
 Open access Journal Article DOI:10.1088/1741-2552/AB5D5C

Active inference as a unifying, generic and adaptive framework for a P300-based
BCI. — Source link

Jelena Mladenović, Jérémy Frey, Mateus Joffily, Emmanuel Maby ...+2 more authors

Institutions: French Institute for Research in Computer Science and Automation

Published on: 13 Feb 2020 - Journal of Neural Engineering (IOP Publishing)

Topics: Inference and Probabilistic logic

Related papers:

 Probabilistic co-adaptive brain-computer interfacing.

 A Framework for Optimizing Co-adaptation in Body-Machine Interfaces.

 Learning Models for Shared Control of Human-Machine Systems with Unknown Dynamics

 Bayesian Active Learning for Collaborative Task Specification Using Equivalence Regions

A Simple and Generic Belief Tracking Mechanism for the Dialog State Tracking Challenge: On the believability of
observed information

Share this paper:

View more about this paper here: https://typeset.io/papers/active-inference-as-a-unifying-generic-and-adaptive-
1c8iqzt3lj

https://typeset.io/
https://www.doi.org/10.1088/1741-2552/AB5D5C
https://typeset.io/papers/active-inference-as-a-unifying-generic-and-adaptive-1c8iqzt3lj
https://typeset.io/authors/jelena-mladenovic-4ujcccolg2
https://typeset.io/authors/jeremy-frey-385yep6txv
https://typeset.io/authors/mateus-joffily-51ujn41ele
https://typeset.io/authors/emmanuel-maby-4tbh1v2tnd
https://typeset.io/institutions/french-institute-for-research-in-computer-science-and-3k6jpcfg
https://typeset.io/journals/journal-of-neural-engineering-35ad7aaf
https://typeset.io/topics/inference-d6zpsjlj
https://typeset.io/topics/probabilistic-logic-r1sp2jpw
https://typeset.io/papers/probabilistic-co-adaptive-brain-computer-interfacing-13gfql88jl
https://typeset.io/papers/a-framework-for-optimizing-co-adaptation-in-body-machine-23uccztd5o
https://typeset.io/papers/learning-models-for-shared-control-of-human-machine-systems-2wdjufzii5
https://typeset.io/papers/bayesian-active-learning-for-collaborative-task-2rp14ngwkq
https://typeset.io/papers/a-simple-and-generic-belief-tracking-mechanism-for-the-1tlaxl5wjx
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/active-inference-as-a-unifying-generic-and-adaptive-1c8iqzt3lj
https://twitter.com/intent/tweet?text=Active%20inference%20as%20a%20unifying,%20generic%20and%20adaptive%20framework%20for%20a%20P300-based%20BCI.&url=https://typeset.io/papers/active-inference-as-a-unifying-generic-and-adaptive-1c8iqzt3lj
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/active-inference-as-a-unifying-generic-and-adaptive-1c8iqzt3lj
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/active-inference-as-a-unifying-generic-and-adaptive-1c8iqzt3lj
https://typeset.io/papers/active-inference-as-a-unifying-generic-and-adaptive-1c8iqzt3lj

HAL Id: halshs-02396876
https://halshs.archives-ouvertes.fr/halshs-02396876v2

Submitted on 7 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Active inference as a unifying, generic and adaptive
framework for a P300-based BCI

Jelena Mladenovic, Jérémy Frey, Mateus Joffily, Emmanuel Maby, Fabien
Lotte, Jérémie Mattout

To cite this version:
Jelena Mladenovic, Jérémy Frey, Mateus Joffily, Emmanuel Maby, Fabien Lotte, et al.. Active inference
as a unifying, generic and adaptive framework for a P300-based BCI. Journal of Neural Engineering,
IOP Publishing, 2020, 17, pp.016054. 10.1088/1741-2552/ab5d5c. halshs-02396876v2

https://halshs.archives-ouvertes.fr/halshs-02396876v2
https://hal.archives-ouvertes.fr

Active Inference as a Unifying, Generic and Adaptive

Framework for a P300-based BCI

Jelena Mladenovic1,2, Jeremy Frey3, Mateus Joffily4, Emmanuel Maby2,

Fabien Lotte1 and Jeremie Mattout2

1 Potioc team, Inria Sud-Ouest, Bordeaux, France; 2 Ullo, La Rochelle, France; 3 Cophy

team, CRNL, INSERM U1028, Lyon, France; 4 Univ Lyon, CNRS, GATE UMR5824,

F-69130, Ecully, France;

E-mail: jelena.mladenovic@inria.fr

Abstract.

Objective. Going adaptive is a major challenge for the field of Brain-Computer Interface

(BCI). This entails a machine that optimally articulates inference about the user’s intentions

and its own actions. Adaptation can operate over several dimensions which calls for a

generic and flexible framework. Approach. We appeal to one of the most comprehensive

computational approach to brain (adaptive) functions: the Active Inference (AI) framework.

It entails an explicit (probabilistic) model of the user that the machine interacts with, here

involved in a P300-spelling task. This takes the form of a discrete input-output state-space

model establishing the link between the machine’s (i) observations – a P300 or Error Potential

for instance, (ii) representations – of the user intentions to spell or pause, and (iii) actions –

to flash, spell or switch-off the application. Main results. Using simulations with real EEG

data from 18 subjects, results demonstrate the ability of AI to yield a significant increase in bit

rate (17%) over state-of-the-art approaches, such as dynamic stopping. Significance. Thanks

to its flexibility, this one model enables to implement optimal (dynamic) stopping but also

optimal flashing (i.e. active sampling), automated error correction, and switching off when

the user does not look at the screen anymore. Importantly, this approach enables the machine

to flexibly arbitrate between all these possible actions. We demonstrate AI as a unifying and

generic framework to implement a flexible interaction in a given BCI context.

1. Introduction

A Brain-Computer Interface (BCI) is a system that instantiates a direct interaction with the

brain, be it (i) for restoring control (e.g. for movement [1] or communication [2]); (ii) for

assistance and task optimization (e.g. by monitoring workload) [3] or (iii) for rehabilitation

by enabling the self-regulation of brain activity for therapeutic purposes (Neurofeedback) [4].

One of the most commonly used non-invasive BCI for communication is the visual P300-

speller [2]. It relies on event-related potentials (ERPs) notably including the P300 – an EEG

positive deflection occurring around 300ms after a rare and relevant event. This event can be

the display or highlighting of an expected item (e.g. a letter, a number or a picture). With a

P300-speller, the subjects are typically presented with a 6×6 grid of characters, where a set of

Active Inference as a Unifying, Generic and Adaptive Framework for a P300-based BCI 2

items within a row or a column are flashed in a pseudo-random order (the Row-Column – RC

paradigm). To select a letter, during the flashing, the users need to focus their visual attention

on the item they wish to spell. Once the target item is flashed, the brain reacts with a P300,

enabling the machine to detect the particular ERP and spell the desired character. Online, the

machine aims at inferring which stimulus corresponds to the targeted item. In order to gain

confidence about the target letter, the machine flashes the items in repetition. Intuitively, one

would believe that the longer the machine flashes, the higher the confidence. However, this

is not necessarily the case, as the user’s vigilance may drop over time which affects the EEG

signals and hence classification accuracy. For more details see [5].

1.1. Related Work

Although the P300-speller has a relatively high Information Transfer Rate (ITR) compared

to other BCIs, it remains a fairly slow and cumbersome mean of communication due to the

necessity of trial repetition for a fairly correct P300 classification [6]. In our context, it is

interesting to consider such improvements as belonging to either one or the other of the two

following categories:

(1) Static methods, that implement static design enhancements to increase the signal-to-

noise ratio (SNR), e.g. by (i) preventing perceptual errors such as the “repetition blindness” –

when flashing the same item consecutively [7, 8], or the “near-target effect” – when flashing

within a close range both temporally and spatially from the target letter [9], varying the

inter-stimulus intervals or flashing patterns [5]; or (ii) motivating users with more engaging

playful environments [10], captivating stimuli (smileys [8] or real faces [8, 11]), intelligent

(but not data-dependent) order of stimuli apparition [12, 13]; inter-symbol distance, symbol

size, contrasted foreground and background colours [14] or monetary rewards [15].

(2) Dynamic methods, that endow the machine with flexibility or adaptive behavior such

that it will adjust some of its design parameters based on the online acquired signals and the

states of the ongoing interaction. These usually include probabilistic or Bayesian approaches

to update the machine’s belief in real time and optimize the resulting decisions. For instance,

optimal (or dynamic) stopping both reduces the number of flashes and increases accuracy by

using the brain response to each flash to update both its belief about the target letter and its

confidence about this belief [16, 17].

In [17], the outcome of a probabilistic classifier is updated online, permitting the

machine to stop and spell a letter once it attains a predefined confidence level. Here the

decision speed (number of flashes) depends on the consistency and reliability of accumulated

evidence. Another example is the effort to get rid of individual calibration, by implementing

unsupervised classification [18], or by adopting a transfer learning strategy based on data

from previous subjects [19]. To go further in assisting the user to spell words, some authors

implement language models together with the optimal stopping to reach higher ITR [20].

Automatic spelling corrections using Error Potentials (ErrPs) have also been used [21, 22].

It should be noted that the subject directly influences the level of improvement that can be

achieved. Indeed, when users reach higher accuracy thanks to adaptive machines, they become

Active Inference as a Unifying, Generic and Adaptive Framework for a P300-based BCI 3

more motivated, which in turn yield higher SNRs hence an even higher accuracy. A virtuous

cycle that has been evidenced online when implementing optimal stopping [17]. And most

recent advances in adaptive P300 spellers go beyond optimal stopping by also incorporating

optimal flashing, a form of active sampling that consists in flashing the group of letters that

should provide most information to reveal the target [23].

