
                          Takarics, B., Patartics, B., Vanek, B., Roessler, C., Bartasevicius, J.,
Koeberle, S., Hornung, M., Teubl, D., Pusch, M., Wustenhagen, M.,
Kier, T., Looye, G., Bauer, P., Meddaikar, Y., Waitman Filho, S.,
Marcos, A., & Luspray, T. (2020). Active Flutter Mitigation Testing on
the FLEXOP Demonstrator Aircraft. Paper presented at AIAA SciTech
Forum 2020, Orlando, Florida, United States.
https://doi.org/10.2514/6.2020-1970

Peer reviewed version

Link to published version (if available):
10.2514/6.2020-1970

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via AIAA at https://doi.org/10.2514/6.2020-1970 . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.2514/6.2020-1970
https://doi.org/10.2514/6.2020-1970
https://research-information.bris.ac.uk/en/publications/dd960d71-da2f-4e2a-b757-dd2060f4d2eb
https://research-information.bris.ac.uk/en/publications/dd960d71-da2f-4e2a-b757-dd2060f4d2eb


Active Flutter Mitigation Testing on the FLEXOP Demonstrator

Aircraft

Béla Takarics and Bálint Patartics and Tamás Luspay and Péter Bauer and Bálint Vanek

SZTAKI. Budapest, Kende u. 13-17, 1111, Hungary

Christian Rößler and Julius Bartasevicius and Sebastian Köberle and Daniel Teubl and Mirko Hornung

Technical University of Munich, Institute of Aircraft Design, Boltzmannstraße 15, Garching, München, 85748, Germany

Sergio Waitman and Andres Marcos

University of Bristol, Bristol, BS8 1TR, UK

Manuel Pusch and Matthias Wüstenhagen and Thiemo Kier and Gertjan Looye

German Aerospace Center DLR -Institute of System Dynamics and Conrol, Wessling, 82234, Germany

Yasser M. Meddaikar

German Aerospace Center DLR - Institute of Aeroelasticity, Göttingen, 37073, Germany

The paper details the research and corresponding implementation and testing steps of the

FLEXOP demonstrator aircraft. Within the EU funded project an unmanned demonstrator

aircraft is built to validate the mathematical modelling, flight control design and implemen-

tation side of active flutter mitigation. In order to validate the different methods and tools

developed in this project, a flight test campaign is planned, in which the design and manufac-

turing of stiff wings (-0), are compared with very flexible wings (-1) with active flutter control,

to see the overall benefit vs. risk of such technology. The mathematical models of the aircraft

are first developed using FEM and CFD tools, what are later reduced by model order reduc-

tion techniques. The high-fidelity models are updated using Ground Vibration Test results.

Manufacturing tolerances and variations in aircraft parameters are captured by systematic

modelling of parametric and dynamic uncertainties. Both the simulation environment and

the control design framework use different modelling fidelity, what are described within the

paper. Reduced models are developed using two distinctive methods, respecting the control

design needs: top-down balanced LPV reduction and bottom-up structure preserving methods.

Based on the reduced order models various control design techniques have been elaborated

by the consortium partners. In particular DLR developed and implemented a modal control

method using H2 optimal blends for inputs and outputs. University of Bristol developed struc-

tured H-infinity optimal control methods, while SZTAKI proposed a worst-case gain optimal

method structured controller synthesis method handling parametric and complex uncertainties.

After the brief introduction of hardware-in-the-loop test setup and the description of mission

scenarios the implementation issues of the baseline and flutter controllers are discussed. DLR

and SZTAKI flutter controllers are evaluated in a hybrid software- / hardware-in-the-loop

test setup as at this stage of development the latter can not tolerate the estimated delay of the

hardware system but their comparison is advantageous before future developments. Recom-

mendations on active flutter mitigation methods are given based on the experience of synthesis

and implementation of these controllers. Flight test results will follow these experiments, once

the flight testing of the flutter wing commences.

I. Introduction

F
lutter Free FLight Envelope eXpansion for ecOnomic Performance improvement (FLEXOP), [1] is a project within

the European Union’s Horizon 2020 framework. Its main goal is to raise efficiency of a currently existing wing

by derivative solution with higher aspect ratio at no excess structural weight. The benefit of increased span will be

increased lift to drag ratio and therefore less fuel burn. The downside of the more slender wings is their higher flexibility

1

D
o
w

n
lo

ad
ed

 b
y
 B

R
IS

T
O

L
 U

N
IV

E
R

S
IT

Y
 o

n
 J

an
u
ar

y
 2

9
, 
2
0
2
0
 | 

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 | 
D

O
I:

 1
0
.2

5
1
4
/6

.2
0
2
0
-1

9
7
0
 

 AIAA Scitech 2020 Forum 

 6-10 January 2020, Orlando, FL 

 10.2514/6.2020-1970 

 Copyright © 2020 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. 

 

 AIAA SciTech Forum 

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2020-1970&domain=pdf&date_stamp=2020-01-05


which leads to challenges of aero(servo)elasticity. Therefore, verification of very accurate methods for flexible mode

modelling and robust flutter control synthesis are key targets within FLEXOP. One of the proposed aims of active flutter

control is to fly at the same speed as the baseline aircraft of today with the enabling features of passive load alleviation

and active flutter control with significantly reduced wing structural mass. The developed methods will be validated

with a UAV flutter demonstrator. The 7m span, 65 kg TOW demonstrator will feature three different set of wings: One

baseline rigid wing (-0), one wing designed for passive load alleviation (-2) and one very flexible wing (-1) to test active

flutter control. After validating the methods and tools the potential of those technologies should be evaluated within an

industry driven scale-up study. The FLEXOP demonstrator UAV is shown in Figure 1. Another research project dealing

with active flutter suppression is the PAAW project in the US, [2–5].

Fig. 1 FLEXOP demonstrator aircraft

The flutter suppression control law is designed based on an appropriate control oriented model, [2, 4, 6, 7]. The

linear parameter-varying (LPV) framework, [8, 9] can serve as a good approach to model ASE systems for control

design since it can capture the parameter varying dynamics of the aircraft. The ASE model is based on the integration

of aerodynamics, structural dynamics and flight dynamics subsystems, [10–15], (Section II.A). Ground test based

model updates of the aircraft are given in Section II.B. Control oriented low order models are then obtained by two

distinct approaches. The top-down balanced LPV reduction is based on [7], Section III.A and the bottom-up structure

preserving method is based on the approach presented in [16], Section III.B.

