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Abstract Biological vision systems have inspired and will
continue to inspire the development of computer vision sys-
tems. One biological tendency that has never been exploited
is the symbiotic relationship between foveation and uncal-
ibrated active, binocular vision systems. The primary goal
of any binocular vision system is the correspondence of
the two retinal images. For calibrated binocular rigs the
search for corresponding points can be restricted to epipo-
lar lines. In an uncalibrated system the precise geometry is
unknown. However, the set of possible geometries can be
restricted to some reasonable range; and consequently, the
search for matching points can be confined to regions de-
lineated by the union of all possible epipolar lines over all
possible geometries. We call these regions epipolar spaces.
The accuracy and complexity of any correspondence algo-
rithm is directly proportional to the size of these epipolar
spaces. Consequently, the introduction of a spatially variant
foveation strategy that reduces the average area per epipo-
lar space is highly desirable. This paper provides a set of
sampling theorems that offer a path for designing foveation
strategies that are optimal with respect to average epipolar
area.
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1 Introduction

Stereoscopic vision systems image the environment from
two distinct vantage points and then correspond the retinal
images in a process called stereopsis. Once matching points
are determined, depth information can be recovered via tri-
angulation. Nature has, thus far, produced the most success-
ful binocular vision systems. Consequently, an understand-
ing and emulation of their advantageous properties are con-
stant goals of many scientists and engineers. The biologi-
cal visual system most often modeled by machines is the
human visual system (HVS). Three important, interrelated
attributes of the HVS which have been adopted to varying
degrees, are the following:

1. Active vision—The paradigm of active vision, i.e. the
ability to dynamically pose the eyes, is of paramount
importance in the HVS. Active vision systems possess
a virtually unlimited field-of-view, while confining their
resources to a specific region-of-interest. From a math-
ematical standpoint, active systems are able to address
in a well-posed manner tasks, such as the correspon-
dence problem (Marr and Poggio 1976), that are ill-
posed to the passive observer (Aloimonos et al. 1987).
In general, the ability to dynamically interact with the
environment has been shown to simplify many prob-
lems in computer vision (Sandini and Tistarelli 1990;
Ballard 1991).
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2. Foveation—In perfect harmony with the active vision
paradigm is the adoption of foveated retinas. Foveation
allows the high-resolution analysis of a spatially con-
centrated region-of-interest, while simultaneously pro-
viding a low-resolution, wide field-of-view. The use of
such foveation strategies as log-polar (Weiman 1995),
reciprocal wedge transform (Li and Zhou 1999), foveate
wavelet transform (Wei and Li 1998), and fish-eye (Shah
and Aggarwal 1994) have been successfully applied to
both monocular and binocular vision problems such as
foveated compression (Lee et al. 2001; Wang and Bovik
2001; Geisler and Perry 1998), vergence (Manzotti et
al. 2001), time-to-impact analysis (Tistarelli and San-
dini 1991), and depth recovery of a scene (Chen and
Deconinck 1994; Schindler and Bischof 2004). In these
instances the sampling strategies were first investigated
elsewhere and later applied to areas of stereo vision. In
rare cases the foveation strategy has been specifically tai-
lored for a stereo vision task. Both, Basu (1992) and El-
nagar (1998) derived optimal sampling schemes with re-
spect to the error discretization of depth measurements.
Klarquist and Bovik (1998) designed a real-time foveated
stereo technique that adapts to the specific geometry, al-
ways producing horizontal epipolar lines.

3. Lack of calibration—The HVS is known to be uncal-
ibrated1 (Stevenson and Schor 1997; Schreiber et al.
2001; Schreiber and Tweed 2003), not possessing pre-
cise knowledge of the ocular geometry. The emulation of
this trait is far less prevalent in computer vision than the
previous two. The advantages of epipolar geometry have
driven the majority of the research toward calibrated sys-
tems. The disadvantages of such calibrated systems are
numerous. Obtaining the calibration information neces-
sary for the accurate estimation of epipolar geometry can
be highly complex, involving motorized lens calibration,
kinematic calibration, and head/eye calibration (Shih et
al. 1998). Such calibrated systems require highly accu-
rate, often expensive equipment. Furthermore, the cali-
bration of active vision systems can be constantly per-
turbed due to motion, thermal changes, and numerous
other unforeseen environmental factors, and thus require
constant recalibration. Unarguably, some tasks, such as
absolute depth recovery, demand exact calibration. Yet,
for a substantial number of visual problems calibration is
irrelevant (Hespanha et al. 1999). Evolution of the HVS
has found that explicit knowledge of epipolar geometry is
unnecessary and/or untenable; and yet, the HVS is able to
perform a wider variety of depth related visual tasks with
a greater degree of success than any mechanized system.

1Note that the term uncalibrated is meant to reflect a complete lack
of calibration information and is not to be construed as lacking only
metric calibration.

It is easy to see that the first two traits (active vision and
foveation) are interrelated. Both facilitate the concept of a
small, highly detailed region-of-interest intertwined with a
large, less detailed periphery. The HVS is not the only bi-
ological vision system that has evolved toward this interde-
pendence. In fact, all forward-looking animals with active
binocular vision systems that have been shown to employ
stereopsis have foveated retinas. Thus far this group includes
the monkey, cat, falcon, and barn owl (Fite and Rosenfield-
Wessels 1975; Rapaport and Stone 1984; Ptito et al. 1991;
Fox et al. 1977; Bough 1970; van der Willigen et al. 1998;
Wathey and Pettigrew 1989). To underscore the symbi-
otic nature of foveation and stereopsis, consider the follow-
ing afoveate animals: goldfish (Easter 1972), rabbit (Davis
1929), hamster (Tiao and Blakemore 1976) and rat (Dräger
and Olsen 1980). All possess laterally placed eyes with min-
imal binocular overlap and are not known to have stereo-
scopic vision. In place of a centralized foveal region, the
retinas of rabbits, hamsters, and rats are known to have high-
density visual streaks useful for detecting predators along
the horizon.

The importance and emulation of the uncalibrated nature
of the HVS have been largely absent in the computer vision
literature. This is likely due to a couple of reasons. Most
prominent, as mentioned above, is the desire to use epipo-
lar constraints to simplify the correspondence problem. Sec-
ondly, the discovery that the HVS is uncalibrated is rather
recent (and is still unknown for animals). In fact, some previ-
ous studies tended to suggest that it was calibrated (Nielsen
and Poggio 1984).