Considering (1), some “static methods” could apply to every subject (such as prevention

of near target or repetition blindness effects), but other solutions, such as different colours,

letter size, inter-stimulus intervals, or 3D environments seem to be non-transferable across all

subjects. Typically, those are specific to a particular BCI scenario, person or even time period.

Furthermore, these methods are not sensitive to changes in user states (they do not adapt), for

instance they could not account for user fatigue. We believe that these static solutions can

increase the initial usability, but not a long-lasting one. We find it is of essential importance

to merge the knowledge used for static design methods and apply it in a dynamic way.

Considering (2), the “dynamics methods” – the few existing adaptive developments have

been designed independently of each other, namely, adaptive flashing and adaptive spelling.

It appears difficult to combine such adaptive actions in one computational framework, as

one needs to find a way for the machine to optimally arbitrate, online, between alternative

actions. For instance, in adaptive stimulus presentation as proposed by [23], the authors

used a probabilistic model to implement optimal stopping with a fixed decision threshold,

and relative entropy with a greedy search algorithm to select the next sequence of flashes.

However, such a solution is not generic in the sense that the action space remains limited and

specific to the particular phase of the ongoing interaction (e.g. flashing, spelling or correcting).

As a consequence, right after spelling an item for instance, the machine cannot choose

between validating this item or flashing again to acquire more evidence, or immediately

spelling another item instead. Furthermore, as such a decision relies on the ability to detect

an Error Potential (ErrP), one has to be able to evaluate the confidence of ErrP detection

within a single trial, which is a very noisy step. As a matter of fact, ErrP classifiers have to

be used online with precaution. This is because in case of low specificity (i.e. high risk of

labeling a correct letter as an error), the correct letters can be replaced with another (wrong)

one. This phenomenon has shown to be quite frustrating for users [21]. Some authors even

recommend not to use such corrections, stating that word auto-completions using contextual

and language models suffice [24]. Indeed, for such an automated correction to be effective, an

adaptive framework is needed to optimally weight all possible alternative decisions, based on

their relative predictions and confidence. In particular, this requires a unifying framework in

which the various relevant quantities can be negotiated in a common currency. For instance,

additional information need to be traded with the time needed to get that information and, as

well, with the expected reward associated with error-free communication.

1.2. A unifying framework

The required unifying framework puts an emphasis on the various decisions and actions the

machine may take. In that sense, it extends the adaptive approaches that implement learning

Active Inference as a Unifying, Generic and Adaptive Framework for a P300-based BCI 4

abilities only (e.g. adaptation of feature extraction or classification parameters over time using

machine learning techniques) with active sampling which provides actions in a way that also

influences the user and optimizes the interaction. We have previously advocated for these two

complementary aspects of adaptation in BCI and proposed a unifying conceptual framework

in [25].

In this paper, we propose and illustrate an instantiation of the conceptual framework for

adaptive BCIs from [25], based on a recent computational model developed in theoretical

neuroscience and called Active Inference [26]. It resides on the mentioned perception-action

cycles that couple the agent to its environment. Note that in our context, the environment of

interest for the machine or (artificial) Active Inference agent is the BCI user. Active Inference

rests on a generic Bayesian approach that we show could incorporate various instances of

adaptive BCI techniques into one flexible framework. It involves a formal generative model,

in which the dependencies between observations, user states (intentions) and actions are

specified given a particular context (here a P300-speller BCI). Based on this probabilistic

model and an optimization criterion referred to as the Free Energy Principle (FEP), the

machine infers the user’s intentions (what letter to spell, if none then pause) from EEG

observations and computes optimal actions (to flash or spell). Applying Active Inference in a

P300 speller context thus naturally endows the interaction with optimal flashing and spelling.

Importantly, Active Inference turns an optimization problem (action selection) into a Bayesian

inference one where preferences or goals are specified in the form of prior expectations.

Desired outcomes are encoded in terms of quantitative priors.

We apply Active Inference on a simulated P300-speller, using real data from 18 subjects.

Moreover, to demonstrate the flexibility of this framework, we implement various adaptive

features such as automated error correction or the detection of a state where the user is looking

away from the screen. As these features correspond to alternative (hidden) states that the

machine’s model of the user considers plausible, and since the Active Inference framework

rests on a single optimization criterion (the FEP), the machine will automatically arbitrate

between all possible actions based on both in-build priors and incoming observations. Note

that in this first demonstration of Active Inference for BCI, we consider a simplified situation

where observations are not raw EEG data but appropriately pre-processed, extracted and

classified features. In other words, the Active Inference framework is here plugged-in on

top of a classical feature extraction and (probabilistic) classifier for P300-based BCI.

In the following sections, we first summarize the general principle of Active Inference in

(2.1), emphasizing its genericity and flexibility. We describe in (2.2) how Active Inference can

be applied in the context of P300-speller BCI. In (3), wee introduce the real data and features

we used to evaluate this new approach by simulating online spelling. The following section

(4) contains the obtained results, comparing Active Inference with state-of-the art algorithms.

Finally, (5) includes a discussion, and (6) comprises our concluding words and future work.

Active Inference as a Unifying, Generic and Adaptive Framework for a P300-based BCI 5

2. Methods

The Active Inference framework has been proposed as a biologically plausible computational

model of the brain [26]. Here we build on the analogy between the brain and any adaptive

system. We endow the machine with Active Inference in order to enable it to flexibly interact

with the user in a P300-based BCI. In the following subsection, we introduce Active Inference

as proposed in computational neuroscience, and draw the brain-machine analogy.

2.1. Active Inference

By the end of the last century, neuroscientists ceased to perceive the brain as a passive organ

which simply processes stimuli, but as an active organ that constantly updates a (probabilistic)

model of its environment and predicts future sensory inputs [27]. This view has given

rise to the so-called Bayesian brain hypothesis whereby the brain is thought to implement

(approximate) Bayesian inference. A compelling computational framework that incorporates

the Bayesian brain hypothesis aiming at explaining perception, learning and decision making

in biologically plausible terms. In this scope, the most advanced General Framework both

computationally and theoretically is Active Inference [26]. It extends approximate Bayesian

Inference by tightly coupling perception with action (unifying cause and effect). In other

words, as living beings cannot directly perceive the true states of the world (the cause),

they need to infer them from noisy observations (the effect). Such inference is achieved

by repeatedly performing perception-action cycles. They constantly anticipate the true states

and represent them within a generative model of sensory inputs. This way they are implicit

Bayesian modelers of their environment [26] In order to exchange with an ever-changing

environment and maintain homeostasis, biological (adaptive) systems restrict themselves to a

limited number of states. In other words they are resisting the natural tendency of dispersion

(resisting the 2nd law of thermodynamics) [26]. This mechanism can be seen as minimizing

the entropy (disorder or unpredictability) of the distribution over the outcomes they experience

(observations) relative to a desired outcome (e.g. homeostasis).

2.1.1. A Brain - Machine Analogy In BCI, the observations (EEG) are often very noisy and

contain high variability for which we often do not know the cause, and thus cannot control

its outcomes to our favor. We wish to endow the machine with Active Inference, in order

to model the causes of observations, to better anticipate and favor certain outcomes. This is

indeed what we are looking for in BCI systems. As such, let us draw a parallel between (i)

the brain as an adaptive system, described by Active Inference, which:

• accumulates observations to update its internal model of the environment,

• optimizes its interactions through making inference about the environment,

• optimizes its interactions through acting upon the environment;

and (ii) the machine which should incorporate the same behavior to achieve an adaptive BCI,

namely:

Active Inference as a Unifying, Generic and Adaptive Framework for a P300-based BCI 6

• accumulate observations – EEG data – to update its internal model of the user, e.g., the

model containing probabilities of user’s intentions, states, reactions to machine’s actions

etc.

• optimize its interactions through making inference about the user, i.e., with the updated

user model, updated prediction for a certain user state e.g., fatigue or intention to spell

or pause

• optimize its interactions through acting on the user, i.e., with the updated user model,

reinforce predictions or reduce prediction error with optimal action (feedback or stimuli).

Both the brain and the machine behave in order to best anticipate future outcomes by

minimizing entropy (minimizing chaos, or maximizing information) relative to a desired

outcome. In the following, we expose (a) the generic discrete state space model used by the

Active Inference framework to model sequential learning and decision making by the brain,

and (b) the objective function (relative entropy) it minimizes – free energy.

2.1.2. Generative Bayesian model Sensory evidence (observation) is evaluated and updated

given a generative model m under Markovian assumptions in order to reach optimal

predictions. The model contains priors over future outcomes that encode one’s goals or

preferences. Such priors influence action selection, as depicted in Figure 1. Note that m

embeds the generative model assumptions specific to each agent.

Figure 1: Illustrates Markov model of hidden states S, control states U and observations O.

Actions are sampled from the posterior probability distribution over control states, which is

parametrized by the precision parameter γ and preferences over future outcomes C. The

latter assigns high values to desired final outcomes or states and penalizes undesired ones.

The generative model m is a joint probability over hidden states S, control states U,

observations O and model parameters:

Active Inference as a Unifying, Generic and Adaptive Framework for a P300-based BCI 7

——————————

S – finite set of hidden states: Hidden states are internal representations a living being

(or a machine in our case) can have about the hidden causes of their sensations (observations).

For instance, they can be the letter on the user’s mind that cause a P300 EEG deflection

(machine’s observation) after the presentation of flashing letters (machine’s action).

