dcu(t) (5.2)

The resultant continuous time linear state space equations are discretized with a zero

order hold at a sampling rate of 0.015 sec to obtain a discrete state space representa-

tion of the form

xk+1 = Adxk +Bduk (5.3)

yk = Cdxk +Dduk (5.4)

where x ∈ Rn and u ∈ Rm are the state and input vectors and Ad, Bd, Cd and

Dd are of the appropriate dimensions. The fan speed Nf and the core speed Nc form

the state vector x while the fuel flow rate Wf forms the input vector u.
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5.1.2 Realization of MPC

For a discrete state space system, the output at time instant k is independent of

the input at time instant k (i.e. uk). The input can be described as

uk = uk−1 +∆uk (5.5)

and hence Eq. (5.3) and Eq. (5.4) are augmented as shown by Richter [51] using

Eq. (5.5) to form the discrete state space system given by (5.6) and (5.7) which can

be rewritten as described by Eq. (5.8) and Eq. (5.9).

[

xk+1

uk

]

=

[

Ad Bd

0 Im

] [

xk

uk−1

]

+

[

Bd

Im

]

∆uk (5.6)

yk =
[

Cd Dd

]

[

xk

uk−1

]

(5.7)

x̄k+1 = Agx̄k +Bg∆uk (5.8)

yk = Cgx̄k (5.9)

where Ag, Bg and Cg represent the augmented state space matrices. Therefore,

from Eq. (5.8), ∆uk is the control variable to be optimized by the MPC in Eq. 4.1.

The influence of ∆uk on the output can be neglected as ∆uk is very small. The

outputs are in the order Nf , Nc, Wf , T25, T50, Ps3, P50, net thrust, LPC SM and

HPC SM. As mentioned previously, the performance of MPC largely depends on the

control and prediction horizons NU and NP respectively (i.e. tuning parameters) and

the output and input weighting matrices Q and R respectively. Figure 5.1 shows the
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Figure 5.1: Effect of different prediction horizons with NU = 1.

effects of different prediction horizons on the behavior of MPC for a fixed value of NU .

This concept is also discussed in the literature by Rossiter [27] however for a different

physical example. As NP increases, so does the rise time as well as the simulation

time. However the occurrence of overshoot during transients is avoided. For the rest

of simulations carried out in the MATLAB/Simulink environment, the horizons are

chosen as NU = 1 and NP = 50. The weighting matrices chosen are diagonal and

positive definite and such that the MPC performance is sustained in the presence of

faults or health deterioration. Finally the hard constraints considered for MPC are

the limits imposed on the C-MAPSS40k engine namely:
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Figure 5.2: MPC simulation in MATLAB/Simulink for Nf control.

• Nf max: 4200 rpm

• Nc max: 12200 rpm

• Ps3 max: 433 psi (2.985 MPa)

• Ps3 min: 49 psi (0.337 MPa) for simulation conditions

• T50 max: 1500 oR (833 oK)

The MATLAB source code for the creation of the MPC object is given in Ch. 7

for a nominal case that exploits the MPC toolbox. The Simulink block diagram is

shown in Fig. 5.2. For the simulations to follow, the flight conditions (FlightA) used

are :

• Altitude: 10,000 ft (3048 m)

• Mach: 0.8

• PLA dmd: 58o - 68o - 63o

• Duration: 60 sec
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5.1.3 Fan Speed Control Simulations

Figure 5.3: Comparison between MPC and PID for nominal conditions

This section describes the traditional fan speed control approach using MPC. A

60 sec simulation for the chosen conditions takes about 3.3 sec using the baseline PID

of C-MAPSS40k and 3.6 sec using MPC i.e. the simulations carried out are faster

than real time. Fortunately, the feedback variables in Fig. 5.2 comprising the state

variables of C-MAPSS40k and Ps3 are measurable. The demand profile for fan speed

is used as the main set-point or reference by the MPC i.e. a traditional engine control

approach of controlling solely the fan speed and ensuring other engine parameters are

within bounds of good performance.

Since the linearization point (trim values) is taken as the pseudo origin, the trim

fan speed is subtracted from the fan speed demand and the complete set of trim values
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Figure 5.4: Comparison between MPC and PID for nominal conditions

Figure 5.5: Comparison between MPC and PID for nominal conditions
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are added to outputs of the linear engine to go back to the actual origin. Also, since

this is a simulation for tracking the fan speed demand only, it is sufficient to provide

the reference for fan speed while setting the reference for the rest of the outputs to

zero.

For a flight conditions FlightA in the absence of faults i.e. a nominal case, Fig. 5.3

- 5.5 shows a comparison between the performances, that are in agreement with each

other, of the baseline PID applied to the nonlinear C-MAPSS40k engine and MPC

where both the reference and plant model are based on the 68 PLA LTI engine. Of

course, the rise time of MPC can be made faster by tuning the horizons however, at

the cost of set-point overshoot and violation of the core acceleration limits.

As is noticed in Fig. 5.4, the spike in the fuel flow rate during throttling down is not

present due to the MPC. Additional engine parameters such as the temperature and

pressure at different stations along the engine as described in Fig. 3.4 along with the

stall margins of the low pressure and high pressure compressors are compared between

the baseline and MPC in Fig. 5.5. This difference arising between the responses of

the baseline and MPC in the stall margin of the low pressure compressor is mainly

due to the fact that MPC is applied to a LTI engine.