Based on the reduced order models various control design techniques have been elaborated by the consortium

partners, Section IV. In particular DLR developed and implemented a modal control method using H2 optimal blends

for inputs and outputs. University of Bristol developed structured H-infinity optimal control methods, while SZTAKI

proposed a worst-case gain optimal method structured controller synthesis method handling parametric and complex

uncertainties. Flutter mitigation testing requires the use of ground testing before real flights. That’s why the so-called

hardware-in-the-loop (HIL) test environment is introduced, Section V. After describing the mission scenarios and the

implementation issues of the controllers the delay of the HIL is measured which gives approximately the delay of the

on-board hardware system. This delay is considered in baseline and flutter controller design and in all tests of the

controllers. Hybrid software / hardware-in-the-loop (SIl-HIL) evaluation of the DLR and SZTAKI controllers is given

in detail before HIL and real flight testing which should be the next phase of the project. Finally, the flight test aspects

of the resulting solutions are briefly elaborated in Section VI.
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II. Aeroelastic Modelling of a Demonstrator with Fluttering Wings

A. High fidelity nonlinear model of the FLEXOP aircraft

The ASE model of the FLEXOP aircraft is developed based on a subsystem approach as seen in Figure 2. Each

of the subsystems are developed separately and combined to form the ASE model. The structural dynamics model is

obtained from a detailed Nastran finite element (FE) model. The aerodynamics is modeled using the vortex lattice

method (VLM) for steady and doublet lattice method (DLM) for unsteady models, with the provision to improve the

fidelity of the aerodynamics computation using computational fluid dynamics (CFD) methods. Dynamic models for

flight systems such as engines, for external disturbances, for sensors and actuators are added to form the full-order

nonlinear ASE model. The nonlinear equations of motions are derived based on a mean axes reference frame, [17]. The

details of the ASE model are given in [14, 15]. The resulting nonlinear ASE model of the FLEXOP aircraft consists of

12 rigid body states, 100 flexible mode states and 1040 aerodynamic lag states in addition to the actuator dynamics.

This model is considered as the high-fidelity, full order model (FOM). The LPV model of such system is of too high

order for control design.

Structural

dynamics

Rigid dynamics

Aerodynamics
Gact

Fmodal



η

Ûη

Üη





δa
Ûδa
Üδa



Measured

outputs (y)

Control

input (u)

Frigid

xrigid

Fexternal

Fig. 2 ASE subsystem interconnection

In the following, updates and additions to the ASE model are presented.

B. Ground-testing based model update

A ground-test campaign [18] involving structural tests and ground vibration tests (GVT) has been performed on the

FLEXOP wings. At the time of writing of this paper, a preliminary update of the FE model of the baseline wing (-0) has

been performed based only on experimental data from static tests. A similar approach will be repeated also for the

flutter wing (-1).

The static test was performed with the main objective being the assessment of the stiffness properties of the three

wing pairs and validation of the pertinent structural models developed. Figure 3 shows the deflection of the wing-tip as

a function of the applied tip-load. Shown in Figure 4 is the span-wise displacement of a wing-half subjected to 3kg load

at the tip, comparing the static tests and the initial FE model. The observed difference in the stiffness could be attributed

to several factors including modelling assumptions and simplifications, manufacturing deviations, material scatter, etc.

A relatively-simple first attempt at updating the stiffness model is performed by introducing a knock-down on the

engineering stiffness (E1,E2,G12) in the FE model of the wing and in the clamp used for the wing attachment. A

knock-down factor of ∼17% in this case produces satisfactory results as shown in Figure 4. A comparison of the

frequencies between this stiffness-updated FE model and the GVT [18] is shown in Table 1. Also shown is the modal

assurance criterion (MAC) which is an indicator of similarity between mode shapes from two sets in Figure 5. It is

seen that the FE model captures the out-of-plane bending behaviour of the wing well. On the other hand, the in-plane

behaviour of the wing and the stiffness and mass modelling of the fuselage and empennage need to be investigated in

more detail.

The stiffness-updated structural model serves as the basis for generating a next iteration of ASE models for controller
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Fig. 3 Displacement vs load at tip of the wing

from static tests
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Fig. 4 Span-wise displacement of wing under tip

load for the updated model

Mode GVT (hz) FE (hz) ∆ f (%)

2n_wing_bend-s 3.37 3.27 -2.9

3n_wing_bend-a 8.28 8.35 0.9

1n_wing_inplane-a 8.88 18.45 -

4n_wing_bend-s 12.12 11.86 -2.1

tail_rock-a 17.32 - -

1n_wing_inplane-s 19.26 18.09 -6.1

Table 1 Comparison of eigen frequencies: GVT vs stiffness-

updated FE model (in - i nodes in the mode, s - symmetric, a -

antisymmetric)

Fig. 5 MAC matrix: GVT vs stiffness-

updated FE model

synthesis. In the next steps, a more refined approach at model-updating will need to be performed considering other

possible sources of deviation such as an improved modelling of wing-fuselage joint, localized stiffness-updates and

updated mass-modelling while utilizing also the frequencies and mode-shapes obtained from the GVT.

III. Model Order Reduction Methods Applied to the FLEXOP Aircraft

A. Balanced LPV reduction

A balancing based model-order reduction methodology was developed for generic parameter-dependent systems

and was succesfully applied for the dynamical model of the FLEXOP demonstrator aircraft. Hereunder the main

methodological steps are summerized, while more details can be found in [19]. [20] The algorithm assumes continuous

time LPV systems represented by the following state-space equations:

G(ρ) :
Ûx(t) = A(ρ(t))x(t) + B(ρ(t))u(t)

y(t) = C(ρ(t))x(t) + D(ρ(t))u(t),
(1)
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where, the matrix functions are given in a grid-based representation:

G =
{
Gk

��� Gk =
[
c |cAk Bk

Ck Dk

]
,

ccAk=A(ρk ), Bk=B(ρk ),
Ck=C(ρk ), Dk=D(ρk )

}
(2)

First, the parameter-dependent modal form is computed. The main idea originates from the modal form of

Linear Time Invariant (LTI) plants, where the A matrix has a block-diagonal structure. In addition, the similarity

transformation for modal form is constructed from the eigenvectors of the A matrix. However, to extend this structure

for parameter-varying systems, one has to face at least two important problems [21]. Firstly, the consistency of the

state-space, i.e. the correct ordering of the modal blocks, must be ensured over the entire parameter domain [22].

This requires the tracking of the modes between subsequent grid points. Secondly, the parameter-varying modal

transformation should have a smooth parameter dependence (differentiable) in order to facilitate the smooth interpolation

of the modal (and reduced) model.

Connecting the dynamical modes over the parameter domain, to ensure state-space consistency, is formulated as a

minimum cost perfect matching over a bipartite graph [19].

Eigenvalues at a certain gridpoint k and at the successive one k + 1 are considered as two sets of vertices in a graph,

where each vertex in k has exactly one pair in k + 1. The problem is then written as finding the correct pairing between

the vertices. For this purpose, a distance metric is introduced to measure the dynamic similarity between two modes

[19]. The cost of an edge in the graph then describes the dynamical similarity between the two eigenvalues on the edge.

Finding the correct pairing is a minimum cost perfect matching problem [23], which can be solved very efficiently by

the Hungarian Method or Kuhn-Munkres algorithm in polynomial time [24]. Applying the outlined matching algorithm

over the entire parameter domain, the consistent ordering of the modal blocks are achieved.

The next step is to shape the eigenvectors to obtain a differentiable similarity transformation. This condition is

formulated as a complex, unconstrained Procrustes problem as follows, where eigenspaces in neighboring grid points

are rotated appropriately. The solution can be given analytically and preserves the eigen property [19]. Consequently, a

parameter dependent, differentiable transformation T̄(ρ) can be created similarly to the LTI case.

Applying the transformation, an LPV modal form is obtained, which is state consistent and it is smoothly interpolable

over the entire parameter domain. This representation is particularly useful in the reduction of large-scale systems, since:

1) Unstable or mixed stability modes (e.g., flutter modes) can be decoupled from the system and accordingly

preserved in the reduced order representation. Furthermore, most of the model reduction techniques are mainly

applicable for stable systems.