In this paper we demonstrate that a symbiosis exists not
only between foveation and binocular active vision systems,
but more specifically between foveation and uncalibrated
binocular active vision systems. Although this work is bio-
logically inspired and may even offer biologically relevant
conclusions, it is presented solely in the context of com-
puter vision systems for two reasons: (1) the geometrical
complexities of biological vision systems makes mathemat-
ical analysis exceedingly difficult, (2) we wish to demon-
strate from an engineering perspective the inherent advan-
tages of adopting foveated, uncalibrated binocular active vi-
sion systems. An outline of the arguments to be presented
is as follows: the primary goal of any binocular vision sys-
tem is the correspondence of the two retinal images. For cal-
ibrated binocular rigs the search for corresponding points
can be restricted to epipolar lines. In an uncalibrated system
the precise geometry is unknown. However, the set of pos-
sible geometries can be restricted to some reasonable range;
and consequently, the search for matching points can be con-
fined to regions delineated by the union of all possible epipo-
lar lines over all possible geometries. We call these regions
epipolar spaces (Monaco et al. 2007b). The accuracy and
complexity of any correspondence algorithm is directly pro-
portional to the size of these epipolar spaces. Consequently,
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the introduction of a spatially variant foveation strategy that
reduces the average area per epipolar space is highly desir-
able (Monaco et al. 2007a). This paper provides a set of sam-
pling theorems that offer a path for constructing foveation
strategies that are optimal with respect to average epipolar
area.

The remainder of this paper proceeds with the follow-
ing format: First we mathematically quantify the concept of
an epipolar space. We then present a sequence of sampling
theorems that form the foundation for the design of optimal
foveation strategies. Next, we derive the optimal sampling
scheme for a simple set of epipolar spaces and quantify the
attendant reduction in average epipolar area. Finally, we dis-
cuss the impact of this work and how it provides insight into
both biological and mechanical vision systems.

2 Epipolar Spaces

Knowledge of the camera geometry can be valuable in the
registration process, reducing the search for matching points
to epipolar lines (Horn 1986; Bovik 2000). Consider the
stereo geometry in Fig. 1. Here two pinhole cameras whose
optical centers are located at Cl and Cr converge at the fix-
ation point V . Both cameras have planar imaging surfaces
situated at identical focal lengths f from their respective
pinholes. The left and right camera rotation angles are θl

and θr . Each camera has an associated right-hand coordinate
system originating at its optical center. If m̃l = [xl, yl, zl,1]t
and m̃r = [xr , yr , zr ,1]t are projective world coordinates in
the left and right camera frames, respectively, then their re-
lation is m̃r = [R |T ] m̃l , where

R =
⎡
⎣

− cos(θl + θr) 0 − sin(θl + θr)

0 1 0
sin(θl + θr) 0 − cos(θl + θr)

⎤
⎦ (1)

Fig. 1 Stereo geometry. Left and right cameras with optical centers
Cl and Cr converge at fixation point V . Both cameras have focal
lengths f . The left and right camera rotation angles are θl and θr

is the rotation matrix and

T = |T |
⎡
⎣

− sin(θr )

0
− cos(θr )

⎤
⎦ (2)

is the translation vector of length |T |. Let ml = [ul, vl,1]t

and mr = [ur, vr ,1]t be projective coordinates in the left
and right image planes. It is well known that the equation
relating corresponding epipolar lines is

mt
rA

−t
r T×RA−1

l ml = 0, (3)

where, in our simplified geometry,

Al = Ar =
⎡
⎣

f 0 0
0 f 0
0 0 1

⎤
⎦ (4)

are the identical intrinsic matrices and

T× = |T |
⎡
⎣

0 cos(θr ) 0
− cos(θr ) 1 sin(θr )

0 − sin(θr ) 0

⎤
⎦ (5)

implements the crossproduct as a matrix. The matrix E =
T×R is the essential matrix and relates the coordinate
frames. The matrix F = A−t

r EA−1
l is the fundamental ma-

trix (Faugeras et al. 1992) and includes the intrinsic parame-
ters of the cameras. The expression in (3) can be simplified
to the following:

vl = vr

f sin(θl) + ul cos θl

f sin(θr ) − ur cos θr

. (6)

That is, for a given point (ur , vr) in the right image, the
matching point in the left image (if not obscured) lies on
the line given by (6). It is worth mentioning that the length
|T | of the translation vector has no effect on the epipolar
equations.

We now consider the situation where the camera config-
uration actively changes and we no longer know the specific
geometry. In such a situation we will not be able to restrict
our search for corresponding points to epipolar lines. How-
ever, even though we may not know the precise values of
parameters such as focal length, baseline distance, and cam-
era rotation angles, we can establish acceptable ranges for
these values. Consequently, we can still restrict the location
of corresponding points across images. For a given point in
one image, the matching point in the other is confined to
a region defined by the union of all corresponding epipolar
lines produced over all possible camera configurations. We
call these continuous regions epipolar spaces.

The goal of the remainder of this section is to quantify
these epipolar spaces for a stereo rig with a fixed baseline
and fixed focal length as shown in Fig. 1. In this configu-
ration the only variable parameters that effect the epipolar



Int J Comput Vis (2009) 85: 192–207 195

geometry are the rotation angles θl and θr . Translation and
rotation of the entire stereo rig about O , while allowed, do
not influence the epipolar geometry. We establish the range
of rotation angles by confining them to the interval

θl, θr ∈ [θM,π − θM ] , (7)

where θM is the minimum angle relative to the baseline.
Although theoretically a matching point can lie anywhere

on the corresponding epipolar lines, the search is usually re-
stricted to a maximum horizontal disparity. Bounding the
horizontal disparity d has the effect of limiting the depth
around the horopter at which objects can be fused. For our
purposes, we assume a maximum horizontal disparity de-
fined by

|d| = |ul − ur | ≤ D. (8)

For the right image point Ir Fig. 2(a) illustrates several cor-
responding epipolar lines in the left image. Each separate
epipolar line results from a unique geometric configuration,
i.e. a unique combination of θl and θr . The dashed vertical
lines delimit the maximum allowable horizontal disparities
defined by (8).