Fault Tolerant Simulations

The health matrices obtained from C-MAPSS40k are important for FDI purposes

and engine health diagnostics [20] but can be neglected during fault recovery as the

system dynamics in the presence of faults are modeled during linearization at faulty

operating conditions. The multi-model approach introduced in Sec 4.8 is used in

this thesis where a reference model is based on a certain component fault and is

applied on an engine having the same fault assuming proper FDI has been carried
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Figure 5.6: Matched and mismatched conditions between the controller and LTI
engine

out beforehand i.e. a 20% degradation in the fan efficiency (FE=-0.2) of an engine

will require a controller whose reference model is based on the same fault of similar

magnitude. This is shown in Fig. 5.6 where the best performance is achieved when

there is a match between the plant and the linear reference model used by MPC i.e.

the Nominal Controller - Nominal Engine (NC-NE) case and Degraded Controller

- Degraded Engine (DC-DE) case. When a nominal reference model is used in the

presence of faults (NC-DE) i.e. a mismatch, the constraints are violated as is in the

case of Nc. Similarly, there is a loss in performance when a degraded reference model

is used in the absence of faults (DC-NE). It is assumed that the switching between

reference models is taken care off beforehand by appropriate FDI schemes in order to

achieve the best performance.
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Figure 5.7: Matched MPC and PID for a fan efficiency of 80% (FE=-0.2)

Figures 5.7 - 5.9 show simulations for an engine for the flight conditions FlightA

with a 20% degradation in fan efficiency (FE). The effects of a fault are clearly seen

between the matched nominal case and the matched degraded case through a shift in

engine parameters when compared with Fig. 5.3. The matched MPC compares well

with the baseline PID ensuring constrained performance. In addition, the maximum

temperature limit at the low pressure turbine exit is 1500o R [19] which the PID

controller violates slightly, however this constraint is met by MPC. These simulations

show the effectiveness of MPC in handling dynamic system constraints and faults.

The input weighting scalar and output weighting vector used for the nominal and

20% fan efficiency degradation are 10 and [100 19 1 0 1 1 0 0 0 0]. The output

weighting matrices Q and R are diagonal with the main diagonal elements defined by

the weighting vectors. So, in this case Q and R are of the form:
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Figure 5.8: Matched MPC and PID for a fan efficiency of 80% (FE=-0.2)

Q = diag
[

100 19 1 0 1 1 0 0 0 0
]

(5.10)

R = diag
[

10
]

(5.11)

The steady state error in T25 and the stall margins is mainly due to the fact that

MPC is being applied to a LTI engine model where as the baseline controller is being

applied to the nonlinear engine. Also, manipulating only one variable, Wf in this

case, for an output vector of higher dimension can lead to a sacrifice in few outputs.

Therefore, a multivariate control approach is preferred but this leads to much heavier

computation.

As shown previously, the best performance from MPC is achieved during a match

between the reference model and the engine model. However, it to model every
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Figure 5.9: Matched MPC and PID for a fan efficiency of 80% (FE=-0.2)

amount of degradation can be tedious and redundant. Figures 5.10 - 5.13 demonstrate

the ability of MPC based on a faulty reference model of 80% fan efficiency (FE=80%

or FE=-0.2) to handle unmodeled faults. For an illustration, faults that are within

±2% of the modeled faults are used. The matched cases between the reference model

and the LTI engine include 20% (fe20match) and 22% (fe22match) deterioration in

the fan efficiency in Fig. 5.10. For the matched case with FE=78%, the Nc weighting

scalar in Eq. (5.10) is changed to 29 from 19 while calibrating with C-MAPSS40k in

order to achieve reasonable performance.

The performance of the mismatched case where a reference model based on FE=80%

is applied to an engine with FE=78% (fe20c-fe22e) is similar to the matched FE=78%

(fe22 match) case. To achieve this, the output weighting vector for this mismatched

case is adjusted to that of the FE=78% reference model i.e. a 22% degradation level is
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Figure 5.10: FTMPC for 22% degradation using a 20% degradation reference model

Figure 5.11: FTMPC for 22% degradation using a 20% degradation reference model
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Figure 5.12: FTMPC for 22% degradation using a 20% degradation reference model

Figure 5.13: FTMPC for 18% degradation using a 20% degradation reference model
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handled well by a 20% degradation reference model by simply tuning the appropriate

output weights.

Similarly Fig. 5.13 shows the ability of the MPC based on a FE=80% reference

model to handle an 18% degradation in fan efficiency (fe20c-fe18e) by tuning the Nc

scalar weight to 1 in Eq. (5.10). The tuning of only the Nc scalar weight is suffi-

cient since the core is most likely to violate system constraints more often than other

engine parameters and the actual matched performance can be achieved without ac-

tually designing a MPC controller for those particular fault magnitudes thus avoiding

modeling redundancy.

5.1.4 Thrust Control Simulations

In the control of fan speed or engine pressure, while their demand profiles are

satisfied in the presence of component faults ensuring stable operation, there is nev-

ertheless a compromise in the engine performance namely thrust [61, 62]. When

comparing Fig. 5.3 and Fig. 5.7 or looking at the matched nominal and degraded

cases in Fig. 5.6, the fan speed is compromised due to a fault in the fan i.e. the actual

fan speed is lower than the desired fan speed due to a fault. Therefore, the exact

demand set-point is not satisfied along with a deviation in the thrust produced from

nominal values as shown in Fig. 5.15 which is mainly due to the rise in temperature

of the combustion chamber.

