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Many plankton species undergo daily vertical migration to large depths in the turbulent
ocean. To do this efficiently, the plankton can use a gyrotactic mechanism, aligning them
with gravity to swim downwards or against gravity to swim upwards. Many species show
passive mechanisms for gyrotactic stability. For example, bottom-heavy plankton tend to
align upwards. This is efficient for upward migration in quiescent flows, but it is often
sensitive to turbulence which upsets the alignment. Here we suggest a simple, robust active
mechanism for gyrotactic stability, which is only lightly affected by turbulence and allows
alignment both along and against gravity. We use a model for a plankton that swims with
a constant speed and can actively steer in response to hydrodynamic signals encountered
in simulations of a turbulent flow. Using reinforcement learning, we identify the optimal
steering strategy. By using its setae to sense its settling velocity transversal to its swimming
direction, the swimmer can deduce information about the direction of gravity, allowing it to
actively align upwards. The mechanism leads to a rate of upward migration in a turbulent
flow that is of the same order as in quiescent flows, unless the turbulence is very vigorous.
In contrast, passive swimmers with typical parameters of copepods show much smaller
upward velocity in turbulence. Settling may even cause them to migrate downwards in
vigorous turbulence.

DOI: 10.1103/PhysRevFluids.7.014311

I. INTRODUCTION

Efficient strategies for vertical swimming under turbulence are important for many marine
plankton species. Many plankton species undergo daily vertical migration of up to tens of meters
to greater depths and back [1–3] to allow for efficient nutrition uptake, to avoid predators, and
to adjust to tidal flows [3–6]. Many species adopt strategies leading to correlated and ballistic
vertical migration along or against gravity [7,8]. Their horizontal dynamics, by contrast, is usually
simply diffusive. There are several simple passive gyrotactic mechanisms to achieve rapid vertical
migration. Some organisms are bottom heavy or display shape asymmetries. In both cases, the
resulting torques anti-align the organism with the direction of gravity. Many plankton species also
use active gyrotactic strategies. Some phytoplankton can adjust their shape to either align with or
against gravity [9]. Species of protists and flagellates sense gravity using mechanosensitive ion
channels to allow them to adjust their swimming direction with regards to gravity [10–12]. To
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our knowledge, there is no evidence that planktonic copepods sense gravity using ion channels.
It has been suggested that planktonic copepods instead can use setae distributed on their body and
antennae to obtain information about their orientation relative to gravity [13], but this hypothesis has
not been verified or discussed in detail. The setae allow copepods to sense slip velocities as small
as 20 μm/s between themselves and the ambient fluid [14]. This is one order of magnitude smaller
than their typical settling velocity in quiescent flow [15]. The setae also allow for measurement of
additional hydromechanical signals such as the local strain rate and slip vorticity. The strain rate is
known to be important for predation and predator avoidance [16], but the detailed response of the
copepod to different hydromechanical signals remains unclear. Is it possible for copepods to use the
information perceived by hydromechanical signals to achieve active gyrotaxis and, if so, what is the
best swimming strategy for this? The answers to these questions may provide a new perspective to
understand the vertical migration taking place in different situations [4–6]. The answers also have
bearing on future applications of fabricated microswimmers.

It is not understood how microswimmers such as copepods navigate in the most efficient way
in the turbulent ocean. Due to their small size and the complexity of the flow, it is difficult
to perform experimental investigations on the relationship between hydromechanical signals and
navigation strategies such as vertical migration. To nevertheless try to understand and explain the
dynamics of plankton, a simplified model has been formulated, describing plankton as pointlike,
bottom-heavy, spheroidal particles that swim with a constant speed relative to the local fluid in their
instantaneous direction [17–22]. Analyzing this model using direct numerical simulations (DNS)
of turbulence and analytical approaches allows one to discover the mechanisms that determine
orientational statistics, clustering, preferential sampling, and vertical migration of plankton. The
gyrotactic torque resulting from the bottom heaviness of the swimmer aligns it against gravity and
give efficient upward vertical migration in the absence of turbulence. However, in the presence
of turbulent velocity gradients, the model predicts that the upward vertical-migration velocity of
copepods with parameters approximated from nature is only a fraction of the swimming speed, and
upward migration may even fail due to gravitational settling [23–25]. In addition, the model does not
explain how some organisms swim downwards [2,26]. Settling is too slow for copepods to migrate
several meters to the depths at dawn; they must therefore use an active mechanism to descend more
efficiently.

Due to the lack of experimental input, it is hard to formulate improved models where the swim-
mers can actively adjust their swimming behavior in response to external stimuli. One approach is to
use reinforcement learning to find good strategies, allowing one to construct new models that can be
compared to experiments. Proof of concept studies have shown that reinforcement learning provides
strategies for efficient vertical migration [23,27–29] and more general navigation tasks [29–33] for
swimmers with different shapes and motilities in both two- and three-dimensional flows. However,
in these studies, the swimmers had access to global information such as their absolute position or
orientation. Usually, the swimmers sense only local information, in their own frame of reference. As
a consequence, vertical migration requires that external or hydrodynamic forces break the symmetry
of the problem. For example, it was shown in Ref. [25] that the symmetry breaking set by gravity
allows the swimmer to infer its vertical orientation by sensing only local hydromechanical signals.
Using reinforcement learning, efficient steering protocols for upward navigation, based primarily
on the local strain rate, were found in frozen (time-independent) two-dimensional flows. The results
illustrate that the swimmers can learn rapid vertical migration by mimicking slender swimmers that
tend to preferentially sample upwelling regions in the flow [20–22,34].

The mechanism mentioned above is specific to two-dimensional flows. In this paper, we therefore
investigate vertical-migration strategies in three-dimensional flows. We use reinforcement learning
to find candidate strategies. The best strategies found are similar to those found in the two-
dimensional frozen flow [25], but it turns out that the slip velocity is the dominant signal, in contrast
to the strain rate for the frozen two-dimensional flows. The main result is a simple yet powerful
strategy for vertical migration based on a single component of the slip velocity, as summarized
in Fig. 1. Let n, p, and q be an orthonormal coordinate system describing the orientation of a
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FIG. 1. (a) Orientation axes n, p, and q for a spheroidal swimmer in a fixed Cartesian frame of reference
(x̂, ŷ, ẑ) with direction of gravity ĝ = −ẑ. (b),(c) Unit spheres illustrating the mechanism in Eq. (11) for active
gyrotactic stability. Starting with orientation n0, p0, and q, the swimmer actively rotates around its q axis until
|pz| � pth

z (shaded region) with positive rotation if (b) pz,0 > 0 and negative rotation if (c) pz,0 < 0, leading to
the final orientation nf , pf , and q with nz,f � nz,0 in general.

swimmer with n in its swimming direction and p in the direction perpendicular to n where the
swimmer has most sensitive perception of flow disturbances. It could, for instance, be the direction
of the antennae of a copepod; see Fig. 1(a). The symmetry breaking due to gravitational settling
allows the swimmer to measure the z component of p (assuming that gravity points in the negative z
direction) up to some resolution pth

z . The strategy is to steer around its q axis with a positive angular
velocity if pz > pth

z and with a negative angular velocity when pz < −pth
z . Both cases lead to the

swimmer monotonously rotating towards larger nz. Figures 1(b) and 1(c) illustrate this strategy for
the case where the swimmer is unaffected by both fluid gradients and passive gyrotactic torque
due to inhomogeneous mass distribution. Independent of the initial orientation, the swimmer can
monotonously rotate towards larger nz. The strategy allows for both efficient migration upwards
or downwards, not relying much on the physical characteristics of the swimmer in terms of shape,
mass distribution, and threshold value of the sensing.