The restriction imposed by (8) determines the leftmost
and rightmost bounds of the epipolar spaces. The upper and
lower bounds are determined by maximizing and minimiz-
ing (6) with respect to both θl and θr , respectively. The maxi-
mum can be found by separately maximizing the numerator
and minimizing the denominator. Taking the derivative of
the numerator with respect to θl , setting it to zero, and solv-
ing for θl yields the maximizing value θl = atan(f/ul). The
denominator (which is positive so long as the cameras never
image each other, i.e. the images do not contain the epipoles)
is minimized when θr = θM . Inserting these results into (6),
the upper bound becomes

vl,max = vr

√
f 2 + u2

l

f sin(θM) − ur cos(θM)
. (9)

The minimization of (6) is performed similarly with θl =
π − θM and θr = atan(−f/ur), producing

vl,min = vr

f sin(θM) − ul cos(θM)√
f 2 + u2

r

. (10)

Since the horizontal extents are limited by (8), ul in the pre-
ceding equations can be rewritten as ul = ur + ε, where
ε ∈ [−D,D]. In practice f �ε, allowing the following ap-
proximation: ul ≈ur . Incorporating this result into (9) and
(10) produces

vl,max ≈ vr

√
f 2 + u2

r

f sin(θM) − ur cos(θM)
= vrc(ur), (11)
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vl,min ≈ vr

f sin(θM) − ur cos(θM)√
f 2 + u2

r

= vr

c(ur)
, (12)

where

c(ur) =
√

f 2 + u2
r

f sin(θM) − ur cos(θM)
. (13)

Remarkably, an epipolar space is well modeled by a rec-
tangle. This fact is illustrated in Fig. 2(b). Each large dot
represents a coordinate in the right image plane; they are en-
closed in their corresponding epipolar spaces in the left im-
age plane. The thick lines represent the precise boundaries
of the regions described by (8), (9), and (10). The thin lines
denote the approximate upper and lower bounds determined
from (11) and (12). Epipolar spaces are nonuniform in area,
increasing in size with increasing values of u and v.

For further clarification we recapitulate the concept of
epipolar spaces. Consider a point Ir in the right image.
Though many possible 3D points can project to this coor-
dinate, they are constrained to the 3D line connecting Ir and
the camera pinhole Cr . This line changes as the right cam-
era rotates. The projection of the 3D line onto the left image
plane defines the coordinates in the left image that may cor-
respond with Ir . This projection depends upon the rotation
angle of the left camera. We provide the following simula-
tion: for each possible geometric camera configuration (i.e.
left and right camera rotation angles) we uniformly sample
the 3D line containing Ir and Cr and then project the sam-
ples onto the left image plane. Those projected points whose
horizontal disparities satisfy (8) are plotted in Fig. 2(c). This
simulation is performed for the four right image points Ir

shown in Fig. 2(b). As expected the projected points fall
within their associated epipolar spaces.

3 Optimal Sampling

The complexity and accuracy of any stereopsis algorithm,
whether feature-based (Dhond and Aggarwal 1989) or
phase-based (Sanger 1988; Jenkin et al. 1991; Monaco et
al. 2008), are directly proportional to the average size of the
regions that must be searched to locate matching points. For
uncalibrated active vision systems these regions are epipolar
spaces. The goal of this section is to discuss a sequence of
theorems (presented in detail in the Appendix) that will form
the foundation for creating optimal sampling schemes. An
optimal sampling scheme is defined as the foveation strat-
egy that minimizes the average number of points per epipo-
lar space. Though sampling is inherently a discrete process,
it can be modeled continuously. Working in a continuous
domain simplifies the analysis, allowing the use of powerful
mathematical tools that are either unavailable or extremely
cumbersome in a discrete framework.

This remainder of this section proceeds as follows: in
Sect. 3.1 we recapitulate the concept of an optimal sampling
strategy and provide intuitive examples. Section 3.2 consid-
ers the optimal sampling strategies for a one-dimensional
image interval. Analysis in one-dimension simplifies the
mathematics and provides a sound framework for the two-
dimensional adaptation. Section 3.3 extends the optimal
one-dimensional sampling strategies to two dimensions.
Note that the following derivations are not restricted to the
specific epipolar spaces described by (8), (11), and (12), but
instead, are generalized to epipolar spaces of a variety of
shapes and sizes.

3.1 Preliminaries

It is important to mention two points that are crucial in un-
derstanding this paper: (1) both image planes are assumed
to have identical foveation patterns and (2) the pattern of
epipolar spaces is symmetric about both axes in the image
plane. The inherent symmetry of the stereo vision problem
seems to require that these properties be satisfied. The prac-
tical effect of these conditions is to allow us to constrain our
analysis and illustrations to a single image plane. For exam-
ple, consider again the plots presented Fig. 2. In all three
illustrations the points to be matched are from the right im-
age plane, and the possible matching points are from the left.
Even if the roles of the two image planes were reversed the
plots would remain the same. Though we will continually
return to the matching problem between image planes, the
design of an optimal foveation strategy can be conceptually
restricted to a single image. This will become clear with the
following example.

Fig. 3(a) represents a uniform sampling scheme applied
to both the left and right image planes. To recover depth in-
formation each sample in one image must be paired with its
matching sample in the other. This is called the correspon-
dence problem (Marr and Poggio 1979). If we assume an
uncalibrated stereovision system as defined in Sect. 2 then
for each point in the right image we can confine the search
in the left to the appropriate epipolar space. For example,
consider the three white samples in Fig. 3(a) which repre-
sent points in the right image for which we want to locate
matches in the left (or equivalently, points in the left image
for which want to locate matches in the right). Each point is
enclosed by its associated epipolar space. Notice how the
center epipolar space only contains a single point. Obvi-
ously, the process of identifying its corresponding point is
both fast and accurate. By contrast, the upper-left epipolar
space is much larger, containing 15 candidate matches (i.e.
possible matching samples). We need to consider on average
(15+1+12)/3 ≈ 9.3 samples when attempting to match the
three points.

Next consider the alternative sampling strategy in
Fig. 3(b). Notice that the number of samples stays fixed.
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Fig. 3 (a) Uniform sampling of
left and right image planes.
(b) Nonuniform sampling of left
and right image planes. White
dots and accompanying
rectangles in both figures
indicate sample points in the
right/left image and their
associated epipolar spaces in the
left/right

This foveation pattern reduces the average number of candi-
date points to (11 + 1 + 9)/3 = 7. Consequently, by varying
the sampling scheme we have reduced the average number
of points that must be searched in order to correspond the
samples. Though this average considers only three points
and should be extended to the remainder, it nevertheless be-
comes clear that we can simplify the correspondence prob-
lem by adapting the sampling strategy.

We define the optimal sampling strategy as the arrange-
ment that minimizes the average number of samples per
epipolar space with the caveat that the number of total sam-
ples remains constant. Requiring a fixed number of samples
prevents the trivial solution realized by removing all the
samples. Unfortunately, determining the optimal sampling
scheme in a discrete framework is difficult. We can, how-
ever, arrive at a solution when modeling the problem contin-
uously. Though we will subsequently discuss the specifics
of the continuous reformulation, it is helpful to now provide
continuous counterparts for several discrete concepts: aver-
age number of samples per epipolar equates to average area
per epipolar space, a discrete sampling strategy becomes
a continuous function, and the condition requiring a fixed
number of samples translates to a condition requiring the
preservation of total area.