Since the goal is to maintain desired thrust response under all conditions, this

traditional approach needs to be shed and methods to control the thrust directly need

to be implemented. But as mentioned earlier, thrust cannot be measured directly and

to overcome this, model based control techniques are used where an on-board engine
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Figure 5.14: MPC simulation in MATLAB/Simulink for Thrust control.

Figure 5.15: Change in thrust due to faults in C-MAPSS40k using fan speed control

Figure 5.16: Thrust comparison between MPC and PID for nominal conditions.
Blue = MPC,Red = PID
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Figure 5.17: Multi-model Thrust control for nominal and 80% fan efficiency.

model is used to estimate the thrust produced [61] generally with the assistance of

estimation filters [63]. However, if the linear engine model being used has the thrust

as the output with an accurate relation between the thrust produced and the state

vectors, then the thrust produced can be used in the feedback loop. In the following

thrust control simulations, the simulation model is similar to Fig. 5.2 with fan speed

demand replaced with thrust demand and the thrust produced is used the fourth

feedback variable. Also, the trim value that is subtracted from the thrust demand is

the trim thrust value with all the other output references set to zero.

Since a LTI engine model is used as the plant whose outputs readily includes

thrust, thrust estimation techniques such as those proposed in references in [63, 64, 65]

can be avoided since the estimated thrust is almost identical to the actual thrust

produced. MPC being a model based technique uses a reference model whose output
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Figure 5.18: Multi-model Thrust control for nominal and 80% fan efficiency.

Figure 5.19: Multi-model Thrust control for nominal and 80% fan efficiency.
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includes the thrust produced, which can be weighted accordingly. Since this is a

thrust control scheme, the input reference to MPC is a thrust profile, which here is

the thrust produced by the non-linear C-MAPSS40k engine at the nominal operating

conditions specified in Sec. 5.1.2 which can be viewed as the nominal thrust demand.

Following the same modeling procedure described in Sec. 5.1.2, Fig. 5.16 shows a

comparison between the thrust reference obtained from C-MAPSS40k and the MPC

simulation demonstrating the ability of MPC to follow the input thrust profile. The

same input weighting scalar as in Eq. (5.11) is used but the output weighting matrix

is modified as shown in Eq. (5.12) with a higher importance on thrust.

Q = diag
[

10 19 1 0 1 1 0 100 0 0
]

(5.12)

The multi-model approach used in the fan speed control simulations is applied

for the control of thrust as shown in Fig. 5.17 - 5.19 for the nominal conditions and

for a 20% degradation in the fan efficiency (FE=-0.2). Interestingly, the performance

depends only on the current health condition of the LTI engine irrespective of the

reference model used. In all the cases, the thrust produced remains the same main-

taining the engine constraints while the rest of the engine parameters change.

Therefore the modeling of faulty conditions can be avoided without any loss in

performance (thrust). This is further demonstrated in Fig. 5.20 - 5.22 where a MPC

with a reference model based on nominal operating conditions is applied to a LTI

engine with a magnitude in degradation of 18%, 20% and 22% in fan efficiencies. In

addition, Nc never reaches its physical limits during thrust control at FE=-0.2 as was

the case during fan control.
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Figure 5.20: Thrust control using a nominal reference model for 78%, 80% and 82%
fan efficiencies .

Figure 5.21: Thrust control using a nominal reference model for 78%, 80% and 82%
fan efficiencies .
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Figure 5.22: Thrust control using a nominal reference model for 78%, 80% and 82%
fan efficiencies .

Therefore implementing thrust control not only avoids additional modeling of

faulty conditions but also ensures that the actual desired performance (thrust) is

maintained at desired levels at all times.

5.2 Nonlinear Simulations

Following the implementation of MPC on LTI engine models, this section describes

the application of MPC to the actual nonlinear C-MAPPS40k engine to obtain the

true comparison between the performance of the baseline PID controller and MPC

that continues to exploit a LTI reference model.

Figure 5.23 shows the parent C-MAPSS40k Simulink layer with both the baseline

PID and the switched multiple MPC (SMMPC) subsystem along the with the time

based supervisor whose implementation is shown in Fig. 5.27. Using the manual
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Figure 5.23: Parent layer with baseline and MPC applied to the nonlinear engine.

Figure 5.24: SMMPC subsystem with multiple MPCs and switch logic.
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switch, the control law from either the baseline or MPC can be selected. The time

based supervisor in Fig. 5.27 is used to trigger, based on time, a corresponding MPC

block in Fig. 5.24 and then select its respective control law. The 9 ref subsystem in

Fig. 5.23 is a multiplexed input of nine zeros for the outputs of the engine excluding

the fan speed.

The SMMPC subsystem has two MPC blocks both designed at PLA 68. However,

the MPCfe20 block is designed at a fan efficiency of 80% i.e. a 20% degradation in

the fan efficiency. Hence this block is triggered only in the scenario where a fault in

the fan should occur otherwise the nominal model based MPC68 would be ON. In

Sec. 5.1.2, ∆u was the optimized control input being applied to the LTI engine.

However in the nonlinear simulation, the nonlinear engine takes u as the control

input. Therefore using Eq. (5.5), u is calculated as shown below and the implemen-

tation is shown in Fig. 5.25.

u0 = ∆u0 (5.13)

u1 = u0 +∆u1 (5.14)

uk = uk−1 +∆uk (5.15)

On the assumption of the presence of FDI, when a fault is detected, the appropri-

ate MPC is triggered and the sudden switching in the control law can cause a bump in

the response of the engine. Hence a bumpless switch logic ’Inertia Delayed to Soften

the Switch’ proposed by Wang [11] is used in these simulations for a smooth transi-

tion between the different MPC control laws. The switching logic from Wang [11] is

modified in this work as
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Figure 5.25: MPC68 subsystem with MPC designed at PLA 68.