In Sec. II, we introduce the model for the microswimmers and our setup for reinforcement
learning. In Sec. III, we show results for the mechanism described above and compare it to
swimmers using passive gyrotaxis and refined active gyrotactic strategies relying on more flow
signals. Conclusions and discussion of the results are presented in Sec. IV.

II. MODEL

We use a model similar to that in Ref. [25], but here we consider a three-dimensional flow. We
model the swimmer as a point particle with the shape of an elongated spheroid with aspect ratio
λ = a‖/a⊥, where a‖ is the axis length along the symmetry direction and a⊥ is the transversal
radius. For typical microswimmers in the ocean, inertia of both the swimmer and the fluid can be
neglected [25], leading to the following dynamics for the position x, the symmetry direction n, the
direction p of the antennae, perpendicular to n, and the direction q perpendicular to the n-p plane:

ẋ = v, ṅ = ω × n, ṗ = ω × p, q = n × p. (1a)

Here, v and ω are translational and angular velocity, given by [17,25]

v = u(x, t ) + v(g) + v(s)n, (1b)

ω = �(x, t ) + �n × [S(x, t )n] + 1

2B
n × ẑ + ω(s). (1c)
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TABLE I. Typical values of model parameters estimated from juvenile copepods in the ocean and experi-
ments, taken from Ref. [25]. The length is obtained for small copepods [15,44] and the aspect ratio is estimated
from their length and width [45]. The mass-density ratio is obtained using the mass density of copepods,
ρ (p), from Ref. [46] and a sea-water density of ρ (f) = 1.025 g/cm3 obtained for 3.5% salinity at 20 ◦C [47].
The settling velocity is obtained using the Stokes settling velocity for spheroids [36] with our used values
for a‖, λ, and ρ (p)/ρ (f). The swimming velocity is taken from the experiments in Ref. [15]. The gyrotactic
reorientation time of copepods is largely unknown. The value B ∼10 s is taken from the critical vorticity
in experiments on juvenile copepods [48]. In our simulations, we use a slightly shorter reorientation time,
B = 5 s. The maximal swimming angular velocity was estimated from the experiments in Ref. [49]. In our
model, we use a smaller value that represents the slow steering motion described in Ref. [50]. The minimal
sensing threshold �uth ∼ 20 μm/s is obtained from the measurements in Ref. [14]. Simulation parameters are
taken as the used values.

Range Used value Unit

Swimmer length 2a‖ 0.1–0.5 0.2 mm
Aspect ratio λ 2.0–2.5 2.0
Mass-density ratio ρ (p)/ρ (f) 1.005–1.019 1.017
Settling velocity v

(g)
‖ 0.1–0.8 0.15 mm/s

v
(g)
⊥ 0.13 mm/s

Swimming velocity v(s) 0.33–3.76 1.32 mm/s
Timescale of passive gyrotaxis B ∼10 5.0 s
Swimming angular velocity ω(s) <20 1.14 rad/s
Sensing threshold �uth �20 50 μm/s

The flow velocity u, half the flow vorticity � = ∇ × u/2, and the strain rate matrix S =
(∇u + [∇u]T)/2 are evaluated at the instantaneous position of the swimmer. While u advects the
swimmer’s center of mass, the first two terms in ω rotate it according to Jeffery’s angular velocity
for a spheroid with shape parameter � = (λ2 − 1)/(λ2 + 1) [35].

Assuming that the direction of gravity, ĝ, points in the negative ẑ direction, the swimmer settles
with an orientation-dependent velocity [36],

v(g) = (
v

(g)
⊥ − v

(g)
‖

)
nzn − v

(g)
⊥ ẑ. (2)

Here, v
(g)
‖ and v

(g)
⊥ are the velocities of a spheroidal particle settling in a quiescent flow with the

symmetry axis parallel and perpendicular to gravity. Assuming a bottom-heavy mass distribution,
gravity also gives rise to a passive gyrotactic torque, turning the swimmer away from ĝ at the
timescale B [37], leading to the third term in ω.

Finally, the last term in v corresponds to swimming with constant speed v(s) in the instantaneous
direction n, and ω(s) in ω is an active angular velocity due to steering in response to measurements
of the local environment. We assume that ω(s)

p = ω(s) · p and ω(s)
q = ω(s) · q take either of the values

{−ω(s), 0, ω(s)}, whereas ω(s)
n = ω(s) · n remains zero. Typical dimensional parameter values of

copepods are shown in Table I.

A. Flow

We use simulations of the dynamics (1) driven by a velocity field u obtained either by DNS
or a statistical model for the flow velocity. To make learning fast enough during training, we use
frozen flow obtained by taking snapshots of the time-dependent flows in both the DNS and the
statistical model. Later, when we evaluate the found strategies, we also consider the dynamics in
time-dependent flows. This approach of training in frozen flows only takes into account the spatial
structure of the flow. We do not address the question of whether there exist even better strategies
that exploit spatiotemporal structures in turbulence.
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In our DNS, we use the method of Ref. [24] to simulate incompressible homogeneous isotropic
turbulence by numerical solution of Navier-Stokes equations,

∂u
∂t

+ u · ∇u = −∇p(f)

ρ (f)
+ ν∇2u + f , ∇ · u = 0, (3)

on a periodic domain. Here, p(f), ρ (f), and ν denote the pressure, density, and kinematic viscosity
of the fluid, respectively. The turbulence is driven by an external force f with low wave number
[38]. Equations (3) are solved by a pseudospectral method, and the 3/2 rule is adopted to reduce
the aliasing error on the nonlinear term. Time integration of both fluid and swimmer dynamics
is performed using the explicit second-order Adam-Bashforth scheme [39]. Our simulations are
carried out using 963 grid points with Taylor scale Reynolds number Re ≈ 60. The smallest resolved
scale is about 1.78 times smaller than the Kolmogorov scale, which lies within the accepted range
to reach statistically reliable results [40].

In the statistical model, we use an incompressible Gaussian random velocity field of the form

u(x, t ) = 1√
6
∇ × A(x, t ), (4)

where A is a three-dimensional vector potential with components being independent Gaussian
random functions with zero mean and correlation function [41]

〈Ai(x, t )Aj (x′, t ′)〉 = δi j (
urms)2 exp

[
−|x′ − x|2

2
2
− |t − t ′|

τ

]
. (5)

Here, 〈·〉 denotes a steady-state ensemble average, 
 and τ are the characteristic length scale and
timescale, and urms = 〈u2〉1/2. The statistical model shows the best agreement with simulations in
turbulent flows if large but finite values of Ku = urmsτ/
 are considered. In this limit, the flow
evaluated at the positions of Lagrangian tracer particles decorrelates on the timescale 
/urms due
to displacement, rather than the timescale τ due to temporal variations of the flow. The relevant
timescale in the statistical model in the limit of large Ku is thus proportional to the Kolmogorov time
τ (η) = 〈tr(2STS)〉−1/2, where S is the strain rate matrix. In the statistical model, the Kolmogorov
time evaluates to τ (η) = 
/(

√
5urms) [41].