2) Modes outside of the frequency rage of interest can be truncated from the model. This is a very important and

useful property in a control oriented reduction framework due to the presence of control bandwidth limitations.

3) The dynamical modes can be easily handled and grouped together to form subsystems with similar (reducible)

dynamics. This feature will be exploited in the forthcoming section.

The third step of the algorithm is to group the modal blocks with similar dynamical properties into clusters, so that

the corresponding larger dimensional subsystems can be efficiently reduced (for more details we refer again to [19]). We

propose a hierarchical agglomerative clustering (HAC) framework, where the clustering is based on the eigenvalue

trajectories of the LPV system. We compare two eigenvalue trajectories and characterize the similarity in terms of

the dynamical response they represent. Accordingly, the comparison of two clusters is applied with the complete link

clustering method: the similarity of two clusters is determined by the similarity of their most dissimilar members [25].

The result of the HAC is generally visualized by a dendrogram, which is a tree diagram illustrating how the data

objects are merged into larger clusters until the one single cluster is reached. The final cluster structure is obtained by

cutting the dendrogram at a user-defined level of similarity. The careful choice of this threshold is important, because it

determines the number and size of the clusters generated. In the model reduction framework, this threshold is mainly

determined by the available computation capabilities, i.e. the chosen model reduction methodology must be solvable for

the largest cluster. In our algorithm, the balanced reduction has been chosen to reduce the dimension of the clusters.

Balanced reduction is a fundamental approach for the model reduction of linear (time invariant and varying, as well

as parameter-dependent) systems [20], [26]. The key concept is the balanced realization which reveals the controllability

and observability properties of the system. In balanced realization uncontrollable and unobservable states can be

identified and deleted easily, without affecting the input-output behavior of the entire system.

After clustering the dynamical modes, separate LPV systems have been obtained. Then, the similarity transformations

which transform the clusters into balanced form can be constructed from the corresponding observability and

controllability Gramians [26]. The computation of the Gramians is carried out by solving Lyapunov inequalities [26].

This is a nonconvex optimization problem, which can be reduced to a linear optimization problem with Linear Matrix

Inequality (LMI) constraints, using an iterative computational scheme (as suggested in [26]).
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Having determined the observability and controllability Gramians of every subsystem, the balancing transformations

and the corresponding parameter dependent, generalized singular value trajectories can be determined. The singular

values characterize the controllability and observability properties of the states in the balanced realization. Therefore

states with small singular values can be eliminated without affecting the IO behavior. After reducing the subsystems

individually, the small dimensional subsystem dynamics are finally joined together with the unstable modes to obtain

the low dimensional approximation of (2).

1. Numerical results

The algorithm was succesfully applied for the dynamical model of the FLEXOP demonstrator. The original model

consists of 524 states, 38 inputs and 16 outputs given as a set of LTI systems evaluated at 26 airspeed values. The

eigen-decomposition of the model is carried out first. Multiple eigenvalues, mostly related to the lag state dynamics, are

grouped together. The Hungarian algorithm was applied between the grid points to connect the eigenvalue trajectories.

Then the Procrustes smoothing was used for the grouped eigenspaces. Having obtained the smooth LPV modal form we

were in the position to remove and store unstable or mixed stability modes. In the underlying system 3 modes have

mixed stability properties (flutter and spiral mode), represented by 5 states. These states have been removed and the

remaining states then reduced with modal truncation. For the suppression of the flutter phenomena a special, high

bandwidth control actuator has been chosen in the demonstrator aircraft. Accordingly a 200 rad
sec

bandwidth has been set

for the modal truncation: faster modes have been removed. This step reduced the system to 159 states due to the large

number of very fast modes.

Next, the remaining 159 state have been clustered using the proposed HAC algorithm, which actually revealed that

most of the lag-state dynamics can be grouped into clusters. The controllability and observability Gramians of the

smaller dimensional subsystems were computed next. Using the Gramian solutions, balancing transformation was

performed and weakly observable and controllable states were truncated. The reduced systems were then merged

together in a stable LPV model, which is then extended by adding back the mixed stability part. Consequently, a 35

dimensional approximation has been obtained.
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Fig. 6 Frequncy distribution of the ν-gap metric between the 524 and 35 order state models.

Finally, in order to measure the goodness of the reduced order model we adopted the ν-gap metric [27]. This metric

is generally used for characterizing closeness in a closed-loop setup. Since our aim is to use the reduced order model for

control design, the ν-gap metric is a suitable choice. Figure 6 shows the frequency distribution of the ν-gap distance.

Here, at each frequency we have chosen the worst case value over the parameter domain Γ computed between the

interpolated models. This is a very important feature, which has to be emphasized.

It can be seen that the distance remains reasonable low for the lower frequency domain and only increases above the

prescribed frequency bandwidth used during the modal truncation.

Therefore we conclude that the reduced order approximant of the flexible aircraft can serve as a reliable basis for the

control design efforts.
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B. Bottom-up modeling

The bottom-up modeling is pursued in order to obtain an LPV model of the FLEXOP aircraft that is of sufficiently

low order for control design. The key idea is to reduce the subsystems before the integration into the nonlinear model.

The reason behind this is that the structural dynamics and aerodynamics subsystems have simpler structure than the

combined ASE model. Thus, the order of these subsystems can be reduced by simpler and more tractable reduction

techniques. Such approach leads to a low order ASE model (LOM).

The LPV model of the resulting LOM is compared to the LPV model of the FOM to verify its accuracy. The grid

based LPV models of the LOM and FOM are derived in the following way. The nonlinear ASE model is first trimmed

for straight and level flights at various airspeeds after which Jacobian linearization is carried out. The scheduling

parameter is defined as ρ = Vs in the interval [30,65] m/s over a grid of 71 equidistant points.

The ν-gap metric δν(·, ·) is used as a measure to compare the LOM and FOM LPV models. It takes into account the

feedback control objective. It takes values between zero and one, where zero is attained for two identical systems. A

system P1 that is within a distance ǫ to another system P2 in the ν-gap metric, i. e. δν(P1,P2) < ǫ , will be stabilized by

any feedback controller that stabilizes P2 with a stability margin of at least ǫ , [27]. A plant at a distance greater than ǫ

from the P2, on the other hand, will in general not be stabilized by the same controller. It can be calculated frequency by

frequency as

δν(P1(jω) ,P2(jω)) = ‖
(
I + P2(jω) P∗

2(jω)
)−1/2

(P1(jω) − P2(jω))
(
I + P∗

1(jω) P1(jω)
)−1/2

‖∞ (3)

The ν-gap metric is a linear time invariant (LTI) technique and the goal is to evaluate it at each LPV grid point. Since

the LOM is aimed for flutter suppression control design, the ν-gap metric is investigated for an input/output set that is

relevant for the control design. These are L4, R4 inputs and vertical acceleration (az) and pitch rate (q) measurements

at the c.g. and at the 12 IMUs. An additional crucial consideration to be made is to define a frequency range of interest

in which it is expected that the LOM is a good approximation of the FOM. Since the goal of the control design is flutter

suppression, the flutter frequency (50.2 and 45.8 rad/s) determines the frequency range for which an accurate model is

required. Based on the flutter characteristics, the frequency range of interest is defined up to 100 rad/s.