Before proceeding to the optimal sampling functions we
consider the occurrence of clipping. Invariably, portions
of some epipolar spaces, such as the bottom-right epipo-
lar space in Figs. 3(a) and 3(b), will extend outside any
finite sized imaging surface. Obviously, we would never
search for corresponding points in these regions; and con-
sequently, they are clipped from the epipolar spaces. Un-
fortunately, clipping is a nonlinear operation and is difficult
to model mathematically. Therefore, we disregard its effects
when deriving the optimal sampling functions. This results
in slightly suboptimal sampling strategies in localized re-
gions near the border of the imaging surface. The effects of
clipping will be illustrated in later sections.

Fig. 4 This figure shows two intervals that range from a to b. The dots
and rectangles in the leftmost interval illustrate two samples and their
associated epipolar intervals. The dots and rectangles in the rightmost
interval illustrate these samples and epipolar intervals after the applica-
tion of the sampling function γ . The dotted areas indicate the portions
of the epipolar spaces that would extend outside the interval if they
were not clipped at the boundaries

3.2 One-Dimensional Foveation

Let the interval I = [a, b] represent a one-dimensional im-
age plane (interval). Please refer to the leftmost interval in
Fig. 4 for an illustration. For each point u in I the match-
ing point must lie within the corresponding epipolar inter-
val. The upper and lower extents of these epipolar intervals
can be expressed as functions of u. Let i(u) represent the
epipolar interval associated with the point u, and let ib(u)

and ia(u) indicate the upper and lower bounds of i(u), re-
spectively. The goal of an optimal sampling strategy is to
place N points in interval I in such a fashion as to mini-
mize the average number of candidate matches for each of
the N points. A candidate match for point uj is defined as
any point uk that lies within the epipolar interval i(uj ).

A discrete sampling strategy can be modeled as a
continuous sampling function (Zeevi and Shlomot 1993).
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A sampling function is defined as any increasing, invert-
ible function γ (u). For a given sampling strategy γ (u) and
set of epipolar intervals i(u), the average epipolar length
E(γ ; i, I ) over I can be expressed as

E(γ ; i, I ) = 1

b − a

∫ b

a

e
[
γ ; i(u)

]
γ ′(u) du, (14)

where

e
[
γ ; i(u)

] =
∫ ib(u)

ia(u)

γ ′(ũ) dũ (15)

is the length of the epipolar interval associated with the point
u after transformation. The optimal sampling function is the
function γ (u) that minimizes (14) subject to the constraint
of length preservation:

�(γ ; I ) =
∫ b

a

γ ′(u) du = b − a. (16)

This length preservation constraint is the continuous analog
to the discrete requirement that the number of samples re-
main fixed. Without this stipulation the solution devolves to
the trivial case of γ ≡ 0.

Consider the leftmost interval in Fig. 4. The dots and
their associated rectangles represent the points u1 and u2

and their corresponding epipolar intervals. The transforma-
tion γ maps this interval onto the rightmost interval, warp-
ing the points and epipolar intervals accordingly. Notice that
the epipolar intervals of u1 and γ (u1) were clipped (denoted
by the line) so that they would not extent outside [a, b].

In Appendix A we show that the optimal transformation
is the function that warps the epipolar intervals into inter-
vals of identical length. This implies that a discrete sampling
strategy should arranged the samples so that each epipo-
lar interval contains the same number. That is, the sam-
pling density should be proportional to the epipolar length:
smaller epipolar spaces are sampled more finely than larger
ones.

We conclude this subsection with an analogy to lend intu-
ition to the previous mathematical abstractions. Imagine we
stretch a rubber band (one-dimensional image I ) taut and
secure its ends with two nails. We then draw along it length-
wise many overlapping intervals (epipolar intervals i(u)) of
different size. We sum the interval lengths and determine the
average (average epipolar length). Next we take the middle
of the rubber band, pull (warping function γ ) it—along the
line of the rubber band—closer to one of the end points, and
use a third nail to hold this deformation in place. Assume
that the rubber band remains taut and collinear. Though the
total length of the stretched rubber band remains the same,
the intervals will have expanded or contracted depending on
which side of the third nail they lie. If we were to again de-
termine the average interval length it would almost assuredly

be different. By effecting many such deformations in combi-
nation we can find the total deformation that minimizes the
average length of the intervals (optimal sampling strategy).

3.3 Two-Dimensional Foveation

Consider any two-dimensional, connected region R. For ref-
erence, please consult Fig. 5. For each point u in R the
matching point must lie within the corresponding epipolar
space r(u). The goal of a two-dimensional optimal sampling
strategy is to place N points in the region R in such a fash-
ion as to minimize the average number of candidate matches
for each of the N points. A candidate match for point uj is
defined as any point uk that lies within the epipolar space
r(uj ).

A two-dimensional continuous sampling function is de-
fined as any invertible function γ (u)

.= [γu(u), γv(u)]t that
maps R

2 → R
2 and has a Jacobian matrix whose determi-

nant Jγ (u) = |γ ′(u)| is positive everywhere. For a given
sampling function γ (u) the average area of the epipolar
spaces r(u) over the region R is defined as

E(γ ; r,R) = 1

AR

∫ ∫
R

e
[
γ ; r(u)

]
Jγ (u) du, (17)

where

e
[
γ ; r(u)

] =
∫ ∫

r(u)

Jγ (ũ) dũ (18)

is the area of the epipolar space associated with the point u

after transformation and AR = ∫∫
R

du. An optimal sampling
scheme is a function γ (u) that minimizes E(γ ; r,R) subject
to the constraint of area preservation:

�(γ ;R) =
∫ ∫

R

Jγ (u) du =
∫ ∫

R

du = AR. (19)

In Appendix B we show that the optimal transforma-
tion maps the epipolar spaces into regions of uniform area

Fig. 5 Leftmost drawing illustrates the imaging surface R, sample u,
and its epipolar space r(u). The rightmost image illustrates the imaging
surface, sample, and epipolar space after the application of the sam-
pling function γ
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but with arbitrary shape. Consequently, there are an infinite
number of optimal transformations. This result is expected
given the form of (17), which does not depend on the spe-
cific transformation γ , but only the determinant of its Ja-
cobian. This determinant reflects the instantaneous rate of
change in area much as the derivative in one dimension in-
dicates the instantaneous rate of change in length (Strang
1988, p. 212). These results imply that a discrete sampling
strategy should arrange the samples so that an equal num-
ber appear in every epipolar space. Obviously, there are nu-
merous arraignments that can accomplish this. For exam-
ple, consider the case where the epipolar spaces are already
uniform in area. Accordingly, the optimal strategy is uni-
form sampling. However, this uniform sampling can come
in many forms. For example, rectangular uniform sampling
whose sampling function is γ (u) = [u v]t has a Jacobian
with a determinant of one. Yet, so does hexagonal uniform
sampling:

γ (u) = √
2/3

[
1 1

2

0
√

3
2

][
u

v

]
. (20)

We were unable to contrive a two-dimensional analogy
similar to that of the rubber band. The closest approxima-
tion is an elastic sheet littered with overlapping rectangles.
The size and shapes of the rectangles can be deformed by
internal stretching. However, it is not clear that the possible
deformations are as extensive as those realizable by γ .