The root-mean-square velocity of turbulent fluctuations in the ocean, urms, ranges from 0.1 to 100
mm/s [42]. The energy dissipation rate ranges from 10−4 mm2/s3 in the deep sea, up to 100 mm2/s3

in the upper ocean mixing layer [42,43]. For a kinematic viscosity of ν = 1 mm2/s, the Kolmogorov
time τ (η) takes values between 0.1 and 100 s.

B. Sensing and actions

Small microorganisms equipped with setae can use them to measure velocity differences between
their body and the surrounding fluid [13,14]. Experiments show that copepods respond in different
ways depending on the magnitudes of strain rate S, angular velocity differences ��, and velocity
differences �u of the flow [51], indicating that they can distinguish between these three signals
while not swimming. This ability could be a consequence of that different flow structures give rise
to different bending patterns of the copepod’s setae [51,52]. The disturbance to the surrounding flow
by swimming complicates measurements [52]. However, copepods are able to distinguish external
hydrodynamic signals from their own generated flow when feeding [53]. It is therefore plausible
that copepods are able to distinguish external hydromechanical signals from their own flow during
steady swimming by recognizing spatial and temporal flow structures [54] using an array of densely
distributed setae along their body and antennae [55]. Copepods often show a directional bias in their
ability to sense hydromechanical signals [56]. We assume a microorganism that is better at detecting
signals in the symmetry direction n and the directions of its antennae ±p than in the direction q.
Primarily, we therefore consider navigation using the signals S, ��, and �u, projected on the n
and p directions in the local frame of the swimmer. For completeness, we also discuss strategies
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including the q direction because, in principle, a generic swimmer, which is able to use its setae
to measure the flow at enough independent positions and orientations, has enough information to
distinguish signals along both directions p and q.

To reduce the number of signals, we use Eqs. (1) to express velocity and angular velocity
differences in the local coordinate system n, p, and q,

�un = un − vn = v
(g)
‖ nz − v(s), (6a)

�up = up − vp = v
(g)
⊥ pz, (6b)

�uq = uq − vq = v
(g)
⊥ qz, (6c)

�n = n − ωn = −ω(s)
n , (6d)

�p = p − ωp = �Snq + 1

2B
qz − ω(s)

p , (6e)

�q = q − ωq = −�Snp − 1

2B
pz − ω(s)

q . (6f)

Here, subscripts n, p, or q denote the scalar product with the corresponding unit vector n, p, or
q. First, according to Eq. (6a), the magnitude |�un| ∼ v(s) is much higher than our used sensing
threshold in Table I. To avoid introducing additional arbitrary threshold values, we skip this signal.
Second, Eqs. (6b) and (6c) show that the swimmer is able to directly measure the z component
of the p and q directions and we adopt these components as signals. Third, Eq. (6d) shows that
measurement of �n does not provide any information. Moreover, Eqs. (6e) and (6f) show that �p

is given by the signals Snq and qz, and �q is given by Snp and pz. Therefore, �� does not contribute
with any independent information and we neglect it as a signal. Fourth, we only consider the strain
components that directly affect the dynamics in Eqs. (6), Snp and Snq. Other strain components may
give relevant information due to flow correlations, but this is most likely secondary to the direct
contributions of Snp and Snq. Finally, in our model, we have omitted higher-order derivatives and
time dependence of the hydromechanical signals.

The aim is to use reinforcement learning to search for optimal or approximately optimal strategies
for vertical migration by suitable steering (actions) based on hydromechanical signals (states). In
our model, we use different sets of states obtained from combinations of discretized signals pz, qz,
Snp, and Snq. Each signal σ is discretized into three states separated by a threshold level σ th,

states for signal σ =
⎧⎨
⎩

σ (+) if σ > σ th

σ (0) if |σ | < σ th

σ (−) if σ < −σ th.

(7)

For the velocity differences �up and �uq, we use a threshold �uth = 50 μm/s, giving the threshold
pth

z = �uth/v
(g)
⊥ ≈ 0.37 for the pz and qz components with v

(g)
⊥ from Table I. Estimating the

corresponding gradients along the length of the swimmer, �uth/a‖ [16], we obtain the threshold we
use for angular velocity differences and strain rates, Sth = 0.5 s−1. We have chosen the threshold
�uth to lie between the smallest velocity difference that copepods can physically sense, 20 μm/s
[14], and the settling velocity ∼150 μm/s in order to allow the copepod to sense its settling.
In experiments, it is observed that different species of copepods make vigorous escape jumps in
response to steady-flow strain rates of the order of 0.2–20 s−1 [16,44,51,57]. Our threshold Sth

is of this order of magnitude, indicating that it can be measured by copepods in nature. We have
confirmed that our results described in the next section are not sensitive to the exact values of the
thresholds, as long as �uth is smaller than half the settling velocity.

We assume that the active angular velocity contribution, ω(s) in Eq. (1c), allows the swimmer
to steer by rotating around the p and q axes with angular velocities ω(s)

p and ω(s)
q , respectively.

We first consider a planar model, where the swimmer can measure signals in the n-p plane: pz
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and Snp. In this case, we assume no steering around the p axis, ω(s)
p = 0, and the angular velocity

ω(s)
q around the q axis takes three values, ω(s)

q = {−ω(s), 0,+ω(s)}. This planar model is similar to
the two-dimensional model considered in Ref. [25], but in that case, q was fixed to the direction
perpendicular to the flow plane, while q is free to rotate in the three-dimensional flow considered
here. We also consider a full three-dimensional model, where the swimmer in addition to the signals
of the planar model has access to the signals Snq and qz. In addition to the three values of angular
velocities around the q axis, the swimmer in the three-dimensional (3D) model can also steer around
the p axis with three levels ω(s)

p = {−ω(s), 0,+ω(s)}, giving, in total, nine different actions.
Copepods can acquire angular velocities up to 20 rad/s before a jump [49]. When cruising, they

steer with smaller angular velocities [50]. In our reinforcement learning, we use ω(s) = 1.14 rad/s.
We choose this value because it is of the order of the root-mean-square vorticity in our simulations
during training, and it is much smaller than the hypothetical maximal angular velocity, v(s)/a‖ ≈
13 rad/s, that would have been obtained if the swimmer were able to convert the full swimming
propulsion into angular rotation. Our value ω(s) = 1.14 rad/s gives a large length-specific turning
radius, v(s)/(ω(s)a‖) ≈ 12, consistent with slow steering while cruising. We have confirmed that our
results described in the next section are not sensitive to the exact value of ω(s), as long as it is not
too small.

