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In this paper an optical imaging system based on compressive sensing (CS) is presented 

along with its principal mathematical aspects. Although CS is undergoing significant 

advances and empowering many discussions and applications throughout various fields, 

this article focus on the analysis of a single-pixel camera. This work was the core for the 

development of a single-pixel camera approach based on active illumination. Therefore, 

the active illumination concept is described along with experimental results, which were 
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very encouraging towards the development of compressive sensing based cameras for 

various applications, such as  pixel level programmable gain imaging. 

          OCIS codes: (110.0110) Imaging systems; (110.3010) Image reconstruction techniques; 

(110.1758) Computational imaging. 

Introduction 

It is clear that the Nyquist-Shannon sampling theorem has been a fundamental rule of signal 

processing for many years and can be found in nearly all signal acquisition protocols, being 

extensively used from consumer video and audio electronics to medical imaging devices or 

communication systems. Basically, it states that a band-limited input signal can be recovered 

without distortion if it is sampled at a rate of at least twice the highest frequency component of 

interest within the signal. For some signals, such as images that are not naturally band limited, 

the sampling rate is dictated not by the Nyquist-Shannon theorem but by the desired temporal or 

spatial resolution. However, it is common in such systems to use an anti-aliasing low-pass filter 

to band limit the signal before sampling it, and so the Nyquist Shannon theorem plays an implicit 

role [1]. 

In the last few years, an alternative theory has emerged, showing that super-resolved 

signals and images can be reconstructed from far fewer data or measurements than what is 

usually considered necessary. This is the main concept of compressive sensing (CS), also known 

as compressed sensing, compressive sampling and sparse sampling. In fact, “the theory was so 

revolutionary when it was created a few years ago that an early paper outlining it was initially 

rejected on the basis that its claims appeared impossible to substantiate [2].”  
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CS relies on the empirical observation that many types of signals or images can be well 

approximated by a sparse expansion in terms of a suitable basis, that is, by only a small number 

of non-zero coefficients. This is the key aspect of many lossy compression techniques such as 

JPEG and MP3, where compression is achieved by simply storing only the largest basis 

coefficients. 

In CS, since the number of samples taken is smaller than the number of coefficients in the 

full image or signal, converting the information back to the intended domain would involve 

solving an underdetermined matrix equation. Thus, there would be a huge number of candidate 

solutions and, as a result, we must find a strategy to select the “best” candidate.  

Different approaches to recover information from incomplete data sets have existed for 

several decades. One of its earliest applications was related with reflection seismology, in which 

a sparse reflection function (indicating meaningful changes between surface layers) was sought 

from band limited data [1, 3, 4]. It was, however, very recently, that the field has gained 

increasing attention, when Emmanuel J. Candès, Justin Romberg and Terence Tao [5], 

discovered that it was possible to reconstruct Magnetic Resonance Imaging (MRI) data from 

what appeared to be highly incomplete data sets in face of the Nyquist-Shannon criterion (see 

Fig. 1). Following, Candès et al. work , this decoding or reconstruction problem can be seen as 

an optimization problem and be efficiently solved using the 1 -norm [6]. 

 

As a result, CS has become a kind of revolutionary research topic that draws from diverse 

fields, such as mathematics, engineering, signal processing, probability and statistics, convex 

optimization, random matrix theory and computer science. 
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Undergoing significant advances, CS has proved to be far reaching and has enabled 

several applications in many fields, such as: distributed source coding in sensor networks [7, 8], 

coding, analog–digital (A/D) conversion, remote wireless sensing [1, 9] and inverse problems, 

such as those presented by MRI [10]. 

One application with particular interest within the aim of the work presented here, is the 

ground-breaking single-pixel imaging setup developed by D. Takhar, et al. at the Rice University 

[11].  

This paper is organized as follows. After a brief introduction (section I), some 

mathematical background essential to the understanding of CS is shown (section II). Then, on 

section III, CS is presented along with some of its principal properties. Section IV explains why 

1 -norm is such a good option for compressive sensing. Some insights about the robustness of 

CS in the presence of noise are given on section V. Next, on section VI the single-pixel camera 

developed at Rice is discussed. Subsequently, the innovative active illumination single-pixel 

camera developed in the scope of the current work is described. Following, experimental results 

from the single–pixel cameras are presented. In the end, the main conclusions of this work are 

exposed. 