S= s(1),s(2), ..,s(n), with |S|= n;

Let s map each trial t onto one element from finite set S;

s(t) = st ∈ S, ∀t = 1, ...,T

where n represents the number of possible states, or cardinality of S at every trial t; T is the

final trial, and t the current one. This means that only one state out of n possible ones can take

place at a time or trial t.

——————————

U – finite set of control states or actions: In active inference, actions are sampled from

beliefs about control and, thus need to be inferred from observations. However for simplicity,

in most implementations of active inference, realized actions are assumed to be known by the

agent. The agent entertains posterior beliefs about the control of (hidden) state transitions. In

the previous example, a possible action would be the flashing of a specific letter.

U= u(1),u(2), ..,u(r), with |U|= r;

Let u map each trial t onto one element from finite set U ;

u(t) = ut ∈ U, ∀t = 1, ...,T

where r represents the number of possible states, or cardinality of U at every trial t. Only one

action out of r possible ones can take place at a time or trial t.

——————————

O – finite set of observations or outcomes: Observations are anything an agent can

directly sense. In our example, taking the machine’s perspective, they are the (discrete) EEG

signal.

O= o(1),o(2), ..,o(z), , with |O|= z;

Let o map each trial t onto one element from finite set O;

o(t) = ot ∈O, ∀t = 1, ...,T

where z represents the number of possible observations, or cardinality of O at every trial t.

Only one observation out of z possible ones can take place at a time or trial t.

Active Inference as a Unifying, Generic and Adaptive Framework for a P300-based BCI 8

The generative (Bayesian) model as defined in [28] writes:

P(õ, ũ, s̃,γ |m) = P(õ |s̃,m)︸ ︷︷ ︸
likelihood

P(s̃, ũ |γ,m)︸ ︷︷ ︸
transitions

P(γ |m)︸ ︷︷ ︸
precision

(1)

where õ = o1, ..,oT ∈ O , s̃ = s1, ..,sT ∈ S, ũ = u1, ..,uT ∈ U. Note that we denote matrices

with bold capital letters and vectors with only capital letters. The model is defined by three

major elements, as given in equation (1):

——————————

(i) Likelihood matrix A, from (1): represents the likelihood of observations given the

hidden states:

P(õ |s̃,m) =
T

∏
i=1

P(oi |si,m)︸ ︷︷ ︸
likelihood

, P(oi = k |si = h) = Ak,h

where A ∈R
z×n. In other words, given each h = 1, ..n states there is a probability to get a k =

1, ..z observation. Thanks to the likelihood, our Bayesian model contains probabilities from

the past experience, and enables us to predict the probability to perceive a new observation

ot+1 given a state st+1.

——————————

(ii) Probabilistic transition matrix between states B(ut), given an action, from (1):

P(s̃, ũ |γ,m) = P(ut |γ,m)
t

∏
i=1

P(si+1|si,ui,m)︸ ︷︷ ︸
transitions

;P(st+1 = w | st = q,ut) = B(ut)w,q

where w,q = 1, ..n, hence B(ut) ∈ R
n× n, and n refer to the number of hidden states.

This means that transitions between hidden states depend upon the current putative action ut

under policy π ∈ 1, · · · ,K. A policy indexes a specific sequence of control states (ũ|π) =
(ut , · · · ,uτ |π):

lnP(ũ|γ,m) = γ︸︷︷︸
precision

·Q(π) = γ · (Q(ut+1|π)+ · · ·+Q(uτ |π)︸ ︷︷ ︸
expected(negative) f ree energy

)

Q(uτ |π) = EQ(oτ |π)[lnP(oτ |m)]
︸ ︷︷ ︸

extrinsic value

+ EQ(oτ |π)[DKL[Q(sτ |oτ ,π)|Q(sτ |π)]]︸ ︷︷ ︸
epistemic value

(2)

weighted by the precision parameter γ (detailed bellow in 2.1.2), such control states or

putative actions are chosen to minimize expected free energy, where DKL is the Kullback-

Leibler (KL) divergence or relative entropy (for more on KL divergence, see Appendix 1); and

EQ(oτ |π) is the expectation of a future outcome oτ given policy π . For the sake of readability

we develop each element from equation (2), as follows.

An action ut is chosen from a list of putative actions uτ under a given policy π that

minimizes expected fee energy which is comprised of 2 elements:

(i) Extrinsic value or the preferred final outcome (the goal we wish to achieve) which we

maximize, that is its expectation EQ(oτ |π).

Active Inference as a Unifying, Generic and Adaptive Framework for a P300-based BCI 9

(ii) Epistemic value or information which we wish to maximize, that is, its expectation

EQ(oτ |π). That is equivalent to minimizing the prediction error, or the discrepancy

between the prior (predicted hidden state or prior Q(sτ |π)) and posterior (actual hidden

state given the observation Q(sτ |oτ ,π)). We achieve this by minimizing the relative

entropy (i.e., minimizing the KL divergence relative to the predicted outcome).

You can notice that EQ(oτ |π) of a probability distribution Q (called the variational) is used

twice, and serves as a bound and link between different probability distributions P and Q, that

describe the extrinsic value and epistemic value, respectively (for more details, see Appendix

2).

So, we are wagering between the epistemic and extrinsic value at each iteration, i.e., trying to

get closer to the prior goal (future outcome) by acquiring maximum information.

The extrinsic value contains P(oτ |m), which is the prior distribution over future outcomes,

referred to as Cτ . So, let Cτ be the preference of future outcomes oτ ∈O. As part of extrinsic

value, it influences the choice of action to reach such desired outcomes. If we consider all

available observations from set O as future outcomes then oτ = o(z):

Cτ = σ([C(o(1)),C(o(2)), ..,C(o(z))])T

where σ is a softmax (normalized exponential function) of final outcomes, such that:

σ : Rz 7→ R
z,

σ(oτ) j =
e
(oτ) j

∑
z
i=1 e(oτ)i

∈ (0,1), ∀ j = 1, .,z
(3)

The softmax function here compresses a z-dimensional vector [C(o(1)),C(o(2)), ..,C(o(z))] of

real values into another Cτ vector of the same dimension that contains real values that add up

to 1 and reside within the range of (0,1). In other words, we transform all observations from

set O into prior probabilities of future outcomes, some of which we favor, other which we

penalize.

——————————

(iii) Precision parameter γ , from (1) :

P(γ |m) = Γ(α,β)

where Γ is a gamma distribution of scale parameter α and rate parameter β . If a random

variable X follows a Gamma distribution then:

f (x;α,β) =
β αxα−1e−βx

Γ(α)
, for x > 0 and α,β > 0

where Γ(α) is the gamma function (i.e. an extension of the factorial function):

Γ(α) = (α −1)!

The precision parameter (also called temperature) determines the degree of confidence

of the control states or beliefs over actions. For example, if γ 7→ ∞ the beliefs over policies

merge into a single policy, being over optimistic and prone to errors, with immediate or fast

Active Inference as a Unifying, Generic and Adaptive Framework for a P300-based BCI 10

action (increased exploitation), inversely if γ 7→ 0+ the beliefs over policies spread uniformly

resulting as a very high exploration or waiting time. In short, the higher the confidence about

having a good policy (i.e. belief of high precision), the smaller the exploration and vice versa.

We have detailed the components of the internal, Bayesian, generative model, a

distribution P(ot ,st ,ut ,γ|m) that connects observations ot to hidden states st through control

states ut .

“The agent and the environment interact in cycles. In each cycle, the agent first figures

out which hidden states are most likely by optimizing its expectations with respect to the free

energy of observations. After optimizing its posterior beliefs, an action is sampled from the

posterior marginal over control states. The environment then picks up this action, generates

a new observation and a new cycle begins”. [29]

2.2. Active Inference for the P300-speller

We aim at designing a fully adaptive P300 speller that learns and acts optimally in real time.

The above generic and flexible probabilistic framework, Active Inference enables the machine

to automatically and optimally update an internal model of the environment (here the user

given a BCI task) and select appropriate actions. Specifically for the P300-speller, the actions

to be considered are – flashing or spelling letters or switching off the screen. This allows us

to implement within the same framework: (1) optimal stopping & flashing but also when (2)

the user is looking away from the screen – “lookAway” case, in which the machine can pause

the application; together with above mentioned, we can also implement (3) an ErrP classifier,

where after receiving an ErrP, the machine can automatically choose to spell the next probable

letter or continue flashing to increase evidence for the target letter.

Figure 2: A depiction of Active Inference for a P300 speller: (1) the user hidden states on the

left represented as long term intentions and short term reactions to stimuli, (2) the

observations are the (preprocessed) EEG signal, (3) the actions the machine based on its

internal (generative) model of the user. The generative model m is simplified in this figure,

representing Free Energy as a function of hidden states (updated with observations) and

actions Fm(ut ,st).

Active Inference as a Unifying, Generic and Adaptive Framework for a P300-based BCI 11

When endowing the machine with Active Inference, in a P300 speller application (see

Figure 2), the machine:

• accumulates the information about the target/non target letters (P300 or not) and

incorrectly spelled letters or not (ErrP or not), to update its belief about the user’s

intention or command,

• optimizes its interactions through inference, i.e., minimizes discrepancy between

observed data and predictions about user intentions to spell a letter, or pause;

• optimizes its interactions with the user by spelling and flashing items or switching-off in

a flexible and adaptive manner, in order to maximize speed and accuracy.

In the next two sections, we explicitly describe the key model parts when instantiating the

P300 speller BCI within the Active Inference framework. We start first with the machine’s

generative, internal model of the user in section 2.3, and then describe its possible actions

towards the user in section 2.4.