1. Reduction of the structural dynamics model

The structural dynamics model is an LTI system, therefore, state truncation can be applied. Retaining the first 6

structural modes and modes 19, 20, 21 results in acceptable accuracy. This way the reduced order structural dynamics

model is of 18 states as opposed to the 100 states of the full order structural dynamics model.

2. Reduction of the DLM aerodynamics

The aerodynamic lag terms can be given in the following state space form

Ûxaero =
2V

c̄
Alagxaero + Blag

[
Ûxrigid Ûη Ûu

]T

yaero = Clagxaero

(4)

where V is the airspeed, c̄ is the reference chord, Ûxrigid are the rigid body states, η represent the structural dynamics states

and u is the control surface deflection. A linear balancing transformation matrix T is computed for the aerodynamics

model given by Alag , Blag and Clag in (4). The reduced order aerodynamics model is obtained by rezidualizing the

states with the smallest Hankel singular values. Keeping 2 lag states results in acceptable accuracy. The ν-gap plot of

the FOM and resulting LOM are shown in Figure 7.

The resulting bottom-up LOM if of 56 states, that consists of 12 rigid body states, 18 structural dynamic states, 2

aerodynamic lag states and 24 actuator dynamics states. In addition to the ν-gap plots, the pole migration, Bode plots

and numerical simulation responses of the LOM and FOM are compared. Further details of the bottom-up modeling of

the FLEXOP aircraft can be found in [14, 28]. Figure 8. shows the pole migrations of the LOM and FOM LPV models.

The full order LPV model predicts flutter at 52 and 55 m/s at frequencies of 50.2 rad/s and 45.8 rad/s. The LOM LPV

model predicts flutter at 52.5 and 56.5 m/s at frequencies of 50.3 rad/s and 46 rad/s. The flutter speed and frequency

accuracy of the LOM is good enough for control design.
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Fig. 8 Pole migration of the LOM ( ) and FOM ( )

C. Uncertainty structure

The uncertainty structure is based on the derivation presented in [29] and takes the following form

Ûx =
[
A(ρ) + Da(ρ)∆a(t)Ea(ρ)

]
x + B(ρ)u (5)

where the uncertain block ∆a(t) satisfies

‖∆a(t)‖ ≤
1

γa
, ∆a(t) = ∆

T
a (t), (6)

and Da(ρ) and Ea(ρ) are known scaling matrices.

Since the aim of the control design is flutter suppression, it desirable to have robust stability in case of uncertainty in

the flutter modes. 10% uncertainty is assumed in 2 elements of A(ρ) that strongly influence the flutter modes. The pole

migration of the flutter modes of the nominal and uncertain models are given in Figure 9.
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Fig. 9 Uncertainty of the flutter modes: nominal model ( ), +10% uncertainty ( ), -10% uncertainty ( )

IV. Control design Methods

A. H2 optimal blending

The two flutter modes mainly limiting the operational velocity range of the aircraft can be well distinguished by its

symmetric and asymmetric mode shapes. Both modes describe a dynamic coupling of the wing bending and torsion

which becomes unstable above certain airspeeds. To individually stabilize the two flutter modes, the H2-optimal

blending approach proposed in [30] is applied to the FLEXOP demonstrator. In doing so, the flutter modes are decoupled

which allows for a straight forward design of two dedicated SISO control loops, one for each flutter mode.

In Figure 10, the resulting feedback interconnection is depicted, where the symmetric (SYM) and asymmetric (ASYM)

flutter modes are subject to be controlled. Summarizing the input and output blending vectors in Ku = [ku,SYM ku,ASYM]

and Ky = [ky,SYM ky,ASYM], the overall controller is

K(s,V) = KuC(s,V)KT
y ,

where the single input and single output (SISO) controllers are collected on the diagonal of C(s,V) = diag (cSYM(s,V), cASYM(s,V)).

𝑮 𝑠, 𝑉  

𝒖 𝒚 

𝑐SYM(𝑠, 𝑉) 𝒌𝑢,SYM 𝒌𝑦,SYM𝑇
 

𝑐ASYM(𝑠, 𝑉) 𝒌𝑢,ASYM 𝒌𝑦,ASYM𝑇
 

 𝐾𝑢 ∈ ℝ2×2  𝐾𝑦𝑇 ∈ ℝ2×26 

+ 

+ 

Fig. 10 Closed-loop interconnection of plant G with flutter suppression controller K , output blending matrix

Ky , input blending matrix Ku , and controller C.
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1. Input-Output Blending

The measurement signals considered for flutter suppression are captured by the inertia measurement unit (intertial

measurement units (IMUs)) located in the wings and in the center of gravity, where only vertical acceleration and pitch

rate measurements are used for the controller design herein. In Figure 11, the location of the IMUs in the wings together

with the location of the ailerons, of which only the outer pair is used for flutter suppression. Before actually blending the

Fig. 11 Locations of the IMUs installed in the wings to measure the accelerations on the wing.

given inputs and outputs, it is proposed to normalize the rate and acceleration measurements since they are of different

units, see [31] for more details. Subsequently, the H2-optimal blending vectors associated to the first (symmetric) and

second (asymmetric) flutter mode are computed as described in [30]. The obtained input and output blending vectors

basically mirror the shape of the underlying modes and hence are also symmetric and asymmetric. Since the mode

shapes change only slightly within the critical airspeed range, it is sufficient to compute the blending vectors at a single

airspeed Vias = 60 m s−1 and hold them constant within the whole flight envelope. Applying the blending vectors, the

two flutter modes are well decoupled and can be individually controlled by separate SISO controllers described as

follows.

2. Single-Input Single-Output Controllers

With the derived blending vectors it is possible to design dedicated SISO controllers for the symmetric ( j = 1) and

asymmetric ( j = 2) flutter mode. The structure of the SISO controllers is predefined as

cj(Vias(t)) = WBP, j Wj(Vias(t)), (7)

where WBP, j denotes a bandpass filter to ensure that no interference with the baseline controller occurs and higher

frequent modes are not excited. For both flutter modes, a second order Butterworth filter is chosen with a fixed passband

from 40 rad s−1 to 400 rad s−1. The corresponding corner frequencies are selected such that both flutter modes are

well inside the passband and controller performance is affected as little as possible. Since a large velocity range

needs to be considered, the core of the flutter suppression controller Wj(Vias(t)) is gain-scheduled. For better tuning

capabilities, it is desired to keep the order of Wj(Vias(t)) as small as possible while a larger order may allow for a better

controller performance. Hence, a careful balancing between controller order and performance is required. For the first

(symmetric) and second (asymmetric) flutter mode, an order of two respectively one is chosen. The state space matrices

Z j = {Aj,Bj,Cj,Dj} of Wj(Vias(t)) depend linearly on the indicated airspeed, i.e. Z j = Z j(Vias(t)) = Z j ,0 + Z j ,1Vias(t),

where the matrices Z j ,0 and Z j ,1 are subject to be optimized. As explicit optimization criteria a gain margin of 6 dB and

a phase margin of 45° are demanded in the optimization. The two problems are solved using non-smooth optimization

techniques [32]. The resulting SISO controllers without the band-pass filter are depicted in Figure 12. Note that with

increasing airspeed, the controller gain increases in the symmetric case and decreases in the asymmetric case in the

frequency range of the corresponding flutter mode.
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Fig. 12 Gain-scheduled SISO controllers W1(Vias(t)) for the symmetric mode (a) and W2(Vias(t)) for the asym-

metric mode (b) plotted from 30 m/s to 70 m/s airspeed.