Compressive Sensing Background 

In order to become possible, CS is built upon two principles: sparsity, related with the signals of 

interest, and incoherence, related with the sensing modality. 

K -sparse and compressible signals 
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Let’s consider a real-valued, finite-length, one dimensional, discrete-time signal x , which can be 

viewed as a 1 column vector in  with elements  nx , with  ,,2,1 n . Any signal in   

can be represented in terms of a basis of 1  vectors 

1}{ ii . For simplicity, let’s assume that 

the basis is orthonormal. Using the   basis matrix },,,{ 21     with the vectors 

}{ i  as columns, a signal x  can be expressed as: 

 ii isx 




1
 or sx  , (1) 

where s  is the 1  column vector of weighting coefficients xxs
T

iii   , . s  and x  are 

equivalent representations of the signal with x  in time or space domain and s  in  domain. 

The signal x  is K -sparse if it is a linear combination of only K  basis vectors, which 

means that only K  of the is coefficients in Eq. (1) are nonzero, while the remaining  KN   

coefficients are zero. In addition, the signal x  is compressible if the representation in Eq. (1) has 

just a few large coefficients and many small coefficients, setting the basis of transform coding. 

Therefore, we can say that a signal x  is sparse in the   domain if the coefficient sequence is 

supported on a small set, and compressible if the sequence is concentrated near a small set. 

In face of the typical data acquisition paradigm, huge amounts of data are collected only 

to be in large part discarded at the compression stage to facilitate storage and transmission. 

Imagine, for example, a digital camera that captures images with millions of sensors (pixels) but 

eventually encodes the image in just a few hundred kilobytes. Clearly, this is a tremendously 

wasteful process and suffers from three principal drawbacks. First, the initial number of samples 

N  may be large, even if the desired K  is small. Second, the set of all N  transform coefficients 
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 is  must be computed even though all but K  of them will be discarded. Third, there is an 

overhead that is introduced by the encoding of the large coefficients locations. 

Recovering K -sparse signals 

Following the work presented in [12], Candès and Tao developed a refined version of the 

Uniform Uncertainty Principle (UUP) [13], which has proved to be essential to the study of the 

general robustness of CS. This key notion was then named Restricted Isometry Property (RIP) 

and can be defined as follows: 

For each integer ,2,1K , define the isometry constant K  of a measurement matrix A  

as the smallest number such that 

     222

222

11


xAxx KK    (2) 

holds for all K -sparse vectors x . Therefore, we can say that a matrix A  obeys the RIP of order 

K  if K  differs enough from one. When this condition is verified, A  approximately preserves 

the Euclidean length of K -sparse signals, which in turn implies that K -sparse vectors cannot be 

in the null space of A . An alternative description of this property is to say that all subsets of K  

columns taken from A  are in fact nearly orthogonal (they cannot be exactly orthogonal since we 

have more columns than rows).  

Let’s imagine we want to acquire K -sparse signals making use of matrix A . Suppose that 

K2  is not close to one. This indicates that all pair-wise distances between K -sparse signals 

must be well preserved in the measurement space, which means that 

     2
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2
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2
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xxAxAxxx ss    (3) 
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is true for all K -sparse vectors 1x , 2x  [1, 14]. 

Incoherence 

Let’s now consider  NM   linear measurements of x  and a collection of test functions  M

mm 1  

such that   mxmy , . By stacking the measurements  my  into the 1M  vector y  and the 

test functions 
T

m  as rows into an NM   sensing matrix   we can write 

 ssxy  . (4) 

A condition related with RIP is incoherence, which requires that the rows of  (the measurement 

or sensing matrix) cannot represent the columns of   in a sparse way (and vice-versa). 

Incoherence extends the duality between time and frequency and expresses the idea that 

an object having a sparse representation in   must be spread out in the domain in which it was 

acquired. This incoherence property is verified for many pairs of bases, including, for instance, 

delta spikes and sine waves of the Fourier basis, or the Fourier basis and wavelets.  