2.3. Generative model of the user.

Prior to any observation and in the absence of prior knowledge, the probability of the intention

to spell a given letter is the same for all the letters (high entropy). Then, after each flash and

electrophysiological observation, these beliefs are updated based on the generative model m

which embodies the machine’s internal representation of the user and task.

The model m rests on transitions among hidden states that are coupled with actions, in our

example it contains:

——————————

S – finite set of user hidden states:

There are 37 intentions × 4 reactions = 148 possible user hidden states the machine must

infer. The first are the user’s intentions to spell one out of 36 letters or digits at a time, within

the 6×6 grid, or the 37th intent to pause by looking away from the screen. Such state we refer

to as a lookAway state and it enables asynchronous BCI behavior. The second represent 4

user’s reactions to the machine’s actions or stimulations. Namely, user intentions are inferred

by the machine through an accumulation of short term user’s reactions to stimuli being –

“My target letter was just flashed” – giving a P300 (target)observation, or inversely – “My

target was not flashed” – yielding a non-P300 (non-target) observation. Another type of user

reaction is “My target letter was spelled” – or – “What is spelled is not correct” – giving rise

to an Error Potential (ErrP) as observation. Active Inference enables us to infer the cause of

sensory observations, here the user intentions, which in turn are influenced by the machine’s

actions.

——————————

U – finite set of machine control states or actions:

There are 36 spelling + 12 flashing + 1 switch-off = 49 possible machine’s actions that

can help the machine learn about the user hidden states and accomplish the user’s goal. There

can be 12 possible flashing (6 columns and 6 rows) without repetition, or spelling one out of

36 letters; or switching-off the screen in the case of a “lookAway” state.

Active Inference as a Unifying, Generic and Adaptive Framework for a P300-based BCI 12

——————————

O – finite set of observations or outcomes: Active Inference instantiated in [28] deals

with discrete observations, namely in our case : (1) high or low confidence discrete values

associated with the observation of a target or non target signal, and similarly (2) high or low

confidence values associated with the observation of a correct or incorrect feedback. This

means that after each flash, the machine observes either target (P300) or non target values

with a certain degree of confidence. Similarly after each spelling the machine observes either

an correct or incorrect (ErrP) feedback with more or less confidence. These confidence levels

are given by the class probabilities estimated by the classifier. We denote them as follows: for

a correctly spelled letter, we refer to as a Feedback Correct FC (FC0, FC1 for not confident

and for confident correct feedback, respectively); and Feedback Incorrect as FI (FI0, FI1 not

confident and confident incorrect feedback, respectively). If the machine is completely unsure

whether the feedback is correct or not, it is classified as undefined feedback, or FXX . Same

applies to flash target and non target (T 0, T 1 and NT0, NT1 for not confident and confident

target, and non target, respectively) and T XX for an undefined response to a flash, as depicted

in Figure 3.

Figure 3: After each flash or spell, an observation – target/non-target or feedback

correct/incorrect – is being mapped to a discrete high-to-low degree of confidence or

undefined observation O(i), i=1..10. Those discretized observations are the ones that enter the

Active Inference model.

——————————

A – prior over outcomes given a state (likelihood)

The likelihood is the probability to observe an outcome ot , given a state st , and A is a matrix

of z possible observations, given n possible hidden states:

A =

o(1,1), o(1,2), . . . o(1,n)

...

o(z,1), o(z,n)z

Active Inference as a Unifying, Generic and Adaptive Framework for a P300-based BCI 13

For instance, A contains the probability to observe a high confidence target – T1 or low

confidence incorrect feedback – FI0, given a user hidden state – a column flashed or a letter

spelled, respectively. Thanks to A, the machine knows how reliable is the classification. In

BCI, A may typically be defined based on calibration or training data. This means that A

should ideally be defined for each user specifically. This is indeed important to define the

levels of confidence that will drive the BCI interpretations and actions. Namely, Active

Inference will rely on those levels to decide whether it should go on flashing in order to

make a reliable decision, or spell with no further due. The way we define the matrix for each

individual is further described in subsection 3.1.3 pertaining to the realistic simulations we

performed.

——————————

B(ut) – transitions between states given an action

To transition from one state st to another st+1 is possible through action (control states). The

choice of action ut given a state st depends on the priors C over the desired final outcome oτ

but also on the precision over action or the exploration/exploitation ratio γ while conforming

to the free energy minimization, as mentioned in (2). Concretely, transition matrix B contains

all the possible combinations of states or user intentions n×n, with |S|= n, which we define

prior to the experiment. These are the same for every subject, as follows.

B =

s(1,1), s(1,2), . . . s(1,n)

...

s(n,1), s(n,n)

where n = 148, containing 37 × 4: user intentions to spell 36 letters or pause (37th lookAway),

along with short-term user reactions to stimuli (1. correct/ 2. incorrect spelling, or 3.

target/ 4. non-target flashing). For all subjects, the transition matrix B is the same, and its

values are either 0 or 1. Values 0 and 1 refer to implausible and plausible state transitions,

respectively. For instance, when a set of items has just been flashed, the current state might

be the recognition of the target, or not, and a subsequent user’s state could be the recognition

of a future flash or the recognition of a displayed feedback, depending on the action taken by

the machine.

——————————

C – priors over final outcomes

Vector C influences the choice of action. It expresses a goal or preference in the form of a prior

probability over final outcomes, with the highest probability being given to the most desired

outcome. Hence, the prior beliefs encode a utility function which, in our case will favor the

high confidence Feedback Correct ’FC1’ as final observation oτ . This amounts to aiming at

the state – My target letter was spelled –. In our case, we assign equal values (preferences)

to the appearance of target/non target observations, while penalizing incorrect spelling, and

favouring correct spelling, as in Figure 4. As we tested various values for C, we provide more

details in the subsection 3.1.3 Simulations.

Active Inference as a Unifying, Generic and Adaptive Framework for a P300-based BCI 14

Figure 4: Upper figure: Softmax function yielding output values between 0 and 1 (y-axis) for

each observation within the set O; from FC1, FC0, FXX, FI0, FI1 which refer to feedback

observations (o(2),o(3), ..,o(6)) and T1, T0, TXX, NT0 and NT1 denoting target/non-target

observations o(7),o(8), ..,o(11) (x-axis). Bottom figure: Logarithm of the softmax encodes a

utility function, in which we favour the correctly spelled letter – FC1, and penalize feedback

incorrect FI1 and FI0, and undefined FXX feedback; while equally favouring the apparition

of target T, non target NT or undefined TXX observations.

——————————–

γ - precision over priors

In a P300 speller we wish to spell correct letters in a minimum amount of time. However there

is always a trade-off between speed and accuracy. This trade off is governed by parameter γ

which sets the balance between exploration and exploitation. In practice, this is arbitrarily set

by defining the prior distribution over parameter γ (a gamma distribution with parameters α

and β). As we tested multiple γ values, see 3.1.3 Simulations for more details.

2.4. Optimal Interaction

2.4.1. Optimal flashing & stopping Vector C, precision γ , and transition matrix B are defined

prior to the experiment, given the task and goals. Matrix A is learned once from training data,

for each user. Then, here is the course of actions that unfold during the online interaction:

• List all potential actions ut at time t.

• Compute for each action its posterior expectation or epistemic value EQ(oτ |π) and

compute KL divergence (also called relative entropy) between prior Q(sτ |π) and

posterior Q(sτ |oτ ,π) over the hidden states (using transition matrix B, likelihood A,

preferences C and precision γ); Note that we use the full transition matrix B (meaning

that we consider all possible hidden states during a choice or time t).

Active Inference as a Unifying, Generic and Adaptive Framework for a P300-based BCI 15

• The higher the information (epistemic value), the most likely this action will be chosen.

When we consider not only a single putative action, but a series of actions to reach a

predefined desired outcome, we then talk about policies π . Hence, we get a list of actions

(ũ|π) = (ut , · · · ,uτ |π), active inference picks up the optimal policy, that is the one that

maximizes the information gain as well as maximizes the reward (outcome).

• Update internal state st based on observation ot (enabling the data-driven, adaptive

model).

• Repeat the selection of the next action ut (to flash) until the spelling of a letter (the case

without an ErrP classifier); or in the case in which we use an ErrP classifier: repeat action

selection (to flash or spell) until the spelling of a correct letter or Feedback Correct with

high confidence FC1 (which will be obtained depending on the error rate of the feedback

classifier, set in A).

Active Inference permits a holistic and automatic control over the machine’s actions, thanks

to the free energy principle that unites action and perception (cause and effect) into a single

Bayesian framework, see figure 5. As reminder, the machine chooses such action that provides

most information (min entropy relative to the predefined goal or Feedback Correct). In that

sense, flashing letters automatically provides more information about the target than spelling

one by one letter.

Figure 5: Simplified schematics of Active Inference choice of action. It starts by predicting

the future observation or hidden state. Using priors (the precision γ and preferences C) it will

choose an action to reinforce its prediction, for instance to flash a certain column; this will

produce an observation (within degrees of confidence) and depending on the likelihood it

will choose to continue flashing or to spell a letter. In case of an ErrP, the spelling can be

followed by more flashing to reinforce its certainty about the spelled letter or immediately

spell another letter.

Thanks to Active Inference, the machine is able to execute optimal flashing (with

stopping), that is, flashing those letters which give most information about the target

letter. Furthermore, Active Inference offers a generic and flexible framework that can also

incorporate other adaptive behavioural features as described below.