C. Reinforcement learning for vertical migration

We adopt a one-step Q-learning algorithm [58–60] to train the swimmer to find efficient strategies
for vertical migration. The training is divided into a number of episodes. In each episode, one
precalculated frozen flow snapshot is randomly chosen. The swimmer starts with a random initial
position and orientation and follows the dynamics (1), first for an equilibration time T eq and then
for a predefined physical time of training, T train. The initial equilibration is introduced to search
for strategies that are efficient in the statistical steady state, not relying on the arbitrary uniform
initial condition. In the DNS at regularly distributed time steps iT meas with i = 0, 1, . . . , �(T eq +
T train )/T meas�, the swimmer measures its current discrete state si, obtained by measurement of the
signals described above, and is given a reward ri. In the statistical model, a reward is instead given
at any time step where the state changes. Because the goal is vertical migration upwards, we use
the velocity in the z direction since the last state measurement as a reward in the DNS, ri = (zi+1 −
zi )/T meas, and displacement, ri = zi+1 − zi, in the statistical model. After the reward is given, the
swimmer sets ω(s) to action ai. During the equilibration, T < T eq, the action is chosen according to
a greedy policy, ai = arg maxaQ(si, a), and the Q-table is kept constant. After the equilibration, the
action is chosen according to an ε-greedy policy,

ai =
{

random action with probability ε

arg maxaQ(si, a) otherwise , where ε = ε0 max

(
0, 1 − E

E (ε)

)
. (8)

Here, ε is a small exploration rate that starts at ε0 and decays linearly with the training episode
number E until it reaches zero at episode E (ε). It allows the swimmer to explore different actions,
preventing the learning to get stuck at the local optima. Normally, nonexploratory actions are chosen
as the action giving the maximal value of the Q-table, Q(s, a), for the current state. Starting with a
Q-table of uniform values, it is updated each time the agent is given a reward using the rule

Q(si, ai ) ← Q(si, ai ) + α[ri + γ max
a

Q(si+1, a) − Q(si, ai )] where α = α0
E (α)

E (α) + E
. (9)

Here, α is a learning rate, starting at α0 and decaying on the episode scale E (α). The discount factor
γ , with 0 � γ < 1, sets an optimization timescale over (1 − γ )−1 state changes. It is introduced to
prevent divergence of the values in the Q-table in the long run. We adopt a farsighted optimization by
setting γ close to 1. At the end of each episode, the Q-table is kept for the next episode, continuing
to be updated. In the ideal case of infinitely many exploratory moves and if the system is Markovian,
the entries of the Q-table approach the optimal values for the expectation values of the future
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TABLE II. Average vertical velocity 〈vz〉 normalized by the value in quiescent flows 〈vz〉0 [Eq. (10)] for
different sets of discretized actions and states (see Sec. II B), with parameters from Table I. Numbers show
results obtained by evaluation of the best strategy found for each case using reinforcement learning in frozen
DNS or statistical model flows. The numbers in parentheses show results for the strategies in Eqs. (11), (14),
and (15). Errors of the numerical values are of the order of ±0.01.

Performance 〈vz〉/〈vz〉0

Frozen statistical
Model Actions Signals Frozen DNS model

Naive 0.30 0.22
Planar ω(s)

q pz 0.58 (0.58) 0.73 (0.73) [Eq. (11)]
” ” Snp 0.31 0.22

” ” pz, Snp 0.58 0.73
Full 3D ω(s)

p , ω(s)
q pz 0.58 0.73

” ” qz 0.58 0.73
” ” pz, qz 0.64 (0.66) 0.94 (0.94) [Eq. (14)]
” ” Snp 0.32 0.22
” ” Snq 0.34 0.22
” ” Snp, Snq 0.31 0.20
” ” pz, Snp 0.57 0.73
” ” pz, Snq 0.58 0.73
” ” qz, Snp 0.57 0.73
” ” qz, Snq 0.58 0.73
” ” pz, qz, Snp, Snq 0.64 (0.68) 0.94 (0.94) [Eq. (15)]

discounted reward, Q(si, a) = 〈∑∞
j=0 γ j ri+ j〉, for taking action a in state si following the policy

(8). In most realistic situations, the process instead converges to an approximately optimal strategy.
Information about the parameters used in our different training cases are given in Appendix A.

III. OPTIMAL SWIMMING STRATEGIES

A. Results from reinforcement learning

We evaluate the performance of the strategies found in our reinforcement learning by running
the same setup as in the training, but with a greedy action (ε = 0), and we do not update the Q-table
(α = 0). We average the vertical velocity over multiple episodes: each of time T train sampled after
the initial equilibration time T eq. Both T eq and T train are chosen much larger than the maximal
timescale of the dynamics, so that steady-state statistics is obtained. The results of the best strategies
found are summarized in Table II. The vertical velocity is normalized using the average

〈vz〉0 = v(s) − v
(g)
‖ , (10)

obtained in the long-time limit if the ambient flow velocity u is put to zero in Eq. (1b). Results for
the naive model, obtained for a swimmer with zero active angular velocity, ω(s) = 0, are given as a
reference.

In the planar model, the swimmer can steer around the q axis, ω(s) = ω(s)
q q, and it can sense

combinations of two signals: the vertical component pz of the p axis and the strain component Snp.
The results in Table II show that the signal pz is more important for upward vertical migration than
Snp in both the DNS and the statistical model. The optimal strategy when using only pz as the signal
is the same in the two flows, and it is highlighted using red frames in Figs. 2(a) and 2(b). Figure 1
shows the mechanism explaining why this strategy is successful. The optimal strategy when using
only Snp as the signal is on the same level as the naive strategy. The optimal strategy using both
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FIG. 2. Summary of strategies obtained by reinforcement learning for the cases of (a), (b) the planar model
with single signal pz and (c), (d) full 3D model with joint signal pz and qz. Results from (a), (c) the frozen DNS
and (b), (d) the statistical model. Rows represent different states; the signs −, 0, and + represent the states σ (−),
σ (0), and σ (+) in the discretized signal in Eq. (7). Columns represent different actions, where the signs represent
the values −ω(s), 0, and +ω(s), respectively. The action selected in a given state for the best strategy found in
our reinforcement learning is highlighted in red. In each panel, the resulting strategies from 60 completed
training sessions are summarized. Each numerical value gives the nonzero percentage of strategies choosing a
certain action in a given state. The background is color coded according to this percentage from white (0%) to
blue (100%).

pz and Snp performs approximately on the same level as the simpler strategy using only pz as the
signal.

In the full 3D model, the swimmer can rotate around both the p and q axes, and all four relevant
flow signals are considered. Using a single signal pz, the best strategy found for both the DNS
and statistical model is the same as in the planar case, i.e., rotate around the q axis according to
Fig. 2(a), with no rotation around the p axis. Using qz as the signal, the equivalent strategy is found
by rotating around p with no rotation around q. For two combined signals, the best strategies found
in both the DNS and statistical model are based on pz and qz. They are highlighted using red frames
in Figs. 2(c) and 2(d).

The strategies based only on the strain signals perform on the level of the naive swimmer, with
approximately half the vertical velocity compared to the strategies based on pz and qz. Hybrid
strategies between one strain component and either of pz or qz perform on the same level as the
individual pz or qz signal. Finally, in the case of four signals, pz, qz, Snp, and Snq, the best strategies
found are of the same order as the strategies based on pz and qz only.