The coherence between the sensing basis   and the representation basis   can be given 

by the following equation: 

   jknjkn  ,max, ,1  , (5) 

which, in simple words, is measuring the largest correlation between any two elements of   and 

 . CS is essentially interested in low coherence pairs. For instance, for the previously referred 

delta spikes and sine waves (time-frequency) pair,   1,  , therefore, indicating maximal 

incoherence [1, 15]. 
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A particular aspect of interest is that random matrices are largely incoherent with any 

fixed basis  . This empowers the use of known fast transforms such as a Walsh, Hadamard, or 

Noiselet transform [16].  

Furthermore, what is most remarkable about this concept is that it allows capturing 

information contained in a sparse signal in a very efficient way without trying to understand that 

signal. 

How Compressive Sensing Works 

Compressive sensing addresses the inefficiencies presented by the sample-then-compress 

framework by directly acquiring a compressed signal representation, avoiding the intermediate 

stage of acquiring N  samples [5]. CS bypasses the sampling process and directly acquires a 

condensed representation y  consisting of M  linear measurements. Furthermore, The 

measurement process is nonadaptive in that   does not depend in any way on the signal x . 

The transformation from x  to y  is a dimensionality reduction and so loses information 

in general. In particular, since NM  , for a given y , there is an infinite number of 'x  such that 

yx  ' . The overwhelming capacity of CS is that   can be designed such that 

sparse/compressible x  can be recovered exactly/approximately from measurements of y . 

To recover the signal x  from the random measurements y , the traditional favorite 

method of least squares has been shown to fail with high probability. Instead, it has been 

demonstrated that using the 1  optimization [12] 

 
1

'minargˆ


ss   such that ys  '  (6) 



 9 

it is possible to exactly reconstruct K -sparse vectors and closely approximate compressible 

vectors stably with high probability using just   KNKOM log  random measurements [5, 

6]. Minimizing the 1 -norm subject to linear equality constraints can easily be recast as a linear 

program, also known as basis pursuit, which can find several alternative reconstruction 

techniques based on greedy, stochastic and variational algorithms [5, 9, 17, 18]. 

In addition to enabling sub-Nyquist sampling, CS exhibits a number of attractive 

properties.  

 Universality:   can be considered a universal encoding strategy, as it does not 

need to be designed with regards to the structure of  . This allows exactly the 

same encoding strategy to be applied in a variety of different sensing 

environments; no knowledge is required about the subtleties of the data being 

acquired. Random measurements are also future proof – i.e., if new research 

yields a better sparsity inducing basis, then the same set of random measurements 

can be used to reconstruct data with even better quality –. 

 Encryption: A pseudorandom basis can be generated using a simple algorithm 

according to a random seed. Such encoding effectively implements a form of 

encryption: randomized measurements will themselves resemble noise and be 

meaningless to an observer who does not know the associated seed. 

 Robustness and progressivity: Random coding is robust in that the randomized 

measurements have equal priority, unlike the Fourier or wavelet coefficients in 

current transform coders. Thus, this enables a progressively better data 

reconstruction as more measurements are obtained. Besides this, one or more 

measurements can also be lost without corrupting the entire reconstruction. 
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Oppositely, all the bits in JPEG 2000 do not have the same value and if important 

bits are missing – e.g., because of packet loss –, then it is impossible to retrieve 

the information accurately. 

In addition, the robustness of CS does not become impaired by the quantization 

process. 

 Scalability: the number of measurements to compute can be adaptively selected 

in order to trade off the amount of compression of the acquired image versus 

acquisition time. In contrast, conventional cameras trade off resolution versus the 

number of pixel sensors. 

 Computational asymmetry: CS places most of its computational complexity in 

the recovery system (decoder), which will often have more substantial 

computational resources than the encoder. The encoder is very simple since it 

merely computes incoherent projections and makes no decisions [11]. 

The Geometry of 1 -norm 

The geometry of CS problems in   helps to visualize why 2 reconstruction fails to find the 

sparse solution that can be identified by 1  reconstruction. Figure 2 presents significant 

information to this subject. Part (a) illustrates the 2  ball in 3  with a certain radius. It must be 

emphasized that this ball is isotropic. Part (b) represents the 1  ball in 3 , which is anisotropic 

(“pointy” along the axes). 