Active Inference as a Unifying, Generic and Adaptive Framework for a P300-based BCI 16

2.4.2. Detecting a LookAway state We here refer to the situation where the user is not

looking at the screen anymore. By simply adding another 37th hidden state to the existing

set S, we provide the subject with the possibility to pause the machine. Note that there is

no clearly defined single observation associated with that state which instead, can only be

inferred through the absence of target like responses. In other words, if the machine observes

many consecutive non target signals, it should eventually conclude that the user is not actively

looking at the screen. The model thus has to be able to distinguish between a poor performing

subject, producing ambiguous signals and a subject which intends to pause the P300 speller.

Note that in our case we did not model a “switch on” button action, which could for instance

rely on a SSVEP response with a dedicated stimulus always active at a corner of the screen.

So far, we only simulate independent trials with different intentions, some of which can be a

LookAway state to stop the machine.

2.4.3. Automated error correction We simulated an ErrP perfect classifier, with either a

high confidence correct or incorrect feedback classifier, i.e., assigning zero probability to the

appearance of not confident correct and incorrect feedback as well as undefined feedback,

p(FC0, FI0, FXX) = 0. As this is not a very realistic case, we also simulated a more realistic

feedback classifier, with 95% specificity (a 0.95 probability to be right about a correctly

spelled letter); and 75% sensitivity (a 0.75 probability to be right about an incorrectly spelled

letter). This way the confidence for specificity (Feedback Correct) is p(FC1 = 0.95; FC0 = 0;

FXX = 0; FI0 = 0; FI1 = 0.05), and for sensitivity (Feedback Incorrect) it is p(FC1 = 0.25;

FC0 = 0; FXX = 0; FI0 = 0; FI1 = 0.75).

If Active Inference realizes it spelled an incorrect letter, it will choose by itself to

continue flashing and gain additional information about the target, or to immediately spell the

second most probable letter. In the case of a perfect feedback classifier, it will be 100% sure

about the letter whether it is incorrect or correct. In the case of the realistic feedback classifier,

it would not be so sure (5% and 25% error for correct and incorrect letter, respectively).

In the next subsection, we describe the evaluation approach we pursued in order to

validate Active Inference for implementing a flexible and efficient P300 speller BCI. This

includes a description of the Dataset and Data Features, of the Model, of the Simulation

procedure and of the Evaluation Metrics we used.

3. Experimental Design

3.1. Dataset

We use real training data from one of our previous studies [17] to which 18 healthy subjects

(11 males and 7 females) aged from 22 to 30 took part voluntarily to evaluate the P300-speller

BCI paradigm. Thirty- two EEG sensors were used and their placement followed the extended

10–20 systems. The P300-speller BCI experiment was made of two recording stages:

- the initial training phase enables to optimize spatial filters [30] and a probabilistic

classifier [31] that can then be used to differentiate response-to-target data from response-

Active Inference as a Unifying, Generic and Adaptive Framework for a P300-based BCI 17

to-non-target data. In this training phase, subjects were given a sequence of 25 characters to

focus on. For one character, matrix rows and columns were flashed alternatively during three

complete cycles of 12 stimuli (two of which were including the target item). The training

dataset is thus composed of 750 trials for the non-target class and 150 trials for the target

class.

- following the training phase, each participant completed 3 copy-spelling sessions as a

test phase. Each session was made of twenty-four 5-letter French words, hence 360 letters

in total. The process of flashing each row and column was repeated three times (3× 12) per

character spelled.

3.1.1. Features From the data recorded during the test phase, the features are extracted for

our simulation, as follows. A first preprocessing step consisted in applying of a 2nd order

bandpass Butterworth filter with cut-off frequencies of 0.5 and 20Hz.

We use Riemannian geometry, the state of the art data classification approach developed

by [32]. It uses covariance matrices which are Symmetric Positive Definite (SPD) matrices

and lie in a differential geometry manifold. We define such covariance matrices as follows.

Let Xi ∈ R
S×N the EEG epoch corresponding to N consecutive samples in response to the ith

stimulus recorded on S sensors, as proposed in [33] we construct the super-trial X̃i with the

concatenation of Xi and the temporal prototype P which is the average of all target epochs

recorded during the calibration phase:

X̃i =

(
Xi

P

)

Let us compute the corresponding covariance matrix for the ith stimulus:

Σ̃i =
1

N −1
X̃iX̃i

T
=

[
ΣP CT

P,Xi

CP,Xi
Σi

]

where Σi and ΣP are respectively the covariance matrices of the Xi EEG epoch and the

temporal prototype P, and KXi,P the cross-covariance between the Xi EEG epoch and the

temporal prototype P.

In the same way, we can compute this covariance matrix for each trial of the calibration

phase for the target and non-target classes. To determine to which class (target or non target)

a covariance matrix X̃i belongs, the Riemannian distance is computed between it and the

Riemannian means for target and non-target classes respectively denoted Σ̃T and Σ̃NT , as

follows. Let us consider two SPD covariance matrices K1 and K2, where ‖·‖F is the Frobenius

norm, then the Riemannian distance between them is:

δR(K1,K2) =
∥∥(log K−1

1 K2)
∥∥

F
(4)

Knowing that the diagonal elements of such n× n covariance matrices are real positive

eigenvalues λi, we can write the Riemannian distance as:

δR(K1,K2) =

√
n

∑
i=1

log2 λi

Active Inference as a Unifying, Generic and Adaptive Framework for a P300-based BCI 18

Then, for each trial Xi we can extract the following measure:

rT NT =
δR(Σ̃i, Σ̃T)

δR(Σ̃i, Σ̃NT)

For classification, we used a simple probabilistic generative model of the data, based

on a two univariate-Gaussian mixture (one Gaussian distribution per class). Then, following

Bayes Rule, the likelihood when seen as a conditional density can be multiplied by the prior

probability density of the parameter and then normalized, to give a posterior probability

density :

p(C j|Y) ∝ p(Y |C j)p(C j)

where Y is the feature on which the classification C j was done, j = 0 referring to the

target and j = 1 to the non-target class and with

p(Y |C j) =
1

σ j

√
2π

e
− (Y−µ j)

2

2σ2
j

where µ j and σ2
j are respectively the mean and the variance of the Gaussian distribution

for the class j.

Finally, for our simulation, we calculate the log likelihood l f j, in case the feature is the

rT NTi measure for each flash, as follows :

l f j = log(p(rT NTi|C j)) =−log(2π.σrT NTj
)−

(rT NTi −µrT NTj
)2

2σrT NTj

where µrT NTj
and σ2

rT NTj
are the means and variances of the two Gaussian distributions

estimated from rT NT measures computed on data recorded during the calibration phase.

3.1.2. Mapping data features onto model observations. After each flash, the machine

receives 2 values at a time (log likelihood of Riemannian distance between target and non

target). To transform such data into a discrete input that is fed to Active Inference, i.e.,

the set of observations O with high and low confidence (see reminder in figure 3), we do

the following. On training data, we first calculate the log-likelihood ratio or a difference

(l f0 − l f1)i per class (target, non-target) at each trial or flash i, and from it we calculate a

threshold ρT for target and ρNT for non-target. To compute thresholds (using the same training

data as for calculating Riemannian distance), we use the Median Absolute Deviation (MAD).

MAD is a more robust estimator of scale than the sample variance or standard deviation,

and it works better with non normal distributions. Let us denote Md the median of the

distribution and Li a random event or (l f0 − l f1)i drawn at each trial i, then MAD is referred

to as ρ(L) = Md(|Li −Md(L)|). For pairs (l f0, l f1)i that correspond to target, we denote

ρ(L)T = ρT and separately, we calculate MAD for non-target observations, and denote it

ρ(L)NT = ρNT . However, if the training set does not possess a sufficient number of samples,

outliers will have a strong impact on these estimations. This means that the distribution

of the classifier output might differ significantly from the test set, and it could be hard to

Active Inference as a Unifying, Generic and Adaptive Framework for a P300-based BCI 19

generalize the resulting observations. Therefore, in order to get a more robust MAD estimate,

we approximate the distributions of (l f0 − l f1)T and (l f0 − l f1)NT with beta distributions,

using a maximum likelihood estimate. This yields the mean and variance parameters for both

distributions. Thanks to this approach we obtain a more robust calibration and less variability

between participants. Note that for each subject, we calculate these individual thresholds from

their training dataset.

From the testing data, at each trial j = 1..M, we draw with repetition a random likelihood

pair (l f0 − l f1) j or L j. Then depending on how it compared with the pre-determined

thresholds (ρT and ρNT), we assign an observation category φ(L j) ∈O, as follows:

φ(L j) = φ(l f0 − l f1) j =

7→

o(6), target ’T1’, if L j ≥ ρT

o(10), non-target ’NT1’, if L j ≤ ρNT

o(9), ’NT0’, if L j ∈ (ρNT , ρNT + 1
4
∆ρ]

o(7), ’T0’, if L j ∈ [ρT − 1
4
∆ρ, ρT)

o(8), TXX, if L j ∈ (ρNT + 1
4
∆ρ, ρT − 1

4
∆ρ)

(5)

where ∆ρ = ρT −ρNT .

If L j ≥ ρT then L j represents a target with high confidence ’T1’, also if L j ≤ ρNT , then

L j represents a non-target with high confidence ’NT1’. The undefined ’TXX’ are placed

half way between the two thresholds ρNT and ρT , while we equally divided this distance for

less confident observations. ’NT0’ and ’T0’ are respectively half-way between ρNT and ρT ,

see Fig. 6. Such observations (with degrees of confidence) are then fed to Active Inference

framework.

The raw EEG data that correspond to responses to flashing letters are first classified

into target or non-target responses using Riemannian distance estimates between covariance

matrices, and a Naive Bayes classifier. Note that in the current model the more or less “noisy”

nature of the EEG data is accounted for through considering a confidence level associated

with the classification (high, low, undefined).