Being a stochastic process, different training sessions often converge to different approximately
optimal strategies. Therefore, we have run several training sessions for each case considered, and
the results displayed in Table II are based on the strategy with the best performance during training.
The cell colors in Fig. 2 summarize the resulting strategies from 60 training sessions for each case
[Figs. 2(a)–2(d)]. For a given state, an action with a white or light-blue cell is rarely chosen, while
actions with blue color are selected in most of the resulting strategies. We find that for a single signal
in the planar model, most training sessions converge to the optimal strategy, highlighted in red in
Figs. 2(a) and 2(b). For two signals in the full 3D model, results are more scattered. The reason is
that many strategies have similar reward levels and it is therefore hard to find the global optimal
strategy. In the DNS, the mean value of 〈vz〉/〈vz〉0 obtained in the 60 training sessions is 0.60 and
the median is 0.61, both being close to the value 0.64 for the best strategy found. The same holds
for the statistical model where the mean value is 0.85 and the median is 0.94, equal to the value
for the best strategy found. We conclude that although it is hard to find the global optimum, many
quasioptimal strategies have approximately the same performance.

The strategies discussed above are obtained in frozen flows. The flow is changed each episode to
reduce bias towards specific frozen flows. However, the flow statistics of the dynamics in a frozen
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flow is slightly different from the statistics in time fluctuating flows, or for swimmers with other
parameter values. In general, which strategy is optimal for a given task depends on both the model
parameters and learning parameters, such as the choice of actions and states. There is no guarantee
that a strategy found for one setup is also the best strategy for a different setup. For example, the
optimal strategy found using a frozen flow is not necessarily the same as the optimal strategy in
a time-dependent flow, and a flow in nature could have yet another optimal strategy. We therefore
try to identify generally valid strategies that are robust upon changing the details. Using the trend
that the best strategies in Fig. 2 tend to choose actions along the diagonals, we formulate strategies
below in the planar model and full 3D model that have good performance for a large number of
parameters and flows, including time-dependent flows.

B. Planar model with a single signal

Our reinforcement learning shows that for upward vertical navigation in the planar model using
a single observable and the action to steer around the q axis, the most important signal is pz,
being proportional to the cosine of the angle between the transversal direction p and the direction
of gravity ĝ = −ẑ. The resulting optimal strategy, shown in Figs. 2(a) and 2(b), can be written
mathematically as ω(s) = ω(s)

p p + ω(s)
q q, with

ω(s)
p = 0 and ω(s)

q = ω(s)

⎧⎨
⎩

1 if pz > pth
z

−1 if pz < −pth
z

0 otherwise.
(11)

This strategy imposes an active gyrotactic stability on the orientational dynamics. To understand
the mechanism of Eq. (11), we consider a simplified dynamics where passive gyrotaxis and flow
gradients are neglected. In this limit, the angular velocity of the swimmer, given by Eq. (1c), is
solely determined by the active swimming contribution, ω = ω(s), and the orientational dynamics
of Eq. (1a) becomes

ṅ = ω(s)
q p, ṗ = −ω(s)

q n, and q̇ = 0. (12)

Assuming ω(s) > 0, the signature of ω(s)
q only depends on pz according to Eq. (11). If the initial

value pz,0 is smaller than the sensing threshold, |pz,0| � pth
z , the orientation remains unchanged. If,

instead, |pz,0| > pth
z , the active rotational swimming turns the swimmer around its q axis until pz

reaches pth
z for the case of positive pz,0, or until it reaches −pth

z for the case of negative pz,0. The
direction of the rotation following from Eq. (11) is such that the z component of n in Eq. (12)
is rotated towards larger values, ṅz = ω(s)|pz|�(|pz| − pth

z ) � 0, where � is the Heaviside step
function. Figures 1(b) and 1(c) illustrate this mechanism for the case pth

z = 0.37.
To evaluate the average alignment 〈nz〉 for the simplified dynamics (12), we use the normalization

n2
z + p2

z + q2
z = 1. If |pz,0| � pth

z , there is no rotation and the final value nz,f is equal to the initial
value nz,0. If |pz,0| > pth

z , then qz remains constant, while pz is rotated until the threshold ±pth
z .

Using the normalization, the final value of nz must take the form nz,f = ±
√

1 − [pth
z ]2 − q2

z,0. The

sign choice in Eq. (11) breaks symmetry, always giving the positive solution of nz,f , while the
negative solution would be obtained by rotating in the opposite direction of Eq. (11). Averaging the
positive solution nz,f over initially uniformly distributed orientations, assuming 0 � pth

z � 1, gives
(see Appendix B for details)

〈nz〉 = 4

3π

(
1 − [

pth
z

]2)3/2

pth
z

3F2

[
1

2
, 1, 2;

3

2
,

5

2
; 1 − 1[

pth
z

]2

]
. (13)

Here, 3F2 is the generalized hypergeometric function. This solution scales as 〈nz〉 ∼ π
4 − 2

π
pth

z −
π
4 [pth

z ]2 for small pth
z . The limiting case of very high resolution of the signal, pth

z → 0, results in

014311-10



ACTIVE GYROTACTIC STABILITY OF MICROSWIMMERS …

FIG. 3. Results of numerical simulations in the steady state for (a) average alignment and (b), (c) velocity
against (a), (b) the threshold of the flow signal, pth

z = �uth/v
(g)
⊥ , and (c) the dimensionless angular swimming

velocity ω(s)τ (η). Velocities are normalized using 〈vz〉0 in Eq. (10). Symbols show results from simulations of
Eqs. (1) with smart planar steering [ω(s) = ω(s)

q q using Eq. (11)] in the statistical model with Ku = 10 (colored
symbols) and DNS [hollow symbols in (a) and (b)]. Numerical results for the naive strategy (ω(s) = 0) in
the statistical model are shown as horizontal dashed green lines. The shaded region corresponds to threshold
levels below the minimal resolution limit, �u = 20 μm/s. The dash-dotted line in (a) shows the theory for the
simplified dynamics, given by Eq. (13). Flow parameters are urms = 6.7 mm/s and τ (η) = 1 s. All swimmer
parameters are according to the values used in Table I, except for parameter values stated in the figure.

large, albeit not perfect, alignment, 〈nz〉 → π
4 ≈ 0.8. As pth

z approaches unity, the solution scales

as 〈nz〉 ∼ 8
√

2
3π

(1 − pth
z )3/2. For pth

z > 1, the swimmer cannot resolve pz and active alignment fails.
We conclude that Eq. (12) is a simple mechanism for active gyrotactic stability, leading to partial
alignment against gravity in quiescent flows even without inhomogeneous mass distribution.

Figure 3 shows simulation results for the full dynamics (1) using the strategy (11) with parame-
ters from Table I. The data illustrate the sensitivity of the strategy to the choice of the dimensionless
parameters pth

z , ω(s)τ (η), and B/τ (η). Figure 3(a) shows the dependence of the average vertical
alignment 〈nz〉 on the signal threshold pth

z . As expected, for pth
z > 1, the alignment is equal to

the naive case with no steering, ω(s) = 0. In this case, there is a weak alignment due to the
passive gyrotactic angular velocity in Eq. (1c). When pth

z is reduced below unity, there is a sharp
increase in 〈nz〉 until pth

z ≈ 0.5. For smaller values of pth
z , 〈nz〉 is approximately constant around 0.8.