 

The 2  minimizer ŝ  is the point from   closest to the origin. This point can be found by 

blowing the 2  ball until it bumps into  . Due to the random orientation of   (imposed by the 
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randomness in matrix  ), the closest point ŝ  will be away from the coordinate axes with high 

probability and, therefore, will not be sparse and will be far from the correct answer s . In higher 

dimensions, this difference becomes even more significant. Paying attention to the part (b) of 

Figure 2, it can be seen that the point of intersection ŝ  is now defined by the vector that solves 

equation (6). 

Robustness of Compressive Sensing 

In any realistic application, we cannot expect to measure x  without any error. Therefore, now, 

it is important to analyze the robustness of compressive sampling in face of measurement errors. 

This is a critical topic since any real-world sensor is subject to at least a small amount of noise. 

For that reason, one immediately understands that to be widely applicable, the methodology 

needs to be stable. Small perturbations in the observed data should, then, induce small 

perturbations in the reconstruction. Fortunately, the recovery procedures may be adapted to be 

surprisingly stable and robust in the presence of arbitrary perturbations. 

Let’s suppose the measurements are affected by noise and define the following model: 

 exy  , (7)  

where e  is a stochastic or deterministic error term with bounded energy 
2

e , being   an 

upper bound on the noise magnitude. 

Because of the measurement inaccuracies, a modification has been introduced to equation 

(6) to make it noise-aware. In this way, the reconstruction proposal has the following form: 

 
1

'minargˆ


ss   such that 
2

'


sy , (8) 
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which satisfies  xCCss KKN  
2

ˆ


 with overwhelming probability. NC  and KC  are the 

noise and approximation error amplification constants, respectively, and  xK  is the 2  error 

incurred by approximating s  using its largest K  terms. Once again, this problem is convex and 

can be solved using standard convex programming algorithms [14, 19]. 

The Single-Pixel Camera 

The single-pixel camera, developed originally at the Rice University [11], is one of the most 

paramount examples of CS. It can be seen as an optical computer comprising a digital micro-

mirror device (DMD) with 1024 × 768 micromirrors, two lenses, a single photodetector and an 

A/D converter. Basically, this configuration computes random linear measurements of the scene 

under view. The image is then reconstructed from these measurements by a digital computer. A 

block-diagram depicting the single-pixel camera setup can be seen on Figure 3. 

 

This time-multiplexing technique enables the use of a single and yet more sensitive 

photon detector. This is particularly important when the detector is expensive, making an N-pixel 

array/matrix prohibitive. A single-pixel camera can also be adapted to image at wavelengths that 

are currently impossible with conventional digital cameras. 

Figure 4 presents the experimental setup comprising the optical hardware of the single-

pixel camera previously described [11]. Following the red arrows in Figure 4, it can be seen that 

a light source is used to illuminate the object (in this case, a black and white printout of an “R” 

character). Then, the object’s image is formed by the means of Lens 1 on the DMD that 

adequately reflects or not the light incident on each of its pixels, depending on the imposed 

modulation pattern. The light reflected towards Lens 2 will finally be concentrated on the single 
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light detector that will integrate it, thus, yielding an output voltage that depends on the used 

DMD modulation pattern. This voltage is amplified through an operational amplifier circuit to be 

finally digitized by an A/D converter. This process is repeated until M  values are acquired so 

that we can, finally, use them to reconstruct the imaged object. Each of these values (output 

voltage of the photodiode) can be interpreted as the inner product of the desired image x  with a 

measurement basis   Mmm ,,2,1,  . 

 

With this setup the resolution of the reconstructed image is limited by the pixel 

arrangement of the DMD. 

Active Illumination Single-Pixel Camera 

Following the work of the Rice group [11, 19], we have developed an active illumination single-

pixel camera. Instead of the DMD, our setup makes use of a video projector to incorporate the 

random measurement matrix into the system. The proposed experimental setup is presented in 

Figure 5. 