Figure 5.26: Implementation of switching logic.
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Figure 5.27: Implementation of time based supervisor.

uk = ub + e−t(uk−1 − ub) (5.16)

where ub is the control input from the new triggered MPC and t is the total

working period of the new triggered MPC from the triggered time instant to the

current time instant. As a result, at the trigger time instant t = 0 the current control

law is that from the previous time instant i.e. uk = uk−1. As t increases, the effect of

ub increases exponentially till the current law is solely dictated by it thus achieving a

smooth exponential transition in control law. The implementation of the switch logic

is shown in Fig. 5.26. Therefore the actual switching would be from the MPC68 at

nominal conditions to the MPC68fe20 for a permanent damage in the fan. Just as

mentioned in Sec. 5.1.3, the trim values are subtracted at appropriate locations in

Fig. 5.25 since the MPC uses a LTI reference model for computation of the control

law.
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Figure 5.28: MPC and PID applied to a nominal nonlinear engine.

Figure 5.29: MPC and PID applied to a nominal nonlinear engine.
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Figure 5.30: MPC and PID applied to a nominal nonlinear engine.

5.2.1 Nonlinear Fan Speed Control Simulations

Figures 5.23 - 5.25 are specifically designed for the control of the fan speed. In

this section the simulations for the application of MPC to the nonlinear C-MAPSS40k

engine for the control of the fan speed are discussed in detail for the flight conditions

FlightA. For the same PLA demand profile and the ambient conditions specified in

the Sec. 5.1.3, MPC designed at 68 PLA i.e. a linear reference model based MPC

is applied to nonlinear C-MAPSS40k engine and the performance is compared with

that of the baseline controller as shown in Fig. 5.28 - 5.30 for the nominal case. Also

the same weighting matrices as described in Eq. (5.10) and Eq. (5.11) are used here.

The engine response due to MPC compares well with that of the baseline PID.

In addition, the spikes found in the basline control law during the PLA transient

from 80 to 63 is absent in the case of the MPC. Another to point to note is that the
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Figure 5.31: Matched MPC and PID applied to a nonlinear engine for FE=-0.2.

discrepancy in the stall margin of the low pressure compressor found during the linear

engine simulation in Sec. 5.1.3 is not found here since the actual physical engine is

being simulated.

Figures 5.31 - 5.33 show the case when there is a 20% degradation in the fan

efficiency at the start of the simulation. Assuming proper FDI prior to the start

of the simulation, the MPC block MPC68fe20 is triggered and the performance is

compared with that of the baseline controller. For a degradation in fan efficiency of

the nonlinear engine, Eq. (5.10) is modified to

Q = diag
[

100 23 1 0 1 1 0 0 0 0
]

(5.17)

so that the response of Nc is appropriate and within reasonable bounds. The

performance of the MPC technique once again compares well with that of the baseline
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Figure 5.32: Matched MPC and PID applied to a nonlinear engine for FE=-0.2.

Figure 5.33: Matched MPC and PID applied to a nonlinear engine for FE=-0.2.
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Figure 5.34: Nonlinear engine without MPC fault recovery for FE=-0.2 at 25 sec.

controller. Nc does not operate at its physical limits hence the engine is not taken to

its extremities. Also the fuel flow rate computed by the MPC does not have the spike

which is present due to the baseline controller and the responses of the temperature,

pressure and stall margins are in accordance with both the control laws. However

just as in Sec. 5.1.3, the temperature limit at the low pressure turbine of 1500oR is

maintained by the matched MPC.

In Fig 5.34 - 5.36, a permanent fault where the fan efficiency drops by 20% is

introduced at 25 sec and no action is taken by the MPC i.e. the nominal reference

model based MPC continues to operate in the presence of the fault occurring at 25 sec.

The change in engine response is clearly seen at 25 sec due to the occurrence of the

fault. Since no fault recovery action is carried out by MPC, the Nc response violates

its physical limits and so does the exit temperature of the low pressure turbine T50.
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Figure 5.35: Nonlinear engine without MPC fault recovery for FE=-0.2 at 25 sec.

Figure 5.36: Nonlinear engine without MPC fault recovery for FE=-0.2 at 25 sec.
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Figure 5.37: Nonlinear engine with MPC fault recovery for FE=-0.2 at 25 sec.

This is intuitive since there is a model mismatch in the presence of faults. Hence, it

is important to use an accurate FDI algorithm to govern the switching of the MPC

blocks ensuring constrained engine performance.

In Fig 5.37 - 5.39, on the contrary, assuming appropriate FDI has located and

identified the fault, the MPC control block is switched from MPC68 to MPC68fe20

in Fig. 5.24 at 25 sec to ensure the engine operates within its physical constraints.

The difference in the engine response is now clearly seen when compared to Fig 5.37

- 5.39. Nc is within its limits and so is T50. Also the response of MPC is faster than

the baseline in terms of attaining the steady state value in the neighborhood of the

fault. This is probably due to the switching logic used during the transition from the

nominal reference model based MPC to the degraded reference model based MPC

and hence also achieving a smooth response in the presence of a fault.