Active Inference as a Unifying, Generic and Adaptive Framework for a P300-based BCI 20

Figure 6: Data from subject 13, likelihood distributions for each trial or flash stimulus

(l f0 − l f1)i for training set (A), and (l f0 − l f1) j for testing set (B). On training data, we

calculate a threshold using Median Absolute Deviation (MAD) per class, denoted as ρT for

target and ρNT for non-target class. Then, with such thresholds learned on training, we map

confidence of observations from testing data. Bellow: the beta distributions for a more

precise calculation of thresholds.

3.1.3. Simulations We simulate the spelling of 1200 random letters per subject. For each

target, Active Inference runs until it decides to spell a letter (without ErrP classifier) or runs

until it finds a correctly spelled letter (with Errp classifier). If it flashes the row or column

which contains the target, we randomly fetch a target pair (l f0− l f1)T from our testing dataset.

Similarly, if it flashes a column or row that does not contain the target, we will fetch a random

non target pair (l f0 − l f1)NT from our test dataset. We then map it with φ onto one of our

z=6..10 (target/non-target) observations from set O. After this mapping, the pair may turn out

to fall in the wrong class depending on the quality of the likelihood pair. As we are picking

data randomly, after a consecutive flash, we cannot choose to pick a refracted P300 from

our data, and provide more realistic scenario. Hence, we are obliged to set a limit to Active

Inference choice of flashing by preventing it from flashing a row/column consecutively.

Note that for simulating an ErrP classifier, the possibilities of describing feedback (ErrP)

data with a beta distribution are very large including many possible combinations. Hence, we

simply create probabilities to choose a correct or incorrect letter truly or falsely with different

specificity and sensitivity levels, as reminder see 2.4.3.

Prior to the testing phase, we assigned the following values to the model parameters:

—————————————

(i) Calculating likelihood matrix A :

Matrix A expresses the probability of each observation category, given each possible state

value. It is computed individually, from the training data of each subject. In our simulations,

Active Inference as a Unifying, Generic and Adaptive Framework for a P300-based BCI 21

we draw NT=2000 samples of target data, NNT=2000 samples of non target data. We then

computed the proportion of samples who fell into each observation category in order to set

the above probabilities.

—————————————

(ii) Setting values for C

Differently from matrix A, values chosen for C are same for all subjects. We assign a high

value to a correctly spelled letter, ’FC1’, and penalize the wrongly spelled ’FI1’, (for a

reminder, see Fig. 4). Here we discuss the empirical evaluation of the distance between

the extreme values assigned to observations, i.e., penalty and preferences. For instance, how

strong should be the penalty for incorrect feedback ’FI1’, ’FI0’ and ’FXX’. Observations

(target or not) are valued equally (zero vector) oT (i) = 0, where i=6,..10 (as reminder of

observations, see figure 3). In contrast, we vary values for feedback observations (correct

or not), as follows. A quadratic function g(d) = d2, d ∈ [1,2, ..5] maps the penalty to the

observations, and a parameter κ , regulates such penalty: oT (j) = κ + g(d), for j=1,..5. For

instance, the strongest penalty is when g(d) = 52 is set for an incorrect feedback with high

confidence (FI1); κ is a parameter influencing the penalty that we vary for 3 distinct subjects,

see Figure 7.

Figure 7: Varying κ in C vector to demonstrate difference in speed (flash mean), in accuracy

(acc), and Bit Rate (BT) for 3 subjects (S03 - good, S08 - bellow average, S04 - poor

classification performance).

By augmenting κ , we can decrease the distance between the feedback correct(max)

and incorrect(min). Note that the smaller the distance (higher κ), the faster the spelling

with less accuracy which in total does not significantly affect the bit rate (BT). For all

subjects, we empirically fixed κ = 5.6 i.e. between κ ∈ [4,7], a range of values that we

Active Inference as a Unifying, Generic and Adaptive Framework for a P300-based BCI 22

determined empirically and for which Active Inference is stable and exhibits the expected

type of behaviour.

—————————————

(iii) Selecting values for precision, γ

For our thorough evaluation, we considered a unique prior distribution over the precision

parameter γ , for all subjects, with α = 1 and β = 128. To illustrate the effect of this

parameter though, we performed a few simulations with three different subjects (S03, S04,

S08), varying its prior distribution. For α ∈ (1, ..,128) and β ∈ (1, ..,128), we performed

all the combinations and did not observe any significant change in accuracy, flash mean nor

bit-rate, see Figure 8. This is because of our choice of transition values being either 0 or 1

(high confidence) in the B matrix, i.e., the γ parameter in that case has very little influence on

the choice of future action and hidden state.

Figure 8: Varying α and β parameters of γ precision. The rectangle colour denotes bit-rate,

the size of circles denotes flash mean, and the circle colours denote the accuracy.

3.1.4. Evaluation Metrics We test the following Active Inference (AI) models:

• basic AI (optimal stopping and flashing);

• basic AI + lookAway.

To examine the performance rates of basic AI +lookAway, in our simulation (same, for 12000

“letters”), instead of selecting random letters as target, we set lookAway as the only target

“letter” (12000 “lookAways”).

• basic AI + realistic ErrP classifier;

• basic AI + perfect ErrP classifier.

The ErrP classifier output contains purely simulated data (both perfect and more realistic).

Active Inference as a Unifying, Generic and Adaptive Framework for a P300-based BCI 23

We compare these AI models with a fairly standard approach based on naı̈ve Bayes classifier

with two variants for actions:

1. No adaptive actions, i.e. a fixed number of flashes (12 repetitions fixed a priori) and

pseudo-random flashing, denoted as fixed-flash;

2. An optimal strategy based on a threshold on the maximum a posteriori (MAP) with

pseudo-random flashing, denoted as optimal stopping as in [21]. As mentioned in the related

works, optimal stopping spells a letter once the accumulated evidence about a letter reaches

a predefined confidence threshold or certainty. We implemented different threshold values

(between 0.8,0.9, 0.95 and 0.99). For comparison, we chose 0.9 as it yielded the highest bit

rate on average in our dataset.

Note that all approaches apply on the same features – Riemannian distance of covariance

matrices, as described above in the subsection 3.1.1 Features.

——————-

Simulations were performed on data collected from the simulated spelling of 12000

letters with 18 subjects, who were recorded in a previous experiment [17]. Even though during

the present simulations it took milliseconds to fetch features from the hard drive, to compare

the performance of the various algorithms we considered the speed of the flash during the

original experiment, i.e. 0.2s, and we measured the bit rate accordingly for each subject. The

amount of bits (b) transferred is given by:

b = log2(K)+P · log2(p)+(1− p) · log2(
1−P

N −1
)

with K: number of possible choices (classes) and p: P300 classifier accuracy. Considering

that each flash lasts 0.2s, the time T it takes to spell a letter is hence 0.2×Nb f lash, thus the bit

rate br indicates the BCI information transfer rate in bit/min with: br = b× 60
T

– see [34].

We tested to which extent the performance (as measured by bit rate) of optimal flashing

outperforms classical P300 algorithms. We performed a one-way analysis of variance

(ANOVA) with repeated measures and post-hoc Tukey with false discovery rate correction

[35] enabling a clear differentiation between algorithms. Independent variable: algorithm

(6 groups: 4 Active Inference + 2 standard), dependent variable: bit rate. The threshold of

significance is set at p < 0.01.

4. Results

We present the comparison of AI instances with standard P300-speller algorithms using their

average bit rate values, see table 1, and see figure 9.

Methods Fixed-flash Optimal Stop AI basic AI ErrP perfect AI ErrP real AI lookAway

Bit rates 10.49 b/m 45.86 b/m 54.32 b/m 73 b/m 64.94 b/m 51.85 b/m

Table 1: Table with bit-rate average values of all methods.

Active Inference as a Unifying, Generic and Adaptive Framework for a P300-based BCI 24

Figure 9: Comparison in bit rate (bit/min) between fixed flash, optimal stopping 0.9, AI

basic, AI of lookAway, and AI + realistic ErrP. All methods significantly differ from one

another (p < 0.01).

Active inference has lower accuracy rates on average than Optimal Stop (71.97% vs
76.62%, Figure 10.B.), however it is a lot faster (18.51 vs 24.88 flashes, Figure 10.C.).

Figure 10: Comparison of (A.) Bit Rate, (B.) Accuracy and (C.) Mean number flashes, of

Active inference basic (in red), AI with realistic ErrP classifier (in green) and Optimal

stopping (in blue) across subjects (sorted by bit rate from left to right).

Active Inference as a Unifying, Generic and Adaptive Framework for a P300-based BCI 25

It is interesting to see how Active Inference adapts its flashing pattern depending on the

certainty of the observations. In Figure 11 we compared side by side subjects with poor (S04)

and good (S03) classification performance.

Figure 11: Progression of probabilities of letters during flashing of AI with realistic ErrP.

Top: a subject with good performance, S03, bottom: poor performance one, S04. Each curve

corresponds to one letter and ends with a red triangle that represents a “correctly” spelled

letter (it can be wrong). If the curve ended with a triangle while in low probability it

represents a wrong assumption. The red refers to both correct feedback (red triangle) and

target (red circle), while green (incorrect) refers to both incorrect feedback (green triangle)

and non-target observations (green circle). The undefined target/non-target is in blue. The

frequency of error is evident with subject S04 while there are no error present with S03.

When studying Active inference with ErrP, we noticed that at least a 75% accurate ErrP

classifier (with specificity = sensitivity) is necessary for Active Inference to outperform other

algorithms (see Figure 12).