 

Figure 6 shows an integrated version of the proposed single-pixel camera in a much 

smaller assembly comprising the same configuration of Figure 5. This integrated setup comprises 

the lens and the photodiode circuit in a single integrated module (see Figure 6 (b)), therefore, its 

compactness. 

A large area (1 cm
2
) silicon photodiode (RS 303-674) was used in order to facilitate the 

optical alignment. The experimental setup includes a video projector with 1280×800 maximum 

resolution (Epson
® 

model EB-W7), a 12 bits A/D data acquisition board with up-to 10kS/s 
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(National Instruments™ USB-6008), and a 8 mm focal length Computar
® 

lens with focus 

distance ranging from 30 cm to infinity. 

 

Regarding our configuration, the video projector was used to project the result of the product 

between the image to be reconstructed and the random measurement patterns (see Figure 7). 

Therefore, each of the output voltages of the photodiode amplifier circuit is representative of the 

inner product between the used pattern for that measurement and the image to be reconstructed. 

Results and Discussion 

Original Single-Pixel Camera 

The Rice group set the single-pixel camera to acquire a 64 × 64 pixels image (hence, N = 4096). 

This size was chosen to ensure quick reconstruction during tests so that focusing and other 

adjustments could be made. 

 

Since the test image was piecewise constant (with sharp edges) it could be sparsely represented 

in the wavelet domain. Figures 9(a) and 9(b) show the best K-term Haar wavelet approximation 

of the idealized image in Figure 8, with K = 400 and 675, respectively. Using M = 820 and 1600 

pseudorandom projections, it is possible to obtain the reconstructed images shown in Figures 

10(a) and 10(b), respectively, using Basis Pursuit. 

 

From these results, it is clear that the recognizable features of the “R” can be recovered, 

even with a number of measurements below half of the total number of pixels of the 

reconstructed image. It can also be seen that the reconstruction quality turns progressively better 
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as M increases, as well as more robust to noisy measurements, enhancing the reconstruction of 

the singularities (sharp edges). As stated by the authors, the sources of noise included subtle 

nonlinearities in the photodiode, nonuniform reflectance of the mirrors towards the lens that 

focused onto the photodiode, and nonuniform mirror positions. The robustness of the CS 

reconstruction tends to suppress quantization noise from the A/D converter and photodiode 

circuit noise during detection[11]. 

Some other results, obtained with the same setup, are presented in Figures 11 and 12. 

 

Comparatively to imaging by raster scanning, the Rice single-pixel camera provided 

results far superior. Figure 13 shows comparative results of the two approaches. 

 

From Figure 13, it is clear that the results from CS are much better. This is due to the fact 

that raster scanning measures only 1/N of total light per measurement, while CS measures ½ of 

total light per measurement [20]. Operation in a CS mode also significantly reduces dark noise. 

Active Illumination Single-Pixel Camera 

Comparatively to the work presented by the Rice group, some preliminary results were obtained 

using the active illumination configuration for the single-pixel camera. Initial results obtained 

with the active illumination approach for an image containing sharp edges are presented in 

Figure 14. The reconstructed images have 32 × 32 pixels, in order to speed up the reconstruction 

and testing procedures during the experimental phase. The reconstructions were obtained with 

the 1 -Magic software package
1
. 1 -Magic is a collection of MATLAB

®
 routines for solving the 

convex optimization programs central to compressive sampling. The results were obtained with 
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MATLAB
®
 on Windows Vista™ with an Intel®

 Core™2 Duo CPU @ 2.50GHz and 3GB of 

RAM. The average processing time to reconstruct a 32 × 32 pixels image from 410 

measurements was approximately 10 seconds and the average processing time to reconstruct a 

64 × 64 pixels image from 1640 measurements was approximately 400 seconds. In addition, it 

should be taken into account the time consumed to project all the codes (300 ms for each code). 

Therefore, bigger images can be reconstructed at the expense of more time. 

 

It is clear that with an increasing number of measurements, the overall quality of the 

reconstructed images is also increased. The size of the “F” character on the wall was 4cm × 3cm, 

thus resulting on a resolution of approximately 2 mm per pixel. 