63



Figure 5.38: Nonlinear engine with MPC fault recovery for FE=-0.2 at 25 sec.

Figure 5.39: Nonlinear engine with MPC fault recovery for FE=-0.2 at 25 sec.
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Figure 5.40: MPC68fe20 applied to a Nonlinear engine with FE=-0.22 at 25 sec.

As demonstrated in Sec. 5.1.3, the ability of MPC to handle faults within ±2%

of the modeled faulty reference model is shown next but on a nonlinear engine. In

Fig. 5.40 - 5.42 for FlightA, a fault is induced at 25 sec such that there is a 22%

degradation in the fan efficiency and the fault recovery is carried out by switching

to the MPCfe20 block at 25 sec. The weighting scalar for Nc used in Eq. (5.17) is

modified to 25 from 23.

As seen clearly, the performance of the MPC agrees with that of the baseline

controller for a degradation of 22% in every aspect. The same procedure is carried

out next but for a degradation in the fan efficiency of 18% as shown in Fig. 5.43

- 5.45. The weighting scalar for Nc used in Eq. (5.17) is modified to 3 from 23. Once

again, the MPC based on a 20% degradation model can successfully handle a 18%

degradation in the fan efficiency of the nonlinear engine.

65



Figure 5.41: MPC68fe20 applied to a Nonlinear engine with FE=-0.22 at 25 sec.

Figure 5.42: MPC68fe20 applied to a Nonlinear engine with FE=-0.22 at 25 sec.
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Figure 5.43: MPC68fe20 applied to a Nonlinear engine with FE=-0.18 at 25 sec.

Figure 5.44: MPC68fe20 applied to a Nonlinear engine with FE=-0.18 at 25 sec.
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Figure 5.45: MPC68fe20 applied to a Nonlinear engine with FE=-0.18 at 25 sec.

Although the simulation time is 60 sec, since the computationally heavy MPC is

being applied to a nonlinear physical engine, the time taken to compute this simula-

tion scenario is 143 sec. This time can be reduced by either increasing the computa-

tional power or by improving the MPC algorithm.

To address this issue, an on-line change in the prediction horizon is experimented

with and is shown in Fig. 5.46 - 5.48 for the flight conditions FlightA where the

simulation starts with a prediction horizon NP = 20 and changes to NP = 50 during

the rise in PLA and back to NP = 20 during the steady state PLA of 80.

The same process is repeated during the fall in PLA from 80 to 63. This pro-

cedure takes approximately 60 sec and hence can be approximated to that of a real

time simulation. However the engine response achieved has small peaks during the

switching process between the two MPC blocks (MPC68) with prediction horizons
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Figure 5.46: Effect of switched prediction horizons NP = 20, 50.

Figure 5.47: Effect of switched prediction horizons NP = 20, 50.
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Figure 5.48: Effect of switched prediction horizons NP = 20, 50.

of 20 and 50 and this is possibly a reflection on the difference in the optimization

process in Eq. (4.1) which arises due to the switching between different prediction

horizons.

5.2.2 Nonlinear Thrust Control Simulations

As demonstrated earlier at the end of Sec. 5.1.3, during the traditional fan speed

control approach, there is an increase in the thrust produced by the engine mainly

due to the rise in engine temperature when a fault in the fan section occurs. This rise

in temperature can take the low pressure turbine (LPT) blades to its temperature

limits which deteriorates their health at a faster rate. Therefore the control of Thrust

is investigated on the nonlinear C-MAPSS40k engine as done in Sec. 5.1.4.
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Figure 5.49: Parent layer with baseline and MPC for thrust control of the nonlinear
engine.

In C-MAPSS40k, the thrust is calculated using Eq. (1.2) and the nonlinear engine

represents the actual gas turbine engine. Since the thrust produced cannot be mea-

sured directly using sensors, the thrust is not part of the measured feedback loop in

Fig. 5.23. The thrust is controlled using the measured parameters i.e. fan speed Nf ,

core speed Nc and the chamber pressure Ps3 in the feedback loop just as in Sec. 5.2.1.

The LTI reference model used by the MPC can predict the thrust produced during

the optimization process and hence this is similar to a model based thrust estimation

using an on-board model.

Figures 5.23 - 5.25 are modified to Fig. 5.49 - 5.51 for the simulation of the

thrust control approach where the fan speed reference is now to set to zero. In

order to provide the pilot with the thrust corresponding to the PLA positions, the

thrust produced by the nonlinear engine using the baseline controller for the nominal
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Figure 5.50: Modified SMMPC subsystem with multiple MPCs and switch logic.

Figure 5.51: Modified MPC68 subsystem with MPC designed at PLA 68.
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FlightA conditions is provided as the nominal thrust reference to the MPC. The 9 ref

subsystem is now modified to provide two sets of zero references - one of 7 and the

other of 2 - for the outputs of the nonlinear engine excluding the thrust.

For the following simulations, the same flight profile FlightA is used with Eq. (5.12)

modified to

Q = diag
[

1 1 1 0 1 1 0 1000 0 0
]

(5.18)

Figures 5.52 - 5.54 show a comparison between the MPC used for the thrust

control and the baseline used for the fan speed control of the nonlinear engine for

the nominal FlightA conditions. Since the nominal thrust produced by the nonlinear

engine using the baseline (for fan speed control) is used as the thrust reference for

the MPC for the control of thrust, the actual comparison in performance is seen in

Fig. 5.53. The thrust produced due to MPC follows its reference closely.