We conclude that the results are not sensitive to the value of pth
z , as long as it is smaller than 0.5. Our

choice of pth
z = 0.37 lies in the upper part of this range. The dash-dotted curve in Fig. 3(a) shows the

analytical evaluation for a quiescent flow, given by Eq. (13). It has the same trend as the numerical
data, but predicts a somewhat smaller alignment. This is expected because the passive gyrotactic
contribution in the numerical simulations adds to the alignment and the turbulent velocity gradients
do not affect the alignment too much for the flow with urms = 6.7 mm/s and τ (η) = 1 s in Fig. 3.
Figure 3(b) shows that the same conclusion holds for the average vertical velocity 〈vz〉. Starting at
the naive result for pth

z > 1, 〈vz〉 increases quickly until pth
z ∼ 0.5, where a plateau is reached with

velocity around 0.7〈vz〉0, with 〈vz〉0 given in Eq. (10). Hollow markers in Figs. 3(a) and 3(b) show
results from our DNS. Since they qualitatively agree with the statistical model, we limit the analysis
in what follows to the statistical model, which is quicker to evaluate.

Figure 3(c) shows the vertical velocity component for statistical model simulations against
ω(s)τ (η) for different values of B/τ (η). The data reach plateaus for |ω(s)|τ (η) > 0.8, meaning that
the results are not sensitive to the choice of the dimensionless steering angular velocity if it is
large enough. For τ (η) = 1 s, the choice ω(s)τ (η) = 1.14 in Table I lies well within the plateaus.
When B/τ (η) → ∞ (brown �), the passive gyrotactic torque vanishes, and by solely using the
active gyrotactic mechanism (11), the swimmer reaches an upward velocity of about 0.5〈vz〉0. For
negative values of ω(s), the active mechanism works in the opposite direction, giving alignment
with gravity and a means to migrate downwards with a slightly larger speed due to the contribution
from settling. Adding passive gyrotaxis with reorientation time B/τ (η) = 5 from Table I gives an
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additive contribution of around 0.1〈vz〉0 for the full range of ω(s)τ (η) (red ◦). To modify the vertical
velocity significantly, the reorientation time must be of the order of τ (η) (green �) for the flow
considered here. Results for passive gyrotaxis are obtained along the line ω(s) = 0 in Fig. 3(c).
When B/τ (η) > 2, the active gyrotactic stability is dominant, while for B/τ (η) < 2, passive gyrotaxis
is efficient for upward migration and the active mechanism only gives a minor contribution.

In conclusion, our numerical simulations show that the good performance of the found strategy
is not sensitive to the precise values of the parameters or the statistics of the flow used in training.
For the parameters considered in Fig. 3, vertical alignment due to passive and active gyrotactic
reorientation results in high vertical velocities. Both the average flow velocity 〈uz〉 and the settling
velocity v(g) in Eq. (1b) are, at most, of the order of 0.1〈vz〉0, which is small in comparison. We
discuss the relative contributions of the terms in Eq. (1b) in more detail below. In what follows, we
consider the parameters in Table I. For these, the active gyrotactic mechanism dominates over the
passive one.

C. Full 3D model

In our 3D model, the swimmer can steer around both q and p, and respond to signals in both
directions with the threshold values �uth for velocity differences and Sth for fluid gradients. Our
reinforcement learning shows that when only one signal is used, the dominant signal is still pz and
the strategy (11) remains optimal. There also exists an equivalent strategy where qz is the signal and
the agent steers around p instead of q. It gives rise to the same mechanism for aligning n against
gravity as in Fig. 1, but from rotations around the p axis with qz as the signal.

For swimmers allowed to use two signals when navigating, the best strategies obtained from
reinforcement learning use the combined signal of pz and qz; see Table II. They are highlighted
in Figs. 2(c) and 2(d). A common trend in the DNS and the statistical model is that the best
strategies frequently take actions along the diagonal. It is therefore of interest to compare to the
strategy of choosing actions along the diagonal in Figs. 2(c) and 2(d). This diagonal strategy is
simply a superposition of the two single-signal strategies described above, which can be expressed
mathematically as ω(s) = ω(s)

p p + ω(s)
q q, with

ω(s)
p = −ω(s)

⎧⎨
⎩

1 if qz > pth
z

−1 if qz < −pth
z

0 otherwise,
and ω(s)

q = ω(s)

⎧⎨
⎩

1 if pz > pth
z

−1 if pz < −pth
z

0 otherwise.
(14)

Here, ω(s)
q is identical to that in Eq. (11) and ω(s)

p takes the same expression with pz replaced by qz

and multiplied by a minus sign as a consequence of the relative handedness between the vectors
n, p, and q. Corresponding to our simulations, we have chosen the same threshold level pth

z for
both pz and qz, and that the swimmer turns around the axes p and q at the same angular rate ω(s).
We find that the performance of strategy (14) is slightly better than the optimal policy obtained by
reinforcement learning; see Table II. This is a consequence of the reinforcement learning getting
stuck in local optima. Although we cannot be certain that strategy (14) is the global optimal strategy
for our flows, we expect it to be close to optimal and we analyze its dynamics below.

Strategy (14) gives rise to terms that add to the contributions of the two passive gyrotactic terms in
ωp = p − �p and ωq = q − �q in Eqs. (6e) and (6f), and therefore strengthen the gyrotactic
contribution. Using the simplified dynamics (no flow gradients or passive gyrotaxis) used to derive
Eq. (13), the alignment in the present case becomes 〈nz〉 ∼ 1 − (1 + 2

π
)[pth

z ]2 for small pth
z and

〈nz〉 ∼ 16
√

2
3π

(1 − pth
z )3/2 for pth

z close to unity; see Appendix B for details. In contrast to the case of
a single signal, the present strategy allows for perfect alignment in quiescent flows if the threshold
level is small enough. The alignment has a plateau for small pth

z and decreases sharply to zero as pth
z

approaches unity, similar to Eq. (13) and shown as the dash-dotted line in Fig. 3(a).
For the case of all four signals, pz, qz, Snp, and Snq, it is harder to read off a simple strategy

from our reinforcement learning results. Since the best strategies found do not surpass the results
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of strategy (14) (see Table II), we do not expect that the reinforcement learning has converged to
the global optimal strategy. This is no surprise: with nine actions and 81 states considered here,
the number of possible strategies is enormous, i.e., of the order 1077. We therefore proceed in a
different way to find an efficient and interpretable strategy. In the strategy (14), the signals pz and qz

are used to strengthen the passive gyrotaxis. In Ref. [25], Snp was used to increase the shape factor
� to a larger effective value, making the swimmers preferentially sample up-welling regions, which
facilitates upward migration. This was achieved by choosing ω(s)

q = ω(s)sign(Snp) when |Snp| > Sth,
and 0 otherwise, i.e., adding a contribution to the angular velocity with the same sign as Snp,
effectively increasing � by ω(s) when |Snp| is above the threshold value. We choose a strategy
that is a superposition of the two effects of strengthening the passive gyrotactic angular velocity
and increasing the effective shape factor. Testing different combinations of putting priority to either
{pz, qz}, {Snp, Snq}, or a combination thereof shows that prioritizing {pz, qz} works best, i.e., use the
strategy (14) when the pz or qz signal is above its threshold and refine this strategy using {Snp, Snq}
when the signal is below the threshold,

ω(s)
p = − ω(s)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if qz > pth
z

−1 if qz < −pth
z

1 if |qz| < pth
z and Snq > Sth

−1 if |qz| < pth
z and Snq < −Sth

0 otherwise,

and

ω(s)
q = ω(s)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if pz > pth
z

−1 if pz < −pth
z

1 if |pz| < pth
z and Snp > Sth

−1 if |pz| < pth
z and Snp < −Sth

0 otherwise.