 

Figure 15 depicts the results obtained with the active illumination system for imaging of a more 

complex scene. In this case, only the random patterns were projected as the scene was composed 

by real objects. 

 

Despite of the video projector resolution limit (even though it was not fully exploited), 

super-resolution images could have been obtained either by using multiple sub-pixel shifted 

images of the same scene [21] or by exploring the fact that patches in a natural image tend to 

redundantly recur many times inside the image, both within the same scale, as well as across 

different scales [22]. 

As stated before, random matrices are largely incoherent with any fixed basis   and, 

therefore, for the measurement or sensing matrices, we have used pseudorandomly generated 

(with uniform distribution) and Hadamard based ones, having both given similar results.  

                                                                                                                                                             
1
 available at http://www.acm.caltech.edu/l1magic/ 

http://www.acm.caltech.edu/l1magic/
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We also performed some experiments in order to test the robustness of the system in the 

presence of noise. We concluded that the system was able to reconstruct images of similar 

quality when the amplitude of the added noise was below 20% of the maximum amplitude of the 

signal. The results of the conducted experiments are depicted on Figure 16. 

 

Some experiments regarding the reconstruction of colored images were also conducted. 

In this case, the object to be imaged is a red squared contour on a green background painted on 

normal paper (see Figure 17a). For this experiment, the object was fixed and only the random 

patterns were projected. For each color channel (RGB), 410 values were measured and a single 

image was reconstructed. In this experiment, the random patterns projected to obtain the 

measurements to reconstruct each of the RGB images were not black and white but red and 

black, for the case of the red channel reconstruction, green and black for the green case and blue 

and black for the remaining case. This procedure was adopted to boost the independent influence 

of the RGB colors in the scene on their respective measurements. 

The final image corresponds to the combination of the three RGB images in order to 

create the colored image (see Figure 17b). 

 

Even though it is possible to recognize the red squared contour and the green 

background, the result is not very defined. Besides the reduced size of the painted area, we 

believe that the low reflectivity of the paper surface and the difference between the projected 

colors and those present in the imaged object strongly conditioned the results. It must also be 

emphasized that the contours are not sharp. 
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In the same manner, we tried to reconstruct a color image of the real scene depicted on 

Figure 15 (a). The obtained results are presented in Figure 18. In this case the quality of the 

reconstruction is significantly better and this is mainly due to the object’s materials, which are 

more reflective than paper. 

Conclusions 

In this paper an analysis of the theory of compressive sensing was presented towards the 

implementation of an innovative active single-pixel camera. We have presented experimental 

results for a flexible single-pixel CS imaging architecture based on an active illumination 

concept that yielded good results. 

For certain applications, an active illumination single-pixel camera can represent a good 

way for reducing deployment complexity and costs, while increasing the performance and 

capabilities of data acquisition and processing systems. 

In the light of the work we have already developed, our intent is to extend our work to the 

development of other configurations that will disregard the need of an active illumination source 

and operate in a transmissive mode rather than reflective. It is also within our agenda the 

development of  a single-pixel camera with local programmable gain, which could be used to 

detect weak signals in the presence of very strong optical signals in an image. Such solutions can 

find applications in various domains such as biology [23], non-destructive inspection [22, 24], 

security (terahertz imaging for drug detection [22]) and astronomy [25-27]. 

CS imaging can also be further extended to statistical inference related tasks, such as 

detection, classification and recognition, since the image reconstruction is not explicitly required, 

but only the relevant statistics for the problem at hand. 
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Fig. 1. Example of a simple recovery problem. (a) The Logan–Shepp phantom test image. (b) 

Sampling domain in the frequency plane; Fourier coefficients are sampled along 22 

approximately radial lines. (c) Minimum energy reconstruction obtained by setting unobserved 

Fourier coefficients to zero. (d) Compressive sensing based reconstruction. This reconstruction is 

an exact replica of the image in (a) [5]. 

 

 

Fig. 2. (Color online) Geometry of 1  recovery. (a) Visualization of the 2  minimization that 

does not find the sparse point of contact ŝ  between the 2  ball (hypersphere, in red) and the 

translated measurement matrix null space (in green). (b) Visualization of the 1  minimization 

solution that finds the sparse point of contact ŝ  with high probability thanks to the pointiness of 

the 1  ball [15]. 