3. Linear Closed-Loop Analysis

Closing the two SISO loops stabilizes the two flutter modes as it is illustrated in the pole migration plot in Figure

13. The plot compares the open-loop poles in gray to the closed-loop poles depicted in color in dependence of the

airspeed. Clearly visible is the unstable behavior, i.e., the crossing to the right half plain of the first (symmetric) and

second (asymmetric) flutter mode in the open-loop. With the flutter suppression controller the symmetric flutter mode

can be stabilized up to airspeeds of 65.5 m/s. The asymmetric mode is stabilized even beyond 70 m/s. Demanding

additional single-loop robustness margins of 6 dB in gain and 45° in phase to the critical point, leads to a maximum

operational speed of about 60 m/s. This still results in an increase in allowable speed of more than 15 % compared to the

case without active flutter suppression. Also noticeable is that the other poles of the system(s) are not largely affected by

the flutter suppression controller. This is acceptable since damping is rather increased than decreased.
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40
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40

20
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0.48
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54.5 → 70 m/s

symmetric (1)

52 → 65.5 m/s
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Fig. 13 Comparison of the open-loop poles in gray and closed-loop poles (colored) in dependence of the

indicated airspeed Vias. Only the positive imaginary axis is depicted for readability reasons.
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B. Structured H∞ method

1. Standard and Structured H∞ flutter control

In this section, the control design activities by UBRISTOL are summarized. They are presented in more detail in

references [7, 33, 34] to which the reader is referred.

The control design theory used is H∞optimization but following two distinct algorithms: standard and structured [35]

(the former is subsequently referred to as non-structured in order to differentiate it from the latter). These approaches

were selected as they have already been used by teams in the US for a similar active flutter control activity [6] and

because UBRISTOL team members had a long heritage on using the techniques [36–38], including manned flight tests

[39].

Four main design steps were followed by UBRISTOL in order to ensure understanding of the active flutter control

problem and the incremental maturation of the design. Each is briefly described in the following subsections.

2. Knowledge acquisition step

For this step the work from [6] was used to provide an initial evaluation on the appropriateness of the design

approaches. Although, as opposed to FLEXOP, this reference looked at the Body Freedom Flutter (BFF) problem and a

much scaled down UAV, it was fundamental for the work presented in here. In a first step, the same plant and controller

design objectives/weights/interconnection were used but instead of using the non-structured H∞ as in that reference, the

structured approach was used. The results indicated direct improvements on the robustness and enlargement of the flight

envelop by the resulting structured H∞ controllers (despite using exactly the same weights and interconnection).

3. Preliminary (coupled standard and coupled structured) H∞ LTI design step

This step served to pose the H∞ optimization problem for the FLEXOP demonstrator (i.e. for the 1152 states

high-fidelity models obtained by DLR). Reference [7] provides a more detailed presentation. The two algorithms were

applied to a single LTI plant corresponding to an airspeed of 57 m/s (N=13) and of order 38 (reduced from the 1152

via balanced and Hankel order reduction methods), augmented to 48 after inclusion of delays, actuators and sensors

(captured in two equal 5-states model Gred). It is important to note that by coupled it is meant that the controller was

designed to tackle simultaneously the symmetric and antisymmetric flutter modes. This will change for the next step.

The controller had two outputs (L4 and R4 ailerons) and 4 inputs (pitch rate q, and normal accelerations at the center of

gravity and the left and right wings). The same weights and interconnection, see Figure 14, were used for both H∞

approaches with the main difference that the non-structured approach yielded a controller of order 48 which was then

reduced to order 4, while the structured approach used this controller as the initial optimization guess and fixed the

order directly to 4 states. The results were promising for both techniques, although the structured controller had a lower

range of validity (in terms of airspeed coverage).

Aircraft
reduced
model

(N = 13)

Gred

Gred

δail-L4

δail-R4

η̇1
η̇2

q
az−cg
az−wL
az−wR

y

z

u

G(s)

Fig. 14 Preliminary H∞ flutter design: synthesis plant [7]

4. Consolidated (coupled standard and decoupled structured) H∞ LTI design step

As updated high-fidelity models of the FLEXOP demonstrator were released by DLR, the design teams had to

verify (and when necessary update) their controller designs. UBRISTOL took advantage of the time in between these

model releases and explored alternative control architectures, i.e. different design interconnections (input/outputs) with

different weights and different plants. A more detailed presentation of the results for this step is given in reference [33]

but as a summary:
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• The design plant was now of order 40 states (plus the addition of the extra 10 states from the actuator-sensor-delay

chain Gred) and obtained at an airspeed of 59 m/s (N=15). Furthermore, as seen in Figure 15, the input and

outputs of the synthesis plant (and thus of the obtained controllers) were different with respect to those in the

preliminary approach. In this case, the pitch rate was removed as a plant output and the controller input/outputs

were generalized to symmetric (subscript S) and antisymmetric (subscript AS) channels.

Aircraft
reduced
model

(N = 13)

Gred

Gred

δail-L4

δail-R4

η̇1
η̇2

q
az−cg
az−wL
az−wR

y

z

u

G(s)

Fig. 15 Consolidated H∞ flutter design: synthesis plant [33]

• Two different design approaches were used: (C.1) a coupled non-structured approach following the preliminary

one but with different controller inputs/outputs and weights (i.e. different values and also reduced dimensions due

to the smaller dimension of the channel y); and (C.2) a decoupled structured approach using the same synthesis

plant but with the controller structured to be de-coupled, see Figure 16. Note that each of the two decoupled

controller components KS and KAS have different dimensions, specifically order 9 and 6 states respectively

–these dimensions were chosen based on the controller reduction performed for the C.1 controller which yielded

acceptable performance when reduced from 50 to 15 states.

Aircraft
reduced
model

(N = 13)

Gred

Gred

δail-L4

δail-R4

η̇1
η̇2

q
az−cg
az−wL
az−wR

y

z

u

G(s)

Fig. 16 Consolidated H∞ flutter design: coupled (left) versus decoupled (right) controllers [33]

The results indicated improved robustness and flight envelop coverage, with respect to the preliminary designs.

Further, it was also noted that the structured controller design was overly sensitive (at least for the considered plant

and posed optimization problem) to the initial guess so for the final design step the focus was on using the coupled

non-structured approach.

5. Final scheduled coupled standard H∞ design step

For the final design, see reference [34] for details, three LTI controllers were obtained using the same synthesis plant

interconnection as in Figure 15 but for three 59,63,66 m/sec (plant numbers N = 15,19,22 respectively). In addition to

the change of plants used for the LTI design, which already resulted in different values for the weights, a disturbance

weight that was used before during the consolidated interconnection synthesis was now removed in order to reduce

the overall complexity of the tuning process. The scheduled controller was obtained by interpolation of the outputs of

the three reduced LTI controllers using a piecewise-linear scheduling rule based on true airspeed VT AS (although the

indicated airspeed was also used), see Figure 17. This output interpolation was preferred as the reduced controllers had

different state dimension (respectively 17, 16 and 15 states).