4 Optimal Sampling Applications

This section uses the results from previous sections to for-
mulate the optimal sampling schemes for the epipolar spaces
defined in (8), (11), and (12). First, the optimal scheme is
derived independently for each dimension. Then these so-
lutions are integrated to create the optimal two-dimensional
sampling scheme.

4.1 One-Dimensional

The epipolar spaces delineated in (8), (11), and (12) are
identical in both images and symmetric across image quad-
rants, therefore we need only consider the positive coordi-
nates of a single image plane. For the point (u, v), the cor-
responding bounds for a one-dimensional epipolar interval
i1(u) along the horizontal u dimension are given by (8).
These boundaries form intervals of uniform length 2D (ig-
noring clipping). As shown in Appendix A, the optimal sam-
pling scheme over the interval [a, b] for epipolar intervals of
uniform length is uniform sampling:

γ1(u) = u. (21)

The average epipolar length for these uniform epipolar in-
tervals under uniform sampling is

E(γ1; i1, I ) = 2D − D2

b − a
. (22)

This converges to 2D as b − a becomes large with respect
to D, i.e. clipping becomes negligible.

In the vertical v dimension the boundaries of the epipolar
interval i2(v) are given by (11) and (12). The resulting inter-
vals [v/c(u), vc(u)] are nonuniform in length. The function
γ (v) that minimizes their average length on I must warp
them into intervals of uniform length and satisfy (16). This
optimal function is

γ2(v) = β lnv, (23)

where β = (b−a)/(lnb− lna). The average epipolar length
under this logarithmic transformation is

E(γ2; i2, I ) = 2β ln c − [β ln c]2

b − a
. (24)

Since (23) has a singularity at zero, the interval [a, b] must
not contain zero.

If instead the interval were sampled uniformly, the aver-
age epipolar length would be

E(γ1; i2, I ) = a2(1 − c) + b2(1 − 1/c)

b − a
. (25)

Fig. 6 plots the ratio E(γ1; i2, I )/E(γ2; i2, I ). Since the
value of the variable c given in (13) is a function of u, this
ratio is plotted over a range of positive u values. For small
values of u, the logarithmic sampling function γ2(v) pro-
duces epipolar lengths that are, on average, less than half
the size of those produced by the uniform sampling function
γ1(v).

For additional insight, consider a third sampling method
that, like logarithmic sampling, also tends to concentrate
more samples near a:

γ3(v) = −abv−1, (26)

The commensurate average epipolar length is

E(γ3; i2, I ) = a2(1 − c) + b2(1 − 1/c)

b − a
. (27)

Interestingly, this is identical to the average length for uni-
form sampling.

4.2 Two-Dimensional

In the previous subsection each dimension was optimized
independently. Unfortunately, the vertical bounds of the
epipolar spaces described in (11) and (12) depend on both
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Fig. 6 Ratio of the average lengths E(γ1; i2, I )/E(γ2; i2, I ) of the
epipolar intervals delineated in (11) and (12) under uniform and log-
arithmic sampling. The vertical interval extends from a = 0.017 to
b = 1. Since the value of the variable c(u) described in (13) is a func-
tion of u, the ratio is plotted over a range of positive u values. The
determination of c(u) uses the following parameters: θM = π/3 and
f = 1

u and v: they are nonseparable. To produce regions of equal
area (and, therefore, minimize the average epipolar area) we
must compensate for this dependence by normalizing (23).
The following function produces spaces of approximately
equal area:

γ (u, v) =
[
βuu,

βvlnv

ln c(u)

]t

, (28)

where βu and βv are constants chosen such that their prod-
uct satisfies the constraint in (19). The following calculation
of the area of an arbitrary epipolar space r(u) (that is not
clipped) after transformation confirms they have constant
area:

e
[
γ ; r(u)

] =
∫ u+D

u−D

∫ vc(u)

v/c(u)

βuβv

v ln[c(ũ)] dũ dṽ

=
∫ u+D

u−D

2βuβv

ln c(u)

ln c(ũ)
dũ

≈ 4Dβuβv. (29)

This follows from the fact that for ũ ∈ [u − D,u + D] the
function ln cv(u)/ln cv(ũ) is approximately linear with a
mean value of one. Figure 7 illustrates the average area of
each epipolar space following transformation. As expected
this average remains constant over the majority of the imag-
ing surface. The degradation seen in the upper right corner
is caused by clipping. The epipolar spaces in this region (be-
fore they are clipped) have relatively large areas extending
outside the image boundary.

Fig. 7 Area per epipolar space. Each area is normalized by the total
area of the image plane. The normalized area remains constant over
the majority of the imaging surface. The degradation seen in the upper
right corner is caused by clipping

Fig. 8 Epipolar spaces from Fig. 2(b) after optimal sampling. The
epipolar spaces in Fig. 2(b) were warped using the transformation
in (28) with βu = 1. They are almost perfectly uniform in area

In Sect. 2 the epipolar spaces described in (8), (11), and
(12) were depicted as Fig. 2(b). The transformations of these
spaces using (28) are shown in Fig. 8. Though the warped
boundaries are not identically shaped, they are almost per-
fectly uniform in area.

As mentioned previously, the constants βu and βv in (28)
are only restricted in the sense that their product must sat-
isfy (19). This is a consequence of the fact that the average
epipolar area is a function of the determinant of the Jaco-
bian of γ (u), and not γ (u) itself. That is, an infinite num-
ber of functions can have Jacobian matrices with the iden-
tical determinant. Figure 9 illustrates the optimal sampling
strategies when βu is set to two different, arbitrarily chosen
values: βu = 1 and βu = 4.

Its is also instructive to view the sampling in the form of
a tessellation. Consider the uniform grid in Fig. 10(a). This
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Fig. 9 Example of optimal sampling scheme defined in (28) for
two different values of βu. Given βu, the value of βv is determined
by (19). Additional parameters were also assigned as follows: f = 1,
θM = π/3, a = 0.001, and b = 0.5. (a) Optimal sampling scheme with
βu = 1. (b) Optimal sampling scheme with βu = 4

grid represents the uniform sampling of the warped image
space resulting from the application of the optimal trans-
formation in (28) to a square image plane. Figure 10(b) il-
lustrates the tessellation resulting from projecting the uni-
form grid in Fig. 10(a) back into the original square image
plane.