. (15)

We did not find any strategy performing better than Eq. (15) using reinforcement learning. We
remark that a similar strategy was found in Fig. 3(d) in Ref. [25] for the signals pz and Snp in
two-dimensional frozen flows. But in that case, the strain signal Snp was prioritized in the optimal
strategy, and the Snp signal also dominated over pz for the case of a single signal. The explanation
for this apparent contradiction is that swimmers that follow the strategy (11) in two-dimensional
frozen flows for the parameters considered in Ref. [25] tend to end up at stable fixed points or limit
cycles, prohibiting them from upward migration unless a significant amount of Brownian noise is
added. This trapping is similar to gyrotactic trapping observed for naive swimmers without steering
in shear flows [34,61,62] and vortical flows [63]. In chaotic frozen 3D flows or if the flow fluctuates
quickly enough due to turbulence, this trapping goes away and it is then beneficial to adopt the
strategies for active gyrotactic stability considered here.

Figure 4 compares the robustness of the found strategies to changes in the flow for a range of
τ (η) with urms = 1 mm/s (upper row) and urms = 10 mm/s (lower row). The case urms = 1 mm/s
can, for example, be obtained in a seasonal thermocline, where τ (η) ∼ 3–30 s and the corresponding
Taylor scale Reynolds number is relatively small, Re ∼ 7–70 [42]. The case urms = 10 mm/s can be
obtained in more turbulent environments, for example, a fjord with τ (η) ∼ 0.3–1 s and Re ∼ 70–
200 [42,64]. The data in Fig. 4 are generated using the statistical model with simulation units such
that urms and τ (η) take their desired values in comparison to the parameters in Table I. Figures 4(a)
and 4(d) show the average vertical velocity component 〈vz〉. Using Eq. (1b), this can be decomposed
as

〈vz〉 = 〈uz〉 + 〈
v(g)

z

〉 + v(s)〈nz〉. (16)
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(a) (b) (c)

(d) (e) (f)

FIG. 4. (a), (d) Steady-state results from statistical model simulations for the average vertical velocity 〈vz〉
against the Kolmogorov time τ (η) (units of seconds) for a swimmer following either the planar strategy (11)
(red ◦), the full 3D strategy using two signals (14) (blue ♦), the full 3D strategy using four signals (15) (magenta
�), or the naive passively gyrotactic strategy (green �). Parameters of the swimmer are given in Table I. The
flow velocity is urms = 1 mm/s (top row) and urms = 10 mm/s (bottom row) with a constant Kubo number,
Ku = 10. (b), (e) Same for the vertical velocity due to swimming, v(s)〈nz〉 (the scale on the right axis shows
the alignment 〈nz〉). (c), (f) Same for the vertical component of the flow velocity along swimmer trajectories,
〈uz〉. The displayed velocities are normalized by 〈vz〉0 in Eq. (10).

Figure 4 shows the two contributions v(s)〈nz〉 [Figs. 4(b) and 4(e)] and 〈uz〉 [Figs. 4(c) and 4(f)] to
〈vz〉, normalized by the vertical velocity in a quiescent flow, given by Eq. (10). We do not show the
contribution 〈v(g)

z 〉/〈vz〉0 because it is approximately constant and equal to −0.1.
First, we compare the planar strategy using ω(s) from Eq. (11) (red ◦) to the naive strategy using

ω(s) = 0 (green �). Figures 4(a) and 4(d) show that the planar strategy has larger average upward
velocity 〈vz〉 for all considered flow parameters, only being close for very weak flow gradients,
τ (η) ∼ 10 s. While the naive strategy has small or even negative values of 〈vz〉, the planar strategy
is of the order of the vertical velocity in quiescent flows, 〈vz〉0, for all considered parameter values,
except for the case of strong flow velocity urms = 10 mm/s and strong flow gradients, τ (η) ∼ 0.1 s.
The explanation for the difference in velocity between the two strategies is the additional alignment
〈nz〉 of the planar strategy due to the active gyrotactic stability; see Figs. 4(b) and 4(e). Even though
the planar strategy obtains a slightly more negative sampling of the vertical flow component, 〈uz〉,
than the naive case [see Figs. 4(c) and 4(f)], this difference is negligible compared to the difference
in the contribution to the velocity due to alignment, vs〈nz〉.

Next, we consider the full 3D model using two signals (14) (blue ♦). In this model, the alignment
reaches a plateau, close to perfect alignment, 〈nz〉 ≈ 1, unless the flow gradients are strong. The
mean upward velocity shows the same trend, but with a plateau somewhat below 〈vz〉0 due to the
negative contribution from sampling of the vertical flow component, 〈uz〉 < 0. Finally, for the full
3D model using four signals (15) (magenta �), the alignment 〈nz〉 is approximately the same as for
the case of two signals. But the refined response using the strain components leads to a sampling
of the vertical flow component 〈uz〉 that is less negative and even positive for some parameter values.
The net result is a larger positive vertical velocity than the strategy with two signals, allowing
vertical migration that is nearly as efficient as in the quiescent flow for some parameters.

Simulation results with urms = 100 mm/s are identical to the data with urms = 10 mm/s within
numerical precision (not shown). In this limit, the active mechanism only starts failing when the
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flow gradients ∼1/τ (η) are much larger than ω(s). In contrast, the naive strategy fails when the flow
gradients are much larger than 1/(2B), which is one order of magnitude smaller than ω(s) for the
parameters from Table I. We remark that these parameters are a typical sample. Specific plankton
species in nature could have other values of ω(s) or 1/(2B), adjusting the relative importance of the
active or passive reorientation mechanism compared to the flow gradients. For values of urms much
smaller than 1 mm/s, the average alignment approaches unity for all the cases in the displayed range
of τ (η) (not shown). In conclusion, the found strategies are robust, showing good performance for a
large range of flow parameters.

IV. CONCLUSIONS

We used reinforcement learning to find robust and efficient strategies for vertical migration of
microswimmers. In the simplest case, the swimmer only has access to a single signal �up or,
equivalently, pz, which allows for detection of the angle between the orientation of the swimmer (its
p axis) and gravity. By actively rotating in the appropriate direction around its q axis, the swimmer
exhibits an active gyrotactic contribution to the angular velocity which is one order of magnitude
larger than the passive gyrotactic contribution for typical copepods. The active contribution results
in increased upward alignment, leading to vertical migration of the order of that in quiescent flows
unless turbulence is very vigorous. If the swimmer in addition is able to sense �uq, it can, up to the
resolution set by signal thresholds, measure its orientation relative to gravity, leading to yet stronger
upward alignment and vertical migration velocity. By using the strain components Snp and Snq, the
swimmer can further increase its migration velocity by exploiting up-welling regions of the flow
[25]. Rotating in the opposite direction allows the swimmer, even though it is bottom heavy, to align
with gravity, providing an efficient means for downward swimming.