The verification and validation results (including gain/phase margin analyses, and time simulations without and

with the baseline controller) presented in reference [34] show that the final scheduled flutter controller is capable of

extending stability beyond the open-loop flutter speed of VT AS= 52 m/s up to VT AS= 62.4 m/s, which is an improvement

of about 22%, in the presence of the baseline controller (and up toVT AS= 69 m/s when tested without it).
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Aircraft
reduced
model

(N = 13)

Gred

Gred

δail-L4

δail-R4

η̇1
η̇2

q
az−cg
az−wL
az−wR

y

z

u

G(s)

Fig. 17 Final scheduled H∞ flutter design: interpolation rule [R3]

C. Worst-case gain optimal structured controller synthesis

The structured control design technique used for flutter suppression control is detailed in [40]. It’s MATLAB

implementation is available at [41]. The key idea of the algorithm is repeated here for ease of reference. The content of

the present section is expanded in [42].

The general closed loop interconnection is depicted in Fig. 18. Here, M(s) is a Linear Time Invariant (LTI) system

(usually called the generalized plant). The uncertainty block ∆(s) is stable and structured with ‖∆(s)‖∞ ≤ 1. Both

dynamic and parametric uncertainty appear in ∆(s). The uncertain plant is denoted by P(∆). The structured controller

K(κ) has fixed dynamics with tunable parameters in the vector κ. The worst-case gain of the closed loop in Fig. 18 is the

maximal H∞ norm from the input d to the output e over the allowable set of uncertainty. The objective of the control

design is to tune κ to minimize the worst-case gain of the closed loop.

P(∆)

M

K(κ)

∆

z w

y u

e d

Fig. 18 Closed loop interconnection for the worst-case gain optimal control design.

The synthesis algorithm in [40] provides a solution to this problem. It collects worst-case samples of the uncertain

parameters and synthesizes unique D-scales for the individual samples using a convex optimization method. The

structured controller is tuned for the collection of scaled samples simultaneously. To apply this method, the flutter

suppression problem is articulated as the robust stabilization of the uncertain aircraft model. The construction of the

uncertain plant is detailed in the following Section. In the next Section after that, the control design setup and the result

of the synthesis are given.

1. Uncertainty Modeling

The control input for flutter suppression is the aileron deflection command received by the actuators of the outermost

ailerons on the wing denoted by δa,L and δa,R for the left and right wing respectively. The three measured signals are

angular rates along the horizontal axis of the aircraft: ry,L, ry,R, and q. The signal q is measured in the center of gravity.

On the left and right wing respectively, ry,L and ry,R are measured at 90% of the length of the wing close to the trailing

edge. Using the combination of these measured signals depicted in Fig. 19, the symmetric and asymmetric flutter

modes are isolated by the creation of two SISO plants and two SISO control loops for their stabilization. The states

corresponding to the longitudinal motion and to the symmetric deformations are removed from the system representing

the asymmetric flutter mode and vice versa.

As the results of the bottom up modeling and reduction technique, the low order SISO models are given on a three

dimensional grid. In the grid, there are 36 equidistant points of the airspeed between 30 and 65 m/s. There are also five

points of the natural frequency and damping of the structural dynamics between ±1% and ±10% of their nominal value
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structured controller

ry,L + ry,R − 2q

ry,L − ry,R

usym + uasym

usym − uasym

sym.

controller

asym.

controller

aircraft

dyn.

ry,L, ry,R, q

δa,L

δa,R

Fig. 19 Structure of the control loop using two SISO controllers to stabilize the symmetric and asymmetric

flutter modes separately.

1 10 100 1000 10000
0.1

1

10

100

50

flutter

freqs.

frequency [rad/s]

| W
d
( j
ω
)|

sym
asym

Fig. 20 Bode magnitude plot of the dynamic uncertainty weights.

respectively. Least squares fit is applied to get the uncertain state-space matrices of the systems in the form

Aδ = A0 + A1δv + A2δ
2
v + A3δω0

+ A4δ
2
ω0
+ A5δξ

Bδ = B0 + B1δv + B2δ
2
v

Cδ = C0 + C1δv + C2δ
2
v

Dδ = 0,

where |δv | ≤ 1,
��δω0

�� ≤ 1, and
��δξ

�� ≤ 1. Dynamic uncertainty is added to account for the neglected dynamics. The form

of the uncertain model is then G(s) = Cδ (sI − Aδ)
−1 Bδ (1 +Wd(s)∆d(s)), where ∆d(s) is the stable SISO dynamic

uncertainty with ‖∆d(s)‖∞ ≤ 1, and Wd(s) is the weight of the dynamic uncertainty. Since the uncertainty model is

identical for the two systems, G(s) may refer to both the symmetric of the asymmetric model. The weights are chosen

so that the uncertainty is low on low frequency up to the flutter frequencies and rises to hight levels on high frequencies

as illustrated in Fig. 20.

2. Controller synthesis

The generalized plant interconnection for both the symmetric and asymmetric loop is depicted in Fig. 21. The

objective of the design is robust stabilization with acceptable control effort. To this end, the sensitivity function is

weighted by WS(s) =
1
2

and the control input is weighted by Wu(s) =
1

10◦
= 5.78. The fourth order Padé approximation

of 15 ms output delay is added to the system denoted by D(s). The plant G(s) in Fig. 21 is again either of the two

uncertain SISO systems described previously. The filter F(s) is used to enforce the desired bandwidth of the controller.

The bandwidth must agree with the limitation posed by the actuator and the sampling frequency of the hardware in

which the controller is to be implemented (200 Hz). Also, minimizing the sensitivity function must not come at the price

of exciting high frequency and therefore necessarily uncertain dynamics as pointed out by [43]. The Bode magnitude

plot of the filter satisfying these criteria is depicted in Fig. 22.

The resulting controller is analyzed in closed loop with the high fidelity model and the baseline controller. As shown

in Fig. 23, the controller stabilizes the (nominal) system up to 68 m/s. It increases the damping of both flutter modes

significantly. In order to assess the robustness of the closed loop, loop-at-a-time stability margins are calculated. The

results are depicted in Fig. 24. (Note that the margins for the channel q are higher than for the rest of the channels. This

due to the fact that q is subject to both the flutter and the baseline control laws.) The gain and phase margins of all

channels are deemed acceptable up to 60 m/s which is therefore nominated as the robust flutter speed. The margins are

15

D
o
w

n
lo

ad
ed

 b
y
 B

R
IS

T
O

L
 U

N
IV

E
R

S
IT

Y
 o

n
 J

an
u
ar

y
 2

9
, 
2
0
2
0
 | 

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 | 
D

O
I:

 1
0
.2

5
1
4
/6

.2
0
2
0
-1

9
7
0
 



G(s) D(s)K(s)F(s)

WS(s) Wu(s)

-
+

Fig. 21 Generalized plant interconnection.
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actuator

F(s)

Fig. 22 Bode magnitude plot of F(s) and the performance constraints.

degrading gracefully beyond this speed and become zero at the absolute flutter speed which is 68 m/s. These results

indicate that the aircraft is safe to fly up to 60 m/s which means that the flight envelope was extended by 15%.