Figure 12: Bit Rate increase with feedback classifier’s accuracy – from 50 to 100 %

Active Inference as a Unifying, Generic and Adaptive Framework for a P300-based BCI 26

5. Discussion

The naive algorithm (Fixed flash) achieves only (10.49b/m). Active Inference showed a

significantly higher bit rate (54.32bit/min) than optimal stopping (45.86b/m), giving an

increase of about 17%. Active Inference performance increased even further when comparing

to optimal stopping by 58% when a perfect ErrP classifier with 100% accuracy is used

(73b/m). However, this perfect classifier being over optimistic, we considered a more realistic

one with specificity 0.95 and sensitivity 0.75 (64.94b/m); resulting with an increase of about

41% when comparing to optimal stopping. When only idle user or “lookAway” states are

simulated, it accurately “switches off” the speller about 90% of the time, after about 24 flashes

(51.85bit/min). A natural consequence is that the LookAway state often requires more flashes

than any other user intention to be inferred. That is because Active Inference observes the 37th

state, but as it in fact does not exist, it does not elicit a real observation (there is no 37th letter),

it will keep receiving non-target responses when flashing. When looking at the performance

(bit rate) of Active Inference subject per subject it behaves worse than Optimal Stopping for 2

out of 18 of them (i.e. S05 and S11). Interestingly, those are among the subjects with lowest

bit rate, see Figure 10.A. It can be explained by the fact that Active Inference has a short

observation time (see Figure 10.C.), if it receives a consecutive number of observations with

low probability (e.g. undefined observation TXX). However, the speed-accuracy trade-off can

be regulated within the vector C by setting a stronger penalty to wrongly spelled letters. We

also observe that the noisier the EEG data, the lower the performance, whatever the methods.

5.1. Perspectives

Due to the lack of ground truth, at the moment we simulated only two observations for the

ErrP classifier: correct or incorrect feedback (in/correctly spelled letter) with high confidence,

“FC1” and “FI1” with a degree of specificity and sensitivity (75% and 95%), but not low

confidence “FC0” or “FI0”. In a more realistic scenario, Active Inference would benefit

from an increased variety of feedback observations, i.e. correct / incorrect feedback with low

confidence and “undefined”. In this case its distribution would be calibrated during training,

as we did with target and non-target observations.

Clearly, the fact that this is a simulation is a drawback, as we have no way of controlling

the refractory effect for instance. We account for this phenomenon in our simulations by

forbidding two consecutive stimuli (which effects in a slight reduction in performance of

Active Inference). In the future, we would account for an additional observation representing

the decrease in the P300 amplitude with repetition or frequency.

Another constraint with Active Inference is that we must tune all the mentioned

parameters as priors beforehand. We presented an application where only the likelihood is

learned for each subject while other variables were empirically selected and kept the same

for all subjects. In order to learn a sensible range for those parameters and validate our

model, we first tested Active Inference on purely simulated data, in [36]. Note that the current

instantiation of the Active Inference we presented is not fully adaptive yet. Precisely, it is

Active Inference as a Unifying, Generic and Adaptive Framework for a P300-based BCI 27

adaptive as actions are driven online by ongoing observations, however it is not endowed

with (long term) learning in the sense that, for now, only model states are updated, not model

parameters.

Active Inference shows promising results in terms of performance, proposing a generic

framework in order to build a flexible machine that articulates inference (perception) and

decisions (actions) to optimize the interaction with the user. Yet, while the resulting system

may trigger (positive) adaptive behaviour from the user, currently it does not account explicitly

for user’s evolution over time, nor does it anticipate it. Future work will consist in creating

such “co-adaptive” system. For instance [37, 38] provide theoretical models that set evidence

of mutual, co-adaptive learning of the machine and user. [38] highlights that the machine

should not learn too fast as it would provide sub-optimal performance. Such co-adaptation

is indeed possible with our framework, for instance by adding new hidden states, e.g. user

fatigue or learning, as well as by updating model parameters online, such as the likelihood

matrix A.

We could envision to use an additional “layer” of active inference to implement a

language model for word auto-completion in a P300-speller. In such case the set of hidden

states could be increased with another one, referring to a correctly spelled word, along with

the correctly spelled letter. And, the desired outcome (in vector C) would correspond to a

“correctly spelled word” instead of or along with the correctly spelled letter.

Future developments would consist in testing Active Inference online, also designing,

testing, as well as applying Active Inference to other BCI paradigms, such as a Motor Imagery

BCI.

6. Conclusion

In this paper, we propose the use of Active Inference, a generic Bayesian framework used as

a computational model of brain processes. If endowed to the machine, Active Inference has

the potential to be applied on various BCI tasks, to adapt the machine to the user not only by

adjusting to signal variability (adapting the signal processing pipeline) but by modeling and

acting upon its causes (here a simplified example of user states, that are, user intentions in a

P300 context). We show that it is very flexible and generic, and demonstrate it via a P300

speller simulation on real-data. Furthermore, we demonstrate superiority of Active Inference

when compared with well known P300-speller approaches.

To make use of Active Inference one must specify: what the machine observes, here,

classified P300 or Error Potential features for instance; what the machine infers, here, the user

intentions to spell or pause; and what the machine performs as action, here, to flash, spell or

switch-off the application for example, and finally what is the overreaching goal, here, to spell

a correct letter with high confidence. With such information provided to Active Inference,

it builds confidence through observations, predicts user intentions, and chooses the optimal

action to minimize prediction error and reach a desired outcome or goal. As consequence of

applying Active Inference in a P300-speller context, it performs optimal flashing and stopping,

that is, automatic flashing of such letters that maximize information (minimize entropy) about

Active Inference as a Unifying, Generic and Adaptive Framework for a P300-based BCI 28

the target letter, and stopping once the goal (correctly spelled letter) is reached. We support

our choice for adding yet another method for adapting a BCI as it offers a vast range of

adaptation possibilities and flexibility, while minimizing only one objective function, the free

energy.

Although we illustrated the potential of Active Inference for BCI in the special case of

P300-based BCI, it is important to emphasize the genericity of this approach. Essentially, our

current implementation, relates EEG data classification outputs to inferred hidden states that

will trigger certain state transitions through actions. This is a very generic process where EEG

data features could be of any kind, such as ERPs but also frequency specific induced activities

like in motor-imagery based BCIs.

The overarching goal is to “influence” the user through optimal machine action in order to

fulfill efficiently user’s intent. We envision that Active Inference could unify most approaches

and paradigms in one adaptive BCI framework, as conceptualized in [25].

Appendix

Appendix 1:

Relative entropy, also called the Kullback-Libeler divergence, DKL of 2 probability

density functions Q and P : DKL(Q‖P) is a measure of the information gained when one

revises one’s beliefs from the prior probability distribution P to the posterior probability

distribution Q. In other words, it is the amount of information lost when Q is used to

approximate P [39]. In applications, P typically represents the “true” distribution of data,

observations, or a precisely calculated distribution, in our case being P(si|oi,m), given the

model m. Q typically represents an approximation of P, or in our case Q(si|m). In order to

find a distribution Q that is “closest” to P, we can minimize the KL divergence and compute

an information projection p∗ = argmin
p∈P

DKL(q‖p). Viewing the KL divergence as a measure

of distance in the space of probability distributions, p∗ is the “closest” distribution to q of

all the distributions in P. However, note that the KL divergence is not a metric as it is non-

symmetric, in general DKL(P‖Q) 6= DKL(Q‖P), and does not satisfy the triangle inequality.

The KL divergence is always non-negative DKL ≥ 0, and is equal to zero if and only if the two

distributions are equal. For discrete probability distributions Q (posterior) and P (prior), KL

divergence is defined to be [40]:

DKL(Q‖P) =−∑
i

Qi log
Pi

Qi

Appendix 2:

As the agent is a Bayesian modeler, at each step it wants to maximize the model evidence

or minimize surprise, i.e., to minimize prediction error EQ(oτ |π)[DKL[Q(sτ |oτ ,π)|Q(sτ |π)]].
To evaluate surprise is a difficult problem of exact Bayesian inference, because we need

to minimize the prediction between potentially many future states again given many possible

priors. One needs to find a bound for the marginal (i.e., integrated) likelihood, which generally

involves an intractable integral over hidden states si, i.e., summing out the states from Q(si,oi).

REFERENCES 29

So we need approximations or a bound to solve it (for more information, see [41]). Thus,

if we add the same fixed, variational approximate distribution Q in the surprise, we get an

approximate solution to the marginal likelihood and we get the expectation of surprise within a

bound. Such minimization of surprise is also called the variational (approximate) free energy.

ACKNOWLEDGMENT

Experiments presented in this paper were carried out using the PlaFRIM experimental testbed,

supported by Inria, CNRS (LABRI and IMB), Université de Bordeaux, Bordeaux INP and

Conseil Régional d’Aquitaine (see https://www.plafrim.fr/). supported by BCI-Lift Inria

project, Brain-Conquest project, grant ERC-2016-STG-714567 and of Université de Lyon,

within the Programme Investissements d’Avenir (ANR-11- IDEX-007), INDEPTH program

of IDEXLYON of Université de Lyon within the Programme Investissements d’Avenir (ANR-

16-IDEX-0005), CAUSAL project (ANR-18-CE28-0016) operated by the French National

Research Agency (ANR). The data used in this study were acquired as part of the French

ANR project ANR-DEFIS 09-EMER-002 CoAdapt.

References

[1] Jose del R Milan and Jose M Carmena. Invasive or noninvasive: Understanding brain-

machine interface technology [conversations in bme]. IEEE Engineering in Medicine

and Biology Magazine, 29(1):16–22, 2010.