It may be beneficial to put these results into context by
reviewing the meaning of an epipolar space, its importance
in stereo registration, and its connection to the optimal sam-
pling strategies. If a point in space projects onto the left im-
age plane, its projection onto the right image plane is re-
stricted to a region called an epipolar space. From a point of
view of a stereo registration algorithm, only the pixels in the
epipolar space must be examined to identify the matching
point. The complexity of this search is proportional to the
number of pixels in the epipolar space. Consider the epipo-
lar spaces shown in Fig. 2(b). If pixels were to uniformly
cover this space, then the larger epipolar spaces would re-
quire a greater search time than the smaller spaces. How-
ever, the time to search a particular epipolar space is not

Fig. 10 Tessellations for optimal epipolar sampling. (a) Warped im-
age space resulting from the application of the optimal transformation
in (28) to a square image plane. (b) Projection of the uniform grid in (a)
back into the original image plane

as important as the time it takes to search them all, which
is what must be done for dense stereo matching. Now con-
sider if the epipolar spaces in Fig. 2(b) were placed on a
sampling grid like those depicted Fig. 9. Were we to count
the number of samples appearing in each epipolar space, we
would find that they were identical (except in the clipped
epipolar spaces); and this number would be the same for
both sampling patterns in Fig. 9. More importantly, if a
fixed number of samples were placed within the defined
image boundary and then the average number of points
per epipolar space were computed, no placement strategy
would produce an average less than that of those shown
in Fig. 9. As an example, Table 1 provides a quantitative
comparison of the average number of samples per epipo-
lar space for both uniform sampling and the optimal sam-
pling strategy described in (28). The data were generated
for various rectangular image sizes and maximum rotation
angles θM .
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Table 1 Ratio of samples per epipolar space for uniform and optimal
sampling. Equivalently, this table presents the ratio of the average area
of an epipolar space before and after transformation by the sampling
function posed in (28). The leftmost, rightmost, and upper bounds for
the rectangular image are au = 0, bu = 0.5, and bv = 0.5, respectively.
The lower bound av is specified in the table

av θM E(γ 1; r,R)/E(γ 2; r,R)

0.1 π/4 1.74

0.1 π/3 2.06

0.01 π/4 2.58

0.01 π/3 3.12

0.001 π/4 3.47

0.001 π/3 4.22

5 Discussion

Consistent with our own goals, evolution seems to place
a premium on uncovering the easiest way to achieve a
goal while incurring the least possible expense computa-
tionally. Such reasoning may help explain the introduction
of foveated retinas into the visual systems of some ani-
mals with forward-looking, dynamically configurable eyes.
In this work we have demonstrated that the application of
such a spatially variant sampling scheme can reduce the av-
erage area of a search region by a factor of 3–4 over typical
uniform sampling. As we discuss next, were the range of
configurations more similar to those of the HVS we would
find this reduction factor to be even greater.

To ease mathematical calculations and simplify explana-
tions, the epipolar spaces as delineated in Sect. 2 assumed
a constant range of horizontal disparities. As stated previ-
ously, the horizontal disparity limits determine the depth
about the horopter in which objects can be fused. A con-
stant range corresponds to a constant depth. It can eas-
ily be argued that fusible depths should increase with dis-
tance from the vergence point. In fact, psychophysical in-
vestigations seem to suggest that such a tack is taken by
the HVS. In Blakemore (1970) Blakemore measures the
expected horizontal disparity limits of qualitative stereop-
sis (this is slightly different, and more appropriate, than
Panum’s fusional area (Howard and Rogers 1995; Yeshurun
and Schwartz 1999)) as a function of horizontal eccentric-
ity. Recomputing the epipolar spaces and attendant optimal
sampling strategy based on these measurements (and setting
θM in (7) to π/6—a reasonable value for the HVS) we arrive
at the tessellation shown as Fig. 11(a). For these newly con-
structed epipolar spaces, optimal sampling reduces the aver-
age epipolar area to 1/16 of that produced by uniform sam-
pling. For the epipolar spaces in Sect. 2 the spatially vari-
ant sampling was really only advantageous in the vertical
dimension. Since the new epipolar spaces increase in area
with increasing distance in either dimension, the effective-

Fig. 11 Optimal tessellation using four-degrees-of-freedom model of
HVS and log-polar foveation employed by HVS

ness of the optimal sampling strategy has essentially been
squared.

Another important point to address is the substantial dif-
ferences between the sampling pattern shown in Fig. 11(a)
and the log-polar sampling scheme (Schwartz 1980) adopted
by the HVS as illustrated in Fig 11(b). The log-polar sam-
pling scheme is radially symmetric, while our sampling pat-
tern has singularities along both axes, an undesirable prop-
erty. (Log-polar sampling has a single singularity at the ori-
gin.2) These singularities result from the fact that for a four-
degrees-of-freedom stereo configuration any retinal point
falling on either the u or v axis will have a correspond-
ing epipolar space that is one dimensional, i.e. the matching
point must lie on the u or v axis in the other image, respec-
tively. The HVS is not well modeled as a four-degrees-of-
freedom rig; the human eyes rotate about their optical axes
when fixating, a process called cyclovergence. Permitting
cyclovergence has both motor and monocular advantages
(Kaiser and Hecht 1995; Crowell and Banks 1993). Human
eye movements follow Listing’s law (Howard and Rogers
1995) when verging on far objects and L2 when fixating on
near objects. The movements produce epipolar regions (on
spherical image planes) that are far more radially symmetric
(Schreiber et al. 2001) than those associated with the four-
degrees-of-freedom model. The use of these epipolar spaces
by the HVS has been substantiated by psychophysical exper-
iments (Schreiber and Tweed 2003). As to whether or not the
optimal sampling strategy for these retinal epipolar spaces is
the log-polar transformation is still under investigation.

Finally, we would like to reiterate that though our results
may have biological implications with respect to the phy-

2The actual log-polar transformation presented in Schwartz (1980) is
log(z + a) with a > 0. This mapping is applied separately to each cor-
tical hemisphere. With a > 0 the mapping does not have a singularity
at the origin and is only approximately radially symmetric. A simpler
mapping employed prevalently in the engineering literature (and as-
sumed herein) uses a = 0, producing the singularity at the origin. For
values of a that more precisely model the HVS see (Schwartz et al.
1985; Tootell et al. 1982).
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logenetic specialization of retinal topography, we are not
proposing a definitive link between foveal evolution and
stereo correspondence. In fact, there are many other hy-
potheses for foveal evolution which consider such factors as
predation (Ross 1996), locomotion (Virsu and Hari 1996),
optical constraints of the eye (Snyder et al. 1986), behav-
ior (Thompson 1991), and optimal allocation of visual re-
sources (Virsu and Hari 1996). An assiduous comparison
amongst evolutionary theories is far beyond the scope of this
paper. We merely wish to suggest that there does exist an in-
herent symbiosis between foveation and uncalibrated binoc-
ular active vision systems such as the HVS.