V. Hardware-in-the-Loop Testing of the Control Methods
After design and development its important to test the autopilot code in safe circumstances before doing real flight

testing. Basically two test setups were created to do this. The first is the so-called Software-in-the-loop (SIL) simulation

where the aircraft (A/C) model the baseline and flutter controllers are all run in Matlab / Simulink completely excluding

FCC hardware. The second is the so-called Hardware-in-the-loop (HIL) setup where all control algorithms run on the

FCC hardware and only the aircraft is simulated in Matlab / Simulink. This is the last stage which should be passed

before real flight testing. A detailed scheme of the HIL simulation is shown in Fig. 25 while its photo is shown in

Fig. 26. Fig. 25 shows that the complete HIL setup consists of a Matlab / Simulink model of the aircraft together with

actuator models and emulation of sensors completed with visualization and the real hardware part (the same as applied

on-board the A/C). In our setup visualization is done by Flightgear software fed with position and orientation data from

Matlab. The hardware part is the FCC with Raspberry PI computer, FlightHAT (interface board between sensors, PI

and RxMux) and RxMux which is the multiplexer of manual and autopilot commands. Integral parts of the hardware

are the RC transmitter (Remote control) and receiver and the telemetry data link together with ground control station.
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Fig. 23 Change in the pole trajectories due to the flutter controller. (The open-loop pole trajectories are

depicted in gray.)
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Fig. 25 Overview of HIL simulation setup

Fig. 26 Picture of the HIL simulation setup at SZTAKI

A. Mission scenario definition

The original mission scenario for the test of the flutter controllers is a racetrack pattern including two straight

segments and two half turns as shown in Fig. 27. This was demanded by the limited airspace available for testing. One

of the straight segments can be aligned with actual wind direction providing a headwind scenario for flutter test to have

lower ground relative speed and so more time for the test. The flutter controllers can be tested by gradually increasing

the airspeed on this part of the track after every loop. However, in HIL test there is no limited airspace so its faster and

easier to fly straight ahead and increase the airspeed in given steps. This has led to the flight scenario with constant

(800m AMS) altitude hold with constant course angle hold and a staircase IAS reference starting from 45 m/s and going

up to 65-66m/s in 1m/s steps every 15 seconds (see Fig. 30 for example). The HIL simulation should be stopped if the

IAS suddenly decreases because of flutter of the wings.
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Fig. 27 The designed racetrack pattern for flutter tests

B. Controller implementation aspects

Before conducting HIL tests, implementation of the controllers (baseline and flutter) on the real FCC hardware

should be performed. All of the controllers are constructed in Matlab / Simulink as discrete time models with 5ms

sampling and the executable code is built from this after SIL test runs prove the correct functionality of the controllers.

The baseline controller implements indicated airspeed (IAS) and altitude tracking together with the tracking of the

racetrack pattern. This controller consists of simple PID and gain-scheduled PID loops so its building into executable is

straightforward. Considering the flutter controllers the SZTAKI version has a small, time invariant state space model

with 10 states, 2 inputs and 2 outputs which is easy to implement and run real time. On the other hand the DLR

version has a linear parameter varying (LPV) state space model with 11 states, 26 inputs and 2 outputs. It is linearly

interpolated between different aircraft airspeeds. As real time execution requires the reduction of the computational

needs its worth to implement the linear interpolation of matrices in closed form. The two corner models of the parameter

space for 30m/s and 70m/s IAS are the results of design as these are enough to cover the whole space because of linear

interpolation. Denoting the related state space models as A30,B30,C30 and A70,B70,C70 (the D matrices are all zero)

one can reformulate interpolation as follows:

A(V) = A30 +
A70 − A30

70 − 30
(V − 30)

A(V) = A30 − 30
A70 − A30

70 − 30︸                  ︷︷                  ︸
A0

+

A70 − A30

70 − 30︸      ︷︷      ︸
AV

V

A(V) = A0 + AV · V

B(V) = B0 + BV · V

C(V) = C0 + CV · V

(8)

where V is the actual airspeed and B0,C0,BV,CV are formulated similarly to the components of the A(V) matrix. These

matrices can be a priori calculated and so well applied in controller implementation. After doing the implementation

the next step is the HIL test of controllers.

C. Control performance comparison on high-fidelity models

Before designing the baseline and flutter controllers and doing the test runs in HIL the delay of the HIL loop was

measured. It was tested by sending a square signal to a very simple controller and receiving it back. The time shift

between the two square signals shows the approximate time delay of the hardware part. Its only approximate because

includes the delay of Matlab simulation and interface hardware cards in the PC also. The result of delay measurement

is shown in Fig. 28. The measured approximate delay is 20ms including the one time step delay of the discrete

time controller which is 5ms. As the resolution of measurement is 5ms (sampling of controller) one can state that
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the hardware delay is about 15ms. This delay was considered in the design of the baseline (see [44]) and the flutter

controllers. DLR flutter controller was designed for 4.0 and 5.0 models as presented in [44]. SZTAKI flutter controller

was designed for the 4.0 model version of the aircraft provided by DLR. The design method is presented in [45] and

detailed in [46] (in hungarian).

Fig. 28 Delay measurement in HIL. Continuous line is the signal out, dashed line is the echoed signal from

FCC

The first step of flutter controller (together with baseline) test in HIL was to verify control performance in SIL as

this is the ideal environment with user definable delay and other properties. Real-flight test results with the baseline

controller has shown that only the 5.0 model version of the aircraft fits the real flight results so this should be used in any

further SIL / HIL tests. Unfortunately, test of the flutter controllers in SIL on 5.0 aircraft (A/C) model has shown that the

performance of the SZTAKI controller was unsatisfactory with 14ms delay and above, so it should be further developed

before HIL and flight testing (more details about SIL tests can be found in see [47]). This has led to the definition

of a hybrid SIL-HIL test environment (see Fig. 29) where the baseline controller is run on the FCC hardware while

the flutter control is implemented in Matlab / Simulink software. This way the delay of the flutter controller remains

configurable, so pre-verification of the designed controllers can be done before redesigning the SZTAKI controller for

the 5.0 model. This is the focus of the rest of this chapter below.

Fig. 29 Three different autopilot ground test configurations

Both DLR and SZTAKI flutter controllers were run in SIL-HIL applying different loop delays and running the

baseline controller on the real hardware. An open loop simulation (OLP) with only baseline controller and then both
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flutter controllers with 13, 14 and 15ms delays were run to evaluate performance. The limit speeds and flutter caused

fail are summarized in Table 2. Fail means sudden decrease of aircraft airspeed because of flutter, pass means that the

airspeed was held for 50-100s time so flutter compensation is successful. Note that 64.5 m/s is the maximum achievable

IAS of the simulated A/C model. Which is interesting is that the DLR controller performed better with higher delay

than with lower however, it was designed for 15ms delay so too low delay can also cause performance degradation. The

IAS tracking results are shown in Fig.s 30 to 36. SZTAKI flutter controller performance decreased with increasing

delay as expected showing only slight improvement relative to the open loop flutter speed with 15ms delay (see the

Table). That’s why redesign is required in the future.