Although the resulting fan speed due to MPC exceeds the Nf demand for fan

speed control, the task of MPC now is to control the thrust only ensuring the other

parameters do not exceed their limits. As seen throughout, the control law computed

by MPC does not have the spikes during the fall of PLA. For the nominal conditions,

the advantage of thrust control is not emphasized enough as the drawback of fan

speed control seen under the influence of a fault in the fan.

A fault in the fan in now induced at 25 sec. In Sec. 5.1.4 the multi-model ap-

proach was redundant and a MPC using a LTI reference model obtained at nominal

conditions was sufficient, in the presence of faults, to maintain the desired thrust. In

Fig. 5.55 - 5.57 however this is not the case as the thrust increases from the desired
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Figure 5.52: MPC thrust control of the nominal nonlinear engine.

Figure 5.53: MPC thrust control of the nominal nonlinear engine.
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Figure 5.54: MPC thrust control of the nominal nonlinear engine.

value at 25 sec due to the presence of a fault in the fan even though the nominal

thrust produced is used as the reference.

Hence, at 25 sec the MPC blocks are switched from MPC68 to MPC68fe20 in

Fig. 5.50 using the time based supervisor described in Sec. 5.2.1. This is shown in

Fig. 5.58 - 5.60 where the performance of the baseline PID at FE=-0.2, baseline PID

at nominal conditions for fan speed control and the switched MPC for thrust control

are all compared. In Fig. 5.59, the nominal thrust is used as the reference for MPC as

well as the standard for comparison. Till 25 sec, the Nom PID and Baseline match as

they are identical. Due to the induced fault, the baseline deviates from Nom PID and

produces thrust that is higher than desired. However, when the MPC is switched at

25 sec, the thrust recovers to the desired nominal value which is the main advantage

of employing thrust based engine control. Additionally, the fuel consumed by the
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Figure 5.55: Unswitched MPC thrust control of the nonlinear engine for FE=-0.2.

Figure 5.56: Unswitched MPC thrust control of the nonlinear engine for FE=-0.2.
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Figure 5.57: Unswitched MPC thrust control of the nonlinear engine for FE=-0.2.

Figure 5.58: Switched MPC thrust control for FE=-0.2 at 25 sec.
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Figure 5.59: Switched MPC thrust control for FE=-0.2 at 25 sec.

Figure 5.60: Switched MPC thrust control for FE=-0.2 at 25 sec.

78



Figure 5.61: MPC68fe20 applied to a Nonlinear engine with FE=-0.22 at 25 sec.

engine due to the MPC is reduced by 3.4% when compared with the baseline PID in

the presence of a fault in the fan.

As seen in Fig. 5.60, the temperature limit at the low pressure turbine exit is once

again maintained by the MPC while the baseline PID exceeds it slightly. The stall

margin of the low pressure compressor due to MPC is closer to that of the nominal

baseline at the fall of PLA and hence achieving a higher compressor efficiency than the

baseline at FE=-0.2. The time taken to complete a 60 sec thrust control simulation

of a nonlinear engine is approximately 130 sec.

Next, the case to avoid modeling faults that are within ±2% of the modeled

faulty reference model is made for the thrust control approach. In Fig. 5.61 - 5.63

for FlightA, a fault is induced at 25 sec such that there is a 22% degradation in the

fan efficiency and the fault recovery is carried out by switching to the MPCfe20 block
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Figure 5.62: MPC68fe20 applied to a Nonlinear engine with FE=-0.22 at 25 sec.

at 25 sec. The weighting scalar for Nc used in Eq. (5.18) is used as is. The results

discussed in the previous simulations hold true even here. The ability of the MPC to

maintain the desired thrust upon switching to the 20% degradation reference model

for a 22% is shown.

Similarly for a degradation of 18% in the fan efficiency, the application of MPC68fe20

is shown in Fig. 5.64 - 5.66. The weighting scalar for Nc used is identical to that in

Eq. (5.18). Once again, the MPC based on a 20% degradation model can successfully

handle a 18% degradation maintaining the desired thrust and thus avoiding modeling

redundancy.
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Figure 5.63: MPC68fe20 applied to a Nonlinear engine with FE=-0.22 at 25 sec.

Figure 5.64: MPC68fe20 applied to a Nonlinear engine with FE=-0.18 at 25 sec.
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Figure 5.65: MPC68fe20 applied to a Nonlinear engine with FE=-0.18 at 25 sec.

Figure 5.66: MPC68fe20 applied to a Nonlinear engine with FE=-0.18 at 25 sec.
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Chapter 6: CONCLUSIONS AND FUTURE WORK

The replacement of the min-max architecture based PID baseline controller with

a constrained on-line MPC for a throttling demand profile between PLAs 58o and

80o on a LTI and nonlinear turbofan engine model is shown without any compromise

in performance when compared with the baseline controller thereby simplifying the

engine control design scheme. The active fault tolerant method of using the multi-

model approach where the reference model and the engine model are matched shows

the best performance in the presence of a fault in the fan and the performance achieved

is in accordance with that of the baseline controller of C-MAPSS40k.

The ability of MPC to handle faults that deviate within ±2% of the fault mod-

eled reference model is demonstrated, assuming proper FDI, by adjusting the output

weighting matrix accordingly thus avoiding redundant control design. The exact de-

viation of faults that can be handled by a reference model has to be investigated.