6 Conclusion

Biological vision systems have inspired and will continue
to inspire the development of computer vision systems. In
this paper we have addressed the symbiotic relation between
foveation and uncalibrated active, stereovision systems. We
began by introducing the concept of an epipolar space. For
a point in one image, the epipolar space was defined as the
region in the other image formed from the union of all as-
sociated epipolar lines produced over all possible geomet-
ric configurations. Epipolar spaces for uncalibrated active
vision systems are analogous to the epipolar lines of cali-
brated vision systems. The sizes of the epipolar spaces are
directly related to the accuracy and computational complex-
ity of any correspondence process that registers the two reti-
nal images. Consequently, it is desirable to reduce the av-
erage area per epipolar space. Addressing this issue, we in-
troduced a sequence of theorems that provides a path for
creating foveation strategies that are optimal with respect to
the average epipolar area.

The most important aspect of this work is the identifi-
cation of a connection between foveation and uncalibrated
binocular active vision systems. We are not advocating the
immediate use of the sampling strategies introduced in this
work. The epipolar spaces presented here were necessar-
ily simple to reduce the mathematics and engender under-
standing. Additionally, the optimization procedure to select
a sampling method focused solely on the metric of epipolar
area. In reality, no single optimization criteria should be es-
poused at the expense of all others. Advantageous properties
such as radial symmetry, 3D discretization error, and ease
of implementation should also be considered concurrently.
Restricting the sampling functions to conformal mappings
may also prove highly beneficial. This work introduces a
new paradigm, helping us better understand the symbiotic
relationship between foveation and uncalibrated binocular
active vision. Biological vision systems have exploited this
symbiosis for millennia. It is our hope that computer vision
systems will begin to do the same.

Appendix A: One-Dimensional Sampling Theorems

In this section we provide proofs for the optimal one-
dimensional sampling theorems. Since all the following
proofs depend solely on the derivative of γ (u), the choice
of the constant term in γ (u) is arbitrary. Therefore, let any
γ (u) satisfying (16) map [a, b] onto itself, i.e. γ (a) = a,
γ (b) = b. Mapping to the same interval removes ambigu-
ity and conceptually simplifies future derivations without re-
ducing the generality of the results.

We begin by considering uniform epipolar intervals ĩc(u)

defined by [max {u − c/2, a},min {b,u + c/2}], where
c ≥ 0. The min and max functions clip the epipolar intervals
that extend outside of [a, b]. In the modeling of practical
applications it is reasonable to assume that b − a�c. This
stipulation eliminates the need for clipping, simplifying the
interval to [u − c/2, u + c/2]. Furthermore, under this as-
sumption (15) can be approximated (for uniform epipolar
intervals) as follows:

e[γ ; ĩc(u)] ≈ cγ ′(u). (30)

Inserting this result into (14) produces

E(γ ; ĩc, I ) ≈ c

b − a

∫ b

a

[γ ′(u)]2 du. (31)

The next portion of this section provides a sequence of
theorems and their proofs that will, in combination, provide
a framework for obtaining optimal sampling schemes for a
given set of epipolar intervals. A discussion of their signifi-
cance immediately follows their presentation.

Theorem 1 If γ (u) ∈ C2 [a, b] then γ (u) = u is the unique
minimizer of the objective functional given in (31) subject to
the constraint posed in (16).

Proof The Euler–Lagrange equation provides the first order
necessary condition for a local minimizer of (31):

∂L

∂γ
− d

dx

(
∂L

∂γ ′

)
= 0, (32)

where L(u,γ, γ ′) is called the Lagrangian (Olver and Shak-
iban 2009, in preparation). Inserting L(u,γ, γ ′) = [γ ′(u)]2

into (32) produces

γ ′′(u) = 0. (33)

Integrating this result yields γ (u) = βu + α. The constraint
prescribed in (16) forces β = 1. Since it was previously stip-
ulated that all sampling functions map I onto itself, it fol-
lows that α = 0. In order to guarantee that this single critical
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function is a minimizer, it is necessary to examine the sec-
ond variation Q(γ ;χ):

Q(γ ;χ) =
∫ b

a

[
Aχ2 + 2Bχχ ′ + C(χ ′)2]du, (34)

where

A = ∂2L

∂γ ∂γ
, B = ∂2L

∂γ ∂γ ′ , C = ∂2L

∂γ ′∂γ ′ ,

and χ(u) ∈ C2 [a, b] is any arbitrary function with χ(a) =
0 = χ(b). If Q(γ ;χ) > 0 for all χ not identically zero, then
Q(γ ;χ) is positive definite and γ (u) is a strict local min-
imum (Olver and Shakiban 2009, in preparation). Inserting
L(u,γ, γ ′) = [γ ′(u)]2 into the (34) produces

Q(γ ;χ) =
∫ b

a

2(χ ′)2du. (35)

This quantity vanishes only if χ is a constant. Since
χ(a) = 0, it follows that χ ≡ 0. Therefore, (34) is positive
definite and γ (u) = u is the unique minimizer of (31). �

Theorem 2 If γ (u) = �(u) is the sampling function that
minimizes E(γ ; i, I ) subject to (16) and χ(u) is another
arbitrary sampling function satisfying (16), then γ (u) =
�χ(u) = �[χ(u)] minimizes E(γ ; iχ , I ) subject to (16),
where iχ (u) is the interval with upper bound ibχ (u) =
χ−1(ib[χ(u)]) and lower bound iaχ (u) = χ−1(ia[χ(u)]).

Proof The following equations use the variable substitution
x = χ−1(u).

E(�; i, I ) = 1

b − a

∫ b

a

e [�; i(u)]�′(u) du

= 1

b − a

∫ b

a

e(�; i [
χ(x)

]
)�′ [χ(x)

]
χ ′(x) dx

= 1

b − a

∫ b

a

e
[
�χ ; iχ (x)

]
�′

χ (x) dx

= E(�χ ; iχ , I ) (36)

e(�; i [
χ(x)

]
) =

∫ ib(χ(x))

ia(χ(x))

�′(ũ) dũ

=
∫ χ−1(ib[χ(x)])

χ−1(ia[χ(x)])
�′ [χ(x̃)

]
χ ′(x̃) dx̃

=
∫ ibχ (x)

iaχ (x)

�′
χ (x̃) dx̃

= e
[
�χ ; iχ (x)

]
(37)

�(�χ ; I ) =
∫ b

a

�′ [χ(u)
]
χ ′(u) du

=
∫ b

a

�′(x) dx

= �(�; I ) = b − a. (38)

From the above proofs we can draw several important
conclusions. First, Theorem 1 demonstrates that uniform
sampling becomes optimal for uniform epipolar intervals
when the total interval length is large with respect to the
lengths of the uniform epipolar intervals. This caveat of
relative length is necessary to mitigate the effects of the
nonlinear clipping needed to ensure that the epipolar inter-
vals never extend outside I . Second, Theorem 2 provides a
means for creating other sets of epipolar intervals and their
attendant optimal sampling functions by warping uniform
epipolar intervals and their corresponding optimal sampling
function �(u) = u. This immediately suggests the follow-
ing corollary: if a sampling function γ (u) warps intervals
of nonuniform length into intervals of uniform length, it is
the optimal sampling function with respect to those nonuni-
form intervals. This corollary becomes readily apparent by
reversing the proof of Theorem 2 with �(u) = u.