Table 2 Flutter speed results

Delay 13 ms 14 ms 15 ms

OLP 50 m/s fail N/A N/A N/A N/A

DLR 64 m/s fail 64.5 m/s pass 64.5 m/s pass

SZTAKI 63 m/s fail 60 m/s fail 54 m/s fail

Fig. 30 Baseline open loop staircase IAS tracking
Fig. 31 DLR closed loop staircase IAS tracking

with 13ms delay
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Fig. 32 DLR closed loop staircase IAS tracking

with 14ms delay

Fig. 33 DLR closed loop staircase IAS tracking

with 15ms delay

Fig. 34 SZTAKI closed loop staircase IAS track-

ing with 13ms delay

Fig. 35 SZTAKI closed loop staircase IAS track-

ing with 14ms delay

Fig. 36 SZTAKI closed loop staircase IAS tracking with 15ms delay
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Detailed control input and flutter mode energy results are collected in the Appendix A. Fig.s 41 to 43 show the

baseline and flutter controller input energies for the different controllers and delays. Energy here means the squares of

the signals summarized for a given time interval. As the open loop flutter airspeed is about 50m/s and the maximum

airspeed is 64.5 m/s the energy calculations are done from 51 to 65m/s reference values summing up the squared signals

separately for every constant reference IAS section. That’s why IAS is on the horizontal axis of all the figures. Fig. 43

shows that the ruddervator energy increases as the airspeed increases and this is mainly because of the modification of

elevator trim value. In case of the DLR flutter controller only the trend of the ruddervator energy increases there are

airspeeds with more energy and others with less. In case of the SZTAKI flutter controller the trend is linearly increasing.

This shows that the DLR flutter controller has some coupling (some effect on) with the ruddervators while the SZTAKI

controller does not. The sections going down in case of SZTAKI control are caused by the stop of the simulation after

flutter control fails. From this point there is no data to sum up and this is the same in all other figures where a sudden

drop to almost zero value can be seen.

Fig. 41 shows that with the DLR flutter controller the baseline controller uses the same amount of control for any

delay and the deflections are moderate (also for aileron 3 and aileron 1). On the other hand with the SZTAKI flutter

controller also the baseline controller uses a large amount of control in aileron deflections. This can be seen in the much

larger energy values in the figure. The situation is the same regarding the flutter control part (Aileron 4 in Fig. 42)

where the DLR controller uses moderate deflections while the SZTAKI controller applies much larger control energy.

The figure also shows that the DLR control input decreases as the system delay approaches the value considered in

flutter control design and does not have a well defined trend in energy changes. It can both increase or decrease by the

increase of airspeed. The same was seen in the ruddervator figure.

The larger control energy input of SZTAKI flutter controller can be advantageous if it gives better damping for

the flexible dynamics of wings. To check this the measured accelerations and angular rates at the wingtip (IMU6) are

processed together with the modal velocities of the first, third and fifth modal coordinates (which are the first three most

excited coordinates). These are all proportional with the stored energy in the wings. In case of acceleration and angular

rate signals the body accelerations and angular rates are first subtracted to get relative values and these are squared and

summed as in case of the control deflections. Fig.s 44 and 45 show that the SZTAKI flutter controller allows much

larger accelerations and angular rates when the wing approaches flutter. This is also verified with the modal energy

terms (see Fig.s 46 to 48) where the stored energy in the wings is much larger with SZTAKI flutter control than with

DLR. In these figures the squared modal velocities are summed in the same manner as the control deflections.

Summarizing the SIL-HIL test results the test shows that the baseline controller works well until wing flutter occurs.

Above the 50-51 m/s flutter speed the baseline controller is incapable to stabilize the aircraft. Comparing the DLR and

SZTAKI flutter controllers has led to the result that the DLR controller is capable to stabilize the wing even until the

maximum airspeed of the aircraft if the delay of the system matches the delay considered in control design so HIL and

real flight testing of this controller can be started to be prepared. On the other hand the SZTAKI controller uses much

more control energy and induces much more energy in the flexible dynamics and is unable to stabilize the wing on

the whole airspeed range. By the increase of system delay its capabilities become even more limited so it should be

redesigned and improved before HIL and real flight tests.

VI. Flight Testing Aspects of Active Flutter Mitigation

A. Actuator Limitations

Based on the model results, the approximated flutter frequency is round 8Hz. The expected actuator load is at a

maximum of 4Nm. An off the shelf actuators, the maximum load is usually a given parameter by the manufacturer, but

usually, there is no available information about the bandwidth itself. To be able to safely control the flutter, the actuator

needs at least double the bandwidth than the flutter frequency itself.

Measurement was made on an off the shelf MKS HBL 599 actuator, which has enough speed and torque characteristics

to serve as an actuator in this case. The measurements showed 37, that the actuator itself have bandwidth around

12 − 14Hz. This available bandwidth is just not sufficient in our case - not even counting with safety margins.

To face the bandwidth requirement, a custom direct drive solution was proposed. A light-weight BLDC motor with

high-resolution encoder and a sufficient drive electronics was put together for testing 38. The main components of the

custom actuator are a T-Morot U10PLUS KV80 actuator, Elmo, Gold Solo Twitter servo drive and a Netzer DL-25

absolute position rotary encoder.

The initial measurements showed, that this custom solution has high enough bandwidth even with safety margins to
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Fig. 37 Amplitude characteristics of the HBL 599 servo with 2.4 ∗ 10−4kgm2 inertial load

Fig. 38 Assembled custom direct drive servo solution for active flutter suppression

be used for active flutter suppression. With the given drive electronics, the fine-tuning of the actuator parameters are

possible 39.

Another interesting feature on the custom direct-drive system is the step response of the actuator itself 40. The

setting time itself is much faster than in the standard geared servo like the HBL 599.

VII. Conclusion
The paper presented modeling aspects of aeroservoelastic systems including finite element modeling updates based

on ground tests. Two different directions, the top-down and bottom-up modeling approaches were used to obtain

low order control oriented LPV models. Both reduced similar number of states and similar approximations of the

high fidelity nonlinear aeroservoelastic model of the FLEXOP demonstrator aircraft. The reduced order models were

augmented by parametric and dynamic uncertainties. These uncertain LPV models were used for flutter suppression

control design. The DLR, UBRISTOL and SZTAKI applied different approaches for the control design. The DLR and

SZTAKI controllers were assessed in the HIL environment. After the description and delay measurement of the HIL

setup the possible mission scenarios and the implementation issues of the controllers were described. Finally, the hybrid

SIL-HIL evaluation of DLR and SZTAKI flutter controllers was done. While the former was able to mitigate flutter if

the system delay was close to its design delay even until the maximum achievable airspeed the latter was not able to

stabilize the system even with lower time delay. So while the former is ready for HIL and possibly real flight testing the

latter should be redesigned and improve to satisfy all criteria.
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Fig. 39 Amplitude characteristics of different low level control loops on the custom direct-drive application

Fig. 40 Step response of the custom direct-drive system
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A. Input and wing flutter energies

Fig. 41 Energy content of baseline aileron actua-

tor (Nr. 2)

Fig. 42 Energy content of flutter aileron actuator

(Nr. 4)
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Fig. 43 Energy content of baseline ruddervator

actuator (Nr. 1)

Fig. 44 Energy content of wing IMU (Nr. 6) ac-

celeration

Fig. 45 Energy content of wing IMU (Nr. 6) pitch

rate
Fig. 46 Energy content of wing flexible mode 1

Fig. 47 Energy content of wing flexible mode 3 Fig. 48 Energy content of wing flexible mode 5
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