 

 

Fig. 3. Single-Pixel Camera block-diagram. Incident light field (corresponding to the desired 

image x ) is reflected off a DMD array whose mirror orientations are modulated by a 

pseudorandom pattern. Each different mirror pattern produces a voltage at the single photodiode 
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that corresponds to one measurement  my . From M  measurements a sparse approximation to 

the desired image x  using CS techniques can be obtained [11]. 

 

 

Fig. 4. (Color online) Optical setup of the single-pixel camera [11]. 

 

 

Fig. 5. (Color online) Active illumination single-pixel-camera experimental setup. Following the 

red arrows, it can be seen that the image projected by the video projector is reflected on the wall 

and by the means of a lens is focused on the photodiode active area. The output of the 

photodiode amplifier circuit is connected to a data acquisition board. 
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(a)  (b)  

Fig. 6. (Color online) (a) Compact active illumination single-pixel camera setup. (b) Detailed 

photo of the assembly comprising the lens and the photodiode circuit. 

 

 

= 

 

× 

 

Fig. 7. Example of one of the projected images, representing the product between a random 

measurement pattern and the image to be reconstructed. 

 

 

Fig. 8. Ideal image with 64 × 64 pixels (N = 4096). 

 

(a)  (b)  

Fig. 9. Images (64 × 64 pixels) reconstructed using the best K-term Haar wavelet approximation: 

(a) K = 400; (b) K = 675 [11]. 
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(a)  (b)  

Fig. 10. CS reconstruction from: (a) M=820 measurements  20%;  

(b) M = 1600 measurements  39% [11]. 

 

   

Fig. 11. (Color online) (left) Original object (ball); (center) 4096 pixels (800 measurements  

20%); (right) 4096 pixels (1600 measurements  40%) (pictures taken from 

http://dsp.rice.edu/cscamera). 

 

   

Fig. 12. (Color online) (left) Original object (Mandril); (center) 4096 pixels (800 measurements 

 20%); (right) 4096 pixels (1600 measurements  40%) (pictures taken from 

http://dsp.rice.edu/cscamera). This image was reconstructed using RGB color filters to separately 

acquire each channel and then combine them. 

 

(a)  (b)  

Fig. 13. (a) 64 × 64 pixels (N=4096) raster scan image obtained with 4096 measurements.  

http://dsp.rice.edu/cscamera
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(b) 64 × 64 pixels image reconstructed via CS from 2700 measurements [20]. 

 

   

Fig. 14. First results obtained (32×32 pixels  N = 1024) with the active illumination 

single-pixel camera. (left) 205 measurements  20% (PSNR = 11.08 dB); (center) 410 

measurements  40% (PSNR = 12.30 dB); (right) 717 measurements  70% (PSNR = 13.21 

dB). 

 

(a)  (b)   

(c)  (d)  

Fig. 15. (Color online) (a) Original scene; Image reconstruction using: (b) 20% of the 

measurements (PSNR = 69.74 dB); (c) 40% of the measurements (PSNR = 75.60 dB); (d) 60% 

of the measurements. All the reconstructions are images with 64 × 64 pixels (N=4096). All the 

PSNR values were obtained comparing the respective image with the image reconstructed using 

60% of the measurements. 
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(a)  (b)  

Fig. 16. Reconstruction of the central image of Fig. 14. after the addition of uniformly distributed 

noise with maximum amplitude of: (a) 10% of the maximum amplitude of the measured signal 

(SNR = 20.63 dB); (b) 20% of the maximum amplitude of the measured signal (SNR = 14.54 

dB). 

 

(a)  (b)  

Fig. 17. (Color online) (a) Piece of paper with the painted red contour and green background (the 

coin is there only for size comparison). (b) Reconstructed color image of the painted area in (a). 

 

 

Fig. 18. (Color online) 64 × 64 pixels color reconstruction of the real scene depicted in Figure 15 

(a). 40% of the measurements were used to reconstruct the image for each of the RGB channels. 

 