Finally assuming proper FDI during the simulation a bumpless transfer in the non-

linear engine performance, while switching between multiple MPCs, is achieved while

maintaining engine constraints when a fault in the fan is induced during the simu-

lation. The output weighting matrix is re-tuned accordingly to achieve constrained

performance from the nonlinear engine.
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Although component faults are handled, the actual engine performance is still af-

fected. Therefore in order to maintain the desired engine thrust, the affinity towards

the traditional fan speed control is shed and model based thrust control using MPC

is investigated. For the linear engine simulations only, since the LTI plant has an ac-

curate relation between the thrust produced and the state vector, the thrust obtained

is used in the feedback which is not the case in the nonlinear simulations.

The multi-model approach is shown to be redundant for thrust control in the

linear engine simulations as MPC based on a nominal reference model is sufficient

in handling component faults and while the rest of the engine parameters deviate

from nominal values due to a fault in the fan, the goal of maintaining desired thrust

is achieved. However for the thrust control simulations on the nonlinear engine, the

multi-model approach is shown to be required. The total fuel consumed by the engine

due to MPC is lesser by 3.4% than that of the baseline (that is used for Nf control)

over the entire profile. Also a higher compressor efficiency during the fall in PLA is

achieved by using MPC for thrust control . For the linear and nonlinear simulations,

faults that deviate within ±2% of the fault modeled reference model can be handled

affectively ensuring the engine is within its limits.

In light of the distributed control architecture taking effect in the near future,

the computationally heavy MPC technique is a good choice to implement for next

generation engine control. However the robustness of MPC and performance of FDI

under the influence of time delays due to digital networks needs to be investigated.

The high dependence of MPC on the linear reference model which might include

modeling errors effects the overall MPC performance due to error propagation in the

quadratic optimization. Therefore nonlinear MPC might be better however designing
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the MPC based on a nonlinear reference model has its own complexities. Further,

effective ways to reduce the computational time during the nonlinear simulations

needs to be investigates. On-line changes in the prediction horizon might be an option

and requires further mathematical investigation for the understanding the stability

of MPC by doing so.
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Chapter 7: APPENDIX I : MPC SOURCE CODE

1 %% MPC Fan Control for nonlinear engine

2 %% Programmed by Deepak C. Saluru

3

4 %% Simulation Parameters

5 tic

6 Ts=0.015; %sampling time of LTI cmapps engine

7 PredictionHorizon =50;

8 ControlHorizon = 1;

9

10 % load constraints from C−MAPSS40k
11 %Nfmax,Ncmax,Ps3max,Ps3min,T50max,dWfmin68,dWfmax68,Wfmin68,Wfmax68

12

13 %% switching parameters

14 % t168s=0;

15 % t168=19;

16 % t268s=25;

17 % t268=39;

18 % t368s=42;

19

20 t168=0;

21 t168fe20=125;%25;

22

23 %% 68 PLA LTI Nominal Engine Model

24 % Alt: 10000ft

25 % MN: 0.8

26 % PLA: 68

27 % Power T/O:0HP, Bleed: 0psi

28

29 % load linearization trim values lin const68n

30

31

32 Ac68n=[ −3.0120 1.0332

33 0.1038 −2.5697];
34 Bc68n= 1.0e+003.*[ 0.6419

35 1.3448];

36 Cc68n=[ 1.0000 0
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37 0 1.0000

38 0.1383 −0.0433
39 −0.0934 −0.1092
40 0.0549 0.0845

41 0.0022 0.0030

42 10.3743 1.6029

43 −0.0721 0.0481

44 0.0167 −0.0012];
45 Dc68n=1.0e+003.*[

46 0

47 0

48 0.0006

49 0.2307

50 0.0271

51 0.0012

52 1.1357

53 −0.0006
54 −0.0107];
55

56 [Ad68n Bd68n Cd68n Dd68n]=c2dm(Ac68n,Bc68n,Cc68n,Dc68n,Ts,'zoh');

57 [n n]=size(Ac68n);

58 [n m]=size(Bc68n);

59 Ag68n=zeros(n+m,n+m);

60 Ag68n(1:n,1:n+m)=[Ad68n,Bd68n];

61 Ag68n(n+1:n+m,n+1:n+m)=eye(m);

62 Bg68n=Ag68n(:,n+m);

63 [nc mc]=size(Cc68n);

64 Cg68n=eye(nc+1,mc+1);

65 Cg68n(4:nc+1,:)=[Cd68n(3:nc,:) Dd68n(3:nc,:)];

66 Dg68n=zeros(nc+1,m);

67

68 Nfmax68 = Nfmax−lin const68n(1);

69 Ncmax68 = Ncmax−lin const68n(2);

70 Ps3max68=Ps3max−lin const68n(6);

71 Ps3min68=Ps3min−lin const68n(6);

72 T50max68=T50max−lin const68n(5);

73 dWfmin68=−0.6;
74 dWfmax68=0.06;

75 Wfmin68=0.2;

76 Wfmax68=[];

77

78 Enginen=ss(Ag68n,Bg68n,Cg68n,Dg68n,Ts);

79 Model.Plant=Enginen; %<−−−
80 Model.Plant.InputName = {'dWf'};
81 Model.Plant.OutputName = {'Nf','Nc','Wf','T25','T50','Ps3',...
82 'P50','Fn','LPC SM','HPC SM'};
83 Model.Plant.StateName = {'Nf','Nc','U(k−1)'};
84 LTIEngine.InputGroup.MV = 1;