Appendix B: Two-Dimensional

In this section we provide proofs for the optimal two-
dimensional sampling theorems. We begin by considering
epipolar spaces r̃(u) of equal area c but arbitrary shape.
As in the one-dimensional case, it is assumed that AR � c,
eliminating the need to clip the epipolar spaces that extend
outside of R. With these restrictions (18) can be approxi-
mated as follows:

e
[
γ ; r(u)

] ≈ cJγ (u). (39)

This result states that the average value of the determinant
of the Jacobian of the sampling function over the particu-
lar epipolar space can be approximated by its value at u.
Furthermore, since the result in (39) is independent of the
shape of the epipolar spaces, it is reasonable to restrict the
space of optimal sampling functions to those with Jacobian
matrices whose determinants are separable, i.e. Jγ (u)

.=
Jγu(u)Jγv (v). Accordingly, the insertion of (39) into (17)
produces

E(γ ; r̃ ,R) ≈ c

AR

∫ ∫
R

[
Jγ (u)

]2
dudv

= c

AR

∫ ∫
R

[
Jγu(u)Jγv (v)

]2
dudv

= c

AR

∫ ∫
R

[
γ ′
u(u)γ ′

v(v)
]2

dudv. (40)
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The final step results from the fact that a separable sam-
pling function (i.e. γ (u)

.=[γu(u), γv(v)]t ) is sufficient to
produce any separable Jγ (u). Though this is true, it is im-
portant to note that many nonseparable sampling functions
also may have separable Jacobians. For example, hexagonal
sampling, expressed as

γ (u) =
[

1 1
2

0
√

3
2

][
u

v

]
, (41)

is not a separable sampling function. However, the deter-
minant of its Jacobian

√
3/2 is also the determinant of

the Jacobian of the separable sampling function γ (u) =
[u,

√
3/2 v]t .

The following theorems and proofs form the foundation
for constructing optimal two-dimensional sampling strate-
gies.

Theorem 3 Let R be a rectangular image plane with u ∈ Iu

and v ∈ Iv , where Iu and Iv are the intervals defined by
[au, bu] and [av, bv], respectively. If γu(u) ∈ C2 [au, bu] and
γv(v) ∈ C2 [av, bv] then γu(u) = βuu and γv(v) = βvv,
where βuβv = 1, minimize the objective functional given
in (40), subject to the constraint posed in (19).

Proof

E(γ ; r̃ ,R)

= c

AR

∫ ∫
R

[γ ′
u(u)γ ′

v(v)]2 dudv

= c1

bu − au

∫ bu

au

[γ ′
u(u)]2 du

c2

bv − av

∫ bv

av

[γ ′
v(v)]2 dv

= E(γu; ĩc1, Iu)E(γv; ĩc2 , Iv), (42)

where c1 and c are arbitrary positive constants satisfying
c1c2 = c. Equation (42) obtains its minimum when both
E(γu; ĩc1, Iu) and E(γv; ĩc2, Iv) obtain their respective min-
imums. From the proof of Theorem 1 we know this occurs
when γu = βuu + αu and γv = βvv + αv . The constraint
in (19) forces βuβv = 1. Since it was stipulated that any one-
dimensional sampling function maps I onto itself, it follows
that αu = 0 and αv = 0. �

Theorem 4 If γ (u) = �(u) is a sampling function that min-
imizes E(γ ; r,R) subject to �(γ ;R) = AR and χ(u) is
some other sampling function satisfying �(χ−1;R) = AR ,
then γ (u) = �χ (u) = �(χ(u)) minimizes E(γ ; rχ ,Rχ)

subject to �(γ ;Rχ) = ARχ , where Rχ = χ−1(R) and
rχ (u) = χ−1(r[χ (u)]).

Proof The following equations use the variable substitution
x = χ−1(u).

By definition, �(χ−1;R) = AR and �(�;R) = AR ,
consequently

AR =
∫ ∫

R

|(χ−1)′(u)|du

=
∫ ∫

Rχ

dx = ARχ (43)

ARχ = AR

=
∫ ∫

R

|�′(u)|du

=
∫ ∫

Rχ

|�′ [χ(x)
] ||χ ′(x)|dx

=
∫ ∫

Rχ

|�′
χ (x)|dx

= �(�χ ;Rχ). (44)

Using these results and the aforementioned variable substi-
tution yields:

E(�; r,R)

= 1

AR

∫ ∫
R

e[�; r(u)]|�′(u)|du

= 1

AR

∫ ∫
χ−1(R)

e(�; r[χ(x)])|�′[χ(x)]||χ ′(x)|dx

= 1

ARχ

∫ ∫
Rχ

e[�χ ; rχ (x)]|�′
χ (x)|dx

= E(�χ ; rχ ,Rχ), (45)

e(�; r[χ(x)]) =
∫ ∫

r(χ(x))

|�′(ũ)|dũ

=
∫ ∫

χ−1(r[χ(x)])
|�′[χ(x̃)]||χ ′(x̃)|dx̃

=
∫ ∫

rχ (x)

|�′
χ (x̃)|dx̃

= e[�χ ; rχ (x)]. � (46)

For practical purposes it is important to note that though
Theorem 3 was presented in the context of a rectangular im-
age plane R, the result still holds for any arbitrarily shaped
region R with the following caveat: the total area clipped
from the epipolar spaces that extend outside of R must be
sufficiently small compared to the total area of R. In general,
the size and shape of the regions R and Rχ can be arbitrarily
chosen to fit a specific circumstance, again, with the caveat
that the total clipped epipolar area be relatively small.



206 Int J Comput Vis (2009) 85: 192–207

The significance of the previous proofs is now addressed.
Theorem 3 states that uniform rectangular sampling is opti-
mal for epipolar spaces of uniform area when the area of R

is large with respect to the individual epipolar areas, i.e. as
the amount of clipping becomes negligible. Combining this
result with Theorem 4 demonstrates that any area preserv-
ing sampling function γ (u) that warps epipolar spaces into
regions of uniform area is optimal with respect to their av-
erage epipolar area.
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