In the passive gyrotactic mechanism, the shape and mass distribution are important. Using
active gyrotactic stability, these parameters are not as important, and even spherical swimmers with
homogeneous mass distribution (� = 0 and B = ∞) show the same degree of vertical alignment
in turbulent flows. For the parameters in Table I, the passive gyrotactic mechanism only becomes
relevant close to quiescent flows, where it allows for better upward alignment than what can be
obtained by a single signal �up. The active mechanism is robust and efficient over a large range of
the flow parameters τ (η) and urms. Simulations of the statistical model and DNS give similar results,
both when finding the same types of optimal strategies when training in frozen flows and in the
evaluation using time-fluctuating flows.

What bearing do our results have for understanding the behavior of plankton in the turbulent
ocean? It is believed that light is important for daily migration of plankton. Strong light determines
the swimming direction of many plankton species [2]. We propose that the mechanism discovered
here may serve as a means for efficient vertical migration of plankton species at low light intensities,
and may also serve as a complementary guide in the presence of light. Further experiments are
needed to verify whether plankton in nature have evolved to exploit our proposed mechanism.
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TABLE III. Values of the training parameters in our reinforcement learning.

γ α0 ε0 E (α) E (ε) T eq T train T meas

DNS, 1 signal 0.99 0.01 0.005 500 800 50 s 88 s 0.0088 s
DNS, 2 signals ” 0.02 ” ” ” ” ” ”
DNS, 4 signals ” 0.15 0.001 ” ” ” ” ”
Statistical model, 1 signal ” 0.01 0.005 ” ” 112 s 447 s N/A
Statistical model, 2 signals ” 0.02 ” ” ” ” ” ”
Statistical model, 4 signals ” 0.04 0.02 1000 2000 ” ” ”

APPENDIX A: REINFORCEMENT LEARNING TRAINING PARAMETERS

We train the swimmer using reinforcement learning as described in Sec. II. The training parame-
ters are summarized in Table III for the cases where states consist of a single signal, two signals, or
four signals. We train in frozen flows obtained from simulations of Eq. (3) in the DNS and the flow
(4) with Gaussian statistics (5) in the statistical model. For both flows, units are scaled such that
urms = 6.7 mm/s and τ (η) = 1 s. The total number of episodes in a training session was adjusted to
reach convergence to approximately optimal strategies. We used ∼1000 episodes for the DNS and
3000 episodes for the statistical model.

APPENDIX B: CALCULATION OF ALIGNMENT IN ABSENCE OF FLOW AND PASSIVE
GYROTACTIC TORQUE

To derive Eq. (13), we average the long-time limit of nz obtained by following the strategy (11),

nz →
{√

1 − [
pth

z

]2 − q2
z,0 if |pz,0| > pth

z

nz,0 otherwise,
(B1)

over uniformly distributed initial angles. To this end, we parametrize the coordinate system n, p,
and q using three angles (0 < θ < π , −π < ϕ < π , and −π < α < π ) as follows:

n =
⎛
⎝sin θ cos ϕ

sin θ sin ϕ

cos θ

⎞
⎠, p = cos α

⎛
⎝ sin ϕ

− cos ϕ

0

⎞
⎠ + sin α n ×

⎛
⎝ sin ϕ

− cos ϕ

0

⎞
⎠, and q = n × p. (B2)

Here the directions p and q are orthogonal to n, chosen such that pz = 0 when α = 0 and q
is chosen to form a right-handed coordinate system. The angles of uniformly distributed di-
rections are distributed according to P(θ, ϕ, α) = sin θ/(8π2). Integrating ϕ away and changing
coordinates to pz = − sin α sin θ and qz = − cos α sin θ gives the joint distribution P(pz, qz ) =
1/(2π

√
1 − p2

z − q2
z ) of pz and qz with p2

z + q2
z � 1. Using this distribution to average the limiting

value (B1) for the case |pz,0| > pth
z with 0 � pth

z � 1 over the initial orientation gives (the case
|pz,0| � pth

z gives a zero contribution due to the equal probability of nz,0 taking either sign)

〈nz〉 =
∫ √

1−[pth
z ]2

0
dqz,0

∫ √
1−q2

z,0

pth
z

d pz,04P(pz,0, qz,0)
√

1 − [
pth

z

]2 − q2
z,0

= 2

π

∫ √
1−

[
pth

z

]2

0
dqz,0

√
1 − [

pth
z

]2 − q2
z,0 atan

[
1

pth
z

√
1 − [

pth
z

]2 − q2
z,0

]
. (B3)

Here we used symmetry of the integrand to only consider positive values of pz,0 and qz,0, and the
limits of integration are obtained from the conditions |pz,0| > pth

z and p2
z,0 + q2

z,0 � 1. The remaining
integral can be represented using a generalized hypergeometric function, giving Eq. (13).
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FIG. 5. Same as Fig. 3(a), but for the full 3D model. Symbols show numerical results following the strategy
in Eq. (14). The dash-dotted line shows the theory: Eq. (B5) for pth

z < 1/
√

2 and two times the value in Eq. (13)
if 1/

√
2 < pth

z � 1.

For the case of the strategy using two signals, given by Eq. (14), the long-time limit of nz becomes

nz →

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
1 − [

pth
z

]2 − q2
z,0 if |pz,0| > pth

z and |qz,0| � pth
z√

1 − [
pth

z

]2 − p2
z,0 if |pz,0| � pth

z and |qz,0| > pth
z√

1 − 2
[
pth

z

]2
if |pz,0| > pth

z and |qz,0| > pth
z

nz,0 otherwise.

(B4)

Averaging this expression over uniformly distributed angles, as above, gives that 〈nz〉 is two times
the value in Eq. (13) if 1/

√
2 < pth

z � 1, and that

〈nz〉 =
√

1 − 2
[
pth

z

]2

⎧⎨
⎩1 − 4pth

z

π
acos

[
pth

z√
1 − [

pth
z

]2

]
− 1

π
acos

[
1 − 2

[
pth

z

]2 − [
pth

z

]4

(
1 − [

pth
z

]2)2

]⎫⎬
⎭

+ 4

π

∫ pth
z

0
d pz,0

√
1 − p2

z,0 − [
pth

z

]2
acos

⎛
⎝ pth

z√
1 − p2

z,0

⎞
⎠, (B5)

if pth
z < 1/

√
2. Equation (B5) is compared to numerical simulations in Fig. 5. The theory agrees

qualitatively with the numerical simulations, similar to the theory in the planar model in Fig. 3(a).
We did not find a representation of the last integral in Eq. (B5) in terms of standard functions, but
it is straightforward to evaluate the term in a series expansion for small pth

z , suitable for the interval
0 < pth

z < 1/
√

2. The first few terms in the vertical alignment become

〈nz〉 ∼ 1 −
(

1 + 2

π

)[
pth

z

]2 + 2

3

[
pth

z

]3 − 1

2

[
pth

z

]4 + 8

15

[
pth

z

]5
. (B6)
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