[2] Lawrence Ashley Farwell and Emanuel Donchin. Talking off the top of

your head: toward a mental prosthesis utilizing event-related brain potentials.

Electroencephalography and clinical Neurophysiology, 70(6):510–523, 1988.

[3] Thorsten O Zander and Christian Kothe. Towards passive brain–computer interfaces:

applying brain–computer interface technology to human–machine systems in general.

Journal of neural engineering, 8(2):025005, 2011.

[4] J-M Batail, S Bioulac, F Cabestaing, C Daudet, D Drapier, M Fouillen, T Fovet,

A Hakoun, R Jardri, C Jeunet, et al. Eeg neurofeedback research: A fertile ground

for psychiatry? L’Encéphale, 2019.

[5] Eric W Sellers, Dean J Krusienski, Dennis J McFarland, Theresa M Vaughan, and

Jonathan R Wolpaw. A p300 event-related potential brain–computer interface (bci): the

effects of matrix size and inter stimulus interval on performance. Biological psychology,

73(3):242–252, 2006.

[6] Benjamin Blankertz, K-R Muller, Gabriel Curio, Theresa M Vaughan, Gerwin

Schalk, Jonathan R Wolpaw, Alois Schlogl, Christa Neuper, Gert Pfurtscheller, Thilo

Hinterberger, et al. The bci competition 2003: progress and perspectives in detection

and discrimination of eeg single trials. IEEE transactions on biomedical engineering,

51(6):1044–1051, 2004.

REFERENCES 30

[7] Haline E Schendan, Nancy G Kanwisher, and Marta Kutas. Early brain potentials

link repetition blindness, priming and novelty detection. Neuroreport, 8(8):1943–1948,

1997.

[8] Jing Jin, Eric W Sellers, and Xingyu Wang. Targeting an efficient target-to-target

interval for p300 speller brain–computer interfaces. Medical & biological engineering

& computing, 50(3):289–296, 2012.

[9] Caterina Cinel, Riccardo Poli, and Luca Citi. Possible sources of perceptual errors in

p300-based speller paradigm. Proceedings of the 2nd International BCI Workshop and

Training Course, 2004.

[10] Jun Qu, Fei Wang, Zhenping Xia, Tianyou Yu, Jing Xiao, Zhuliang Yu, Zhenghui Gu,

and Yuanqing Li. A novel three-dimensional p300 speller based on stereo visual stimuli.

IEEE Transactions on Human-Machine Systems, 2018.

[11] Tobias Kaufmann, SM Schulz, Claudia Grünzinger, and Andrea Kübler. Flashing

characters with famous faces improves erp-based brain–computer interface performance.

Journal of neural engineering, 8(5):056016, 2011.

[12] Thibault Verhoeven, Pieter Buteneers, JR Wiersema, Joni Dambre, and PJ Kindermans.

Towards a symbiotic brain–computer interface: exploring the application–decoder

interaction. Journal of neural engineering, 12(6):066027, 2015.

[13] BO Mainsah, G Reeves, LM Collins, and CS Throckmorton. Optimizing the

stimulus presentation paradigm design for the p300-based brain-computer interface

using performance prediction. Journal of neural engineering, 14(4):046025, 2017.

[14] Mathew Salvaris and Francisco Sepulveda. Visual modifications on the p300 speller bci

paradigm. Journal of neural engineering, 6(4):046011, 2009.

[15] SC Kleih, F Nijboer, S Halder, and A Kübler. Motivation modulates the p300 amplitude

during brain–computer interface use. Clinical Neurophysiology, 121(7):1023–1031,

2010.

[16] Hannes Verschore, Pieter-Jan Kindermans, David Verstraeten, and Benjamin

Schrauwen. Dynamic stopping improves the speed and accuracy of a p300 speller. In

International Conference on Artificial Neural Networks, pages 661–668. Springer, 2012.

[17] Jérémie Mattout, Margaux Perrin, Olivier Bertrand, and Emmanuel Maby. Improving

bci performance through co-adaptation: applications to the p300-speller. Annals of

physical and rehabilitation medicine, 58(1):23–28, 2015.

[18] Hendrik Woehrle, Mario M Krell, Sirko Straube, Su Kyoung Kim, Elsa A Kirchner, and

Frank Kirchner. An adaptive spatial filter for user-independent single trial detection of

event-related potentials. IEEE Transactions on Biomedical Engineering, 62(7):1696–

1705, 2015.

[19] Pieter-Jan Kindermans, Hannes Verschore, David Verstraeten, and Benjamin

Schrauwen. A p300 bci for the masses: Prior information enables instant unsupervised

spelling. In Advances in Neural Information Processing Systems, pages 710–718, 2012.

REFERENCES 31

[20] Pieter-Jan Kindermans, Michael Tangermann, Klaus-Robert Müller, and Benjamin

Schrauwen. Integrating dynamic stopping, transfer learning and language models in an

adaptive zero-training erp speller. Journal of neural engineering, 11(3):035005, 2014.

[21] Perrin Margaux, Maby Emmanuel, Daligault Sébastien, Bertrand Olivier, and Mattout

Jérémie. Objective and subjective evaluation of online error correction during p300-

based spelling. Advances in Human-Computer Interaction, 2012:4, 2012.

[22] Aniana Cruz, Gabriel Pires, and Urbano J Nunes. Double errp detection for automatic

error correction in an erp-based bci speller. IEEE Transactions on Neural Systems and

Rehabilitation Engineering, 26(1):26–36, 2018.

[23] Dmitry Kalika, Leslie M Collins, Chandra S Throckmorton, and Boyla O Mainsah.

Adaptive stimulus selection in erp-based brain-computer interfaces by maximizing

expected discrimination gain. In Systems, Man, and Cybernetics (SMC), 2017 IEEE

International Conference on, pages 1405–1410. IEEE, 2017.

[24] Boyla O Mainsah, Kenneth D Morton, Leslie M Collins, Eric W Sellers, and Chandra S

Throckmorton. Moving away from error-related potentials to achieve spelling correction

in p300 spellers. IEEE Transactions on Neural Systems and Rehabilitation Engineering,

23(5):737–743, 2015.

[25] Jelena Mladenović, Jérémie Mattout, and Fabien Lotte. A generic framework for

adaptive eeg-based bci training and operation, 2017.

[26] Karl Friston. The free-energy principle: a unified brain theory? Nature reviews

neuroscience, 11(2):127, 2010.

[27] Rajesh PN Rao and Dana H Ballard. Predictive coding in the visual cortex: a functional

interpretation of some extra-classical receptive-field effects. Nature neuroscience,

2(1):79, 1999.

[28] Thomas HB FitzGerald, Philipp Schwartenbeck, Michael Moutoussis, Raymond J

Dolan, and Karl Friston. Active inference, evidence accumulation, and the urn task.

Neural computation, 27(2):306–328, 2015.

[29] Karl Friston, Philipp Schwartenbeck, Thomas FitzGerald, Michael Moutoussis, Timothy

Behrens, and Raymond J Dolan. The anatomy of choice: dopamine and decision-

making. Phil. Trans. R. Soc. B, 369(1655):20130481, 2014.

[30] Bertrand Rivet, Antoine Souloumiac, Virginie Attina, and Guillaume Gibert. xdawn

algorithm to enhance evoked potentials: application to brain–computer interface. IEEE

Transactions on Biomedical Engineering, 56(8):2035–2043, 2009.

[31] J Mattout, G Gibert, V Attina, E Maby, and O Bertrand. Probabilistic classification

models for brain computer interfaces. In Proceedings of the Human Brain Mapping

Conference, Melbourne, Australia, volume 1519, 2008.

[32] Alexandre Barachant and Marco Congedo. A plug&play p300 bci using information

geometry. arXiv preprint arXiv:1409.0107, 2014.

[33] Marco Congedo, Alexandre Barachant, and Rajendra Bhatia. Riemannian geometry for

REFERENCES 32

eeg-based brain-computer interfaces; a primer and a review. Brain-Computer Interfaces,

4(3):155–174, 2017.

[34] Peng Yuan, Xiaorong Gao, Brendan Allison, Yijun Wang, Guangyu Bin, and Shangkai

Gao. A study of the existing problems of estimating the information transfer rate in

online brain–computer interfaces. Journal of neural engineering, 10(2):026014, 2013.

[35] William S Noble. How does multiple testing correction work? Nature biotechnology,

27(12):1135–1137, 2009.

[36] Jelena Mladenović, Mateus Joffily, Jérémy Frey, Fabien Lotte, and Jérémie Mattout.

Endowing the machine with active inference: A generic framework to implement

adaptive bci. In NeuroAdaptive Technology Conference’17, 2017.

[37] Josh Merel, Donald M Pianto, John P Cunningham, and Liam Paninski. Encoder-

decoder optimization for brain-computer interfaces. PLoS computational biology,

11(6):e1004288, 2015.

[38] Jan Saputra Müller, Carmen Vidaurre, Martijn Schreuder, Frank C Meinecke, Paul

Von Bünau, and Klaus-Robert Müller. A mathematical model for the two-learners

problem. Journal of neural engineering, 14(3):036005, 2017.

[39] KENNETH P Burnham and DAVfD R Anderson. A practical information-theoretic

approach. Model selection and multimodel inference, 2nd ed. Springer, New York, 2002.

[40] David JC MacKay and David JC Mac Kay. Information theory, inference and learning

algorithms. Cambridge university press, 2003.

[41] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review

for statisticians. Journal of the American Statistical Association, 112(518):859–877,

2017.