85 Model.Plant.OutputGroup = {[1:2,6],'Measured';[3:5,7:10],'Unmeasured'};
86 clear MV OV

87 MV = struct('Min',dWfmin68,'Max',dWfmax68,'RateMin',[],'RateMax',[]);

87



88 for i=1:10

89 OV(i) = struct('Min',[],'Max',[]);

90 end

91 OV(1) = struct('Min',[],'Max',Nfmax68);

92 OV(2) = struct('Min',[],'Max',Ncmax68);

93 OV(3) = struct('Min',Wfmin68,'Max',Wfmax68);

94 OV(5) = struct('Min',[],'Max',T50max68);

95 OV(6) = struct('Min',Ps3min68,'Max',Ps3max68);

96

97 Weights = struct('Input',10,'InputRate',1,'Output',[100 19 1 0 1 1 0 ...

0 0 0]);

98 MPC68=mpc(Model,Ts,PredictionHorizon,ControlHorizon);

99 set(MPC68,'Weights',Weights,'MV',MV,'OV',OV);

100 MPC68.Weights.ECR=10;

101

102 MPC68s=mpc(Model,Ts,20,ControlHorizon);

103 set(MPC68s,'Weights',Weights,'MV',MV,'OV',OV);

104 MPC68s.Weights.ECR=10;

105

106 %% 68 PLA LTI Degraded Engine Model

107 % Alt: 10000ft

108 % MN: 0.8

109 % PLA: 68

110 % Power T/O:0HP, Bleed: 0psi

111 % Health: Fan Eff=−0.2,
112

113 % load linearization trim values lin const68n for FE=−0.2
114

115 Ac68fe20=[ −3.1892 0.4728

116 −1.1528 −1.3364];
117 Bc68fe20= 1.0e+003.*[ 0.5891

118 1.1850 ];

119 Cc68fe20=[ 1.0000 0

120 0 1.0000

121 0.1320 −0.0305
122 −0.2444 0.0066

123 0.1185 0.0227

124 0.0048 0.0009

125 12.6779 0.5765

126 −0.0593 0.0246

127 0.0176 −0.0014 ];

128 Dc68fe20=1.0e+003.*[ 0

129 0

130 0.0011

131 0.2244

132 0.0257

133 0.0013

134 1.2506

135 −0.0009
136 −0.0085 ];

137
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138 [Ad68fe20 Bd68fe20 Cd68fe20 ...

Dd68fe20]=c2dm(Ac68fe20,Bc68fe20,Cc68fe20,Dc68fe20,Ts,'zoh');

139 [n n]=size(Ac68fe20);

140 [n m]=size(Bc68fe20);

141 Ag68fe20=zeros(n+m,n+m);

142 Ag68fe20(1:n,1:n+m)=[Ad68fe20,Bd68fe20];

143 Ag68fe20(n+1:n+m,n+1:n+m)=eye(m);

144 Bg68fe20=Ag68fe20(:,n+m);

145 [nc mc]=size(Cc68fe20);

146 Cg68fe20=eye(nc+1,mc+1);

147 Cg68fe20(4:nc+1,:)=[Cd68fe20(3:nc,:) Dd68fe20(3:nc,:)];

148 Dg68fe20=zeros(nc+1,m);

149

150 Nfmax68fe20 = Nfmax−lin const68fe20(1);

151 Ncmax68fe20 = Ncmax−lin const68fe20(2);

152 Ps3max68fe20=Ps3max−lin const68fe20(6);

153 Ps3min68fe20=Ps3min−lin const68fe20(6);

154 T50max68fe20=T50max−lin const68fe20(5);

155 dWfmin68fe20=−0.6;
156 dWfmax68fe20=0.06;

157 Wfmin68fe20=0.2;

158 Wfmax68fe20=[];

159

160 Enginen=ss(Ag68fe20,Bg68fe20,Cg68fe20,Dg68fe20,Ts);

161 Model.Plant=Enginen; %<−−−
162 Model.Plant.InputName = {'dWf'};
163 Model.Plant.OutputName = {'Nf','Nc','Wf','T25','T50','Ps3',...
164 'P50','Fn','LPC SM','HPC SM'};
165 Model.Plant.StateName = {'Nf','Nc','U(k−1)'};
166 LTIEngine.InputGroup.MV = 1;

167 Model.Plant.OutputGroup = {[1:2,6],'Measured';[3:5,7:10],'Unmeasured'};
168 clear MV OV

169 MV = ...

struct('Min',dWfmin68fe20,'Max',dWfmax68fe20,'RateMin',[],'RateMax',[]);

170 for i=1:10

171 OV(i) = struct('Min',[],'Max',[]);

172 end

173 OV(1) = struct('Min',[],'Max',Nfmax68fe20);

174 OV(2) = struct('Min',[],'Max',Ncmax68fe20);

175 OV(3) = struct('Min',Wfmin68fe20,'Max',Wfmax68fe20);

176 OV(5) = struct('Min',[],'Max',T50max68fe20);

177 OV(6) = struct('Min',Ps3min68fe20,'Max',Ps3max68fe20);

178

179 Weights = struct('Input',10,'InputRate',1,'Output',[100 23 1 0 1 1 0 ...

0 0 0]);

180 MPC68fe20=mpc(Model,Ts,PredictionHorizon,ControlHorizon);

181 set(MPC68fe20,'Weights',Weights,'MV',MV,'OV',OV);

182 MPC68fe20.Weights.ECR=10;

183

184 %%

185 toc
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