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Abstract This paper considers the problem of sensorimo-

tor delays in the optimal control of (smooth) eye movements

under uncertainty. Specifically, we consider delays in the

visuo-oculomotor loop and their implications for active infer-

ence. Active inference uses a generalisation of Kalman fil-

tering to provide Bayes optimal estimates of hidden states

and action in generalised coordinates of motion. Repre-

senting hidden states in generalised coordinates provides

a simple way of compensating for both sensory and ocu-

lomotor delays. The efficacy of this scheme is illustrated

using neuronal simulations of pursuit initiation responses,

with and without compensation. We then consider an exten-

sion of the generative model to simulate smooth pursuit eye

movements—in which the visuo-oculomotor system believes

both the target and its centre of gaze are attracted to a (hid-

den) point moving in the visual field. Finally, the generative

model is equipped with a hierarchical structure, so that it

can recognise and remember unseen (occluded) trajectories

and emit anticipatory responses. These simulations speak to

a straightforward and neurobiologically plausible solution to

the generic problem of integrating information from differ-

ent sources with different temporal delays and the particular

difficulties encountered when a system—like the oculomo-

tor system—tries to control its environment with delayed

signals.
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1 Introduction

1.1 Problem statement

This paper considers optimal motor control and the particular

problems caused by the inevitable delay between the emis-

sion of motor commands and their sensory consequences.

This is a generic problem that we illustrate within the con-

text of oculomotor control where it is particularly prescient

(see for instance (Nijhawan 2008) for a review). Although

we focus on oculomotor control, the more general contribu-

tion of this work is to treat motor control as a pure infer-

ence problem. This allows us to use standard (Bayesian

filtering) schemes to resolve the problem of sensorimotor

delays—by absorbing them into a generative or forward

model. Furthermore, this principled and generic solution has

some degree of biological plausibility because the resulting

active (Bayesian) filtering is formally identical to predictive

coding, which has become an established metaphor for neu-

ronal message passing in the brain. We will use oculomotor

control as a vehicle to illustrate the basic idea using a series of

generative models of eye movements—that address increas-

ingly complicated aspects of oculomotor control. In short,

we offer a general solution to the problem of sensorimotor

delays in motor control—using established models of mes-

sage passing in the brain—and demonstrate the implications

of this solution in the particular setting of oculomotor control.

The oculomotor system produces eye movements to

deploy sensory (retinal) epithelia at very fast timescales. In

particular, changes in the position of a visual object are com-
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Fig. 1 Problem statement: optimal motor control under axonal delays.

The central nervous system has to contend with axonal delays, both

at the sensory and the motor levels. For instance, in the human visuo-

oculomotor system, it takes approximately τs = 50 ms for the retinal

image to reach the visual areas implicated in motion detection and a fur-

ther τm = 40 ms to reach the oculomotor muscles. As a consequence,

for a tennis player trying to intercept a ball at a speed of 20 m s−1, the

sensed physical position is 1 m behind the true position (as represented

here by τs · V), while the position at the moment of emitting the motor

command will be .8 m ahead of its execution (τm · V). Note that while

the actual position of the ball when its image produced by the photore-

ceptors on the retina hits visual areas is approximately at 45 degrees of

eccentricity (red dotted line), the player’s gaze is directed to the ball at

its present position (red line), in anticipatory fashion. Optimal control

directs action (future motion of the eye) to the expected position (red

dashed line) of the ball in the future—and the racket (black dashed line)

to the expected position of the ball when motor commands reach the

periphery (muscles)

pensated for with robust and rapid eye movements, such that

the object is perceived as invariant, despite its motion (Ilg

1997; Lisberger et al. 1987). This near-optimal control is

remarkable, given the absence of any external clock to coor-

dinate dynamics in different parts of the visual–oculomotor

system. An important constraint, in this setting, is axonal

conduction, which produces delays in sensory and motor sig-

nalling within the oculomotor system. Figure 1 shows that

in humans, for example, retinal signals arriving at motion

processing areas report the state of affairs at least about 50 ms

ago, while the action that follows is executed at least 40 ms in

the future (Inui and Kakigi 2006); for a review, see Masson

and Ilg [2010]. Different sources of delays exist—such as

the biomechanical delay between neuromuscular excitation

and eye movement. Due to these delays, the human smooth

pursuit system responds to unpredictable stimuli with a min-

imum latency of around 100 ms (Wyatt and Pola 1987).

In addition, these delays may produce oscillations about a

constant velocity stimulus (Robinson et al. 1986; Robin-

son 1965), whose amplitude and frequency can be altered

by artificially manipulating the feedback (Goldreich et al.

1992).

Eye movements can anticipate predictable stimuli, such as

the sinusoidal movement of a pendulum (Barnes and Assel-

man 1991; Dodge et al. 1930; Westheimer 1954); for a review,

see Barnes (2008). Interestingly, ocular tracking can compen-

sate for sensorimotor delays after around one or two periods

of sinusoidal motion—producing a tracking movement with

little discernible delay (Barnes and Asselman 1991). This

suggests that the oculomotor system can use sensory informa-

tion from the past to predict its future sensory states (includ-

ing its actions), despite the fact that these sensory changes

can be due to both movement of the stimulus and move-

ment of the eyes. The time taken to compensate for delays

increases with the unpredictability of the stimulus (Michael

and Jones 1966), though the system can adapt quickly to

complex waveforms, with changes in velocity (Barnes and

Schmid 2002), single cycles (Barnes et al. 2000) or perturbed

periodic waves—where subjects appear to estimate their fre-

quency using an average over recent cycles (Collins and

Barnes 2009). Further studies suggest that different sources

of information, such as auditory or verbal cues (Kowler 1989)

or prior knowledge about the nature of sensory inputs (Mon-

tagnini et al. 2006), can evoke anticipatory eye movements.

The aim of this work was to establish a principled

model of optimal visual motion processing and oculomo-

tor control in the context of sensorimotor delays. Delays

are often ignored in treatments of the visual–oculomotor

system; however, they are crucial to understanding the sys-

tem’s dynamics. For instance, delays may be important for

understanding the pathophysiology of impaired oculomo-

tor control: schizophrenic smooth pursuit abnormalities are

due to impairments of the predictive (extra-retinal) motion

signals that are required to compensate for sensorimotor

delays (Nkam et al. 2010; Thaker et al. 1999). Surpris-

ingly, delays may also explain a whole body of visual illu-

sions (Changizi 2001; Changizi and Widders 2002; Changizi

et al. 2008; Vaughn and Eagleman 2013), even for visual illu-

sions that involve a static display. Delays are also an impor-

tant consideration in control theory and engineering. Finally,

neuronal solutions to the delay problem speak to the repre-

sentation of time in the brain, which is essential for the proper

fusion of information in the central nervous system.

1.2 Existing solutions and the proposed hypothesis

A principled approach to optimal oculomotor control is pro-

vided by Bayesian filtering schemes that use probabilistic

representations to estimate visual and oculomotor states.

These states are hidden; i.e. they cannot be measured directly.

A popular scheme for linear control problems is the Kalman

filter (Kalman 1960). The Kalman scheme can be extended to

accommodate biomechanical constraints, such as transmis-

sion delays (e.g. fixed-lag smoothers). However, their solu-

tions can become computationally complex when delays are
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large in relation to discretisation time and are not biologi-

cally plausible. We have previously considered generalised

Bayesian filtering in continuous time as a metaphor for action

and perception. This approach has been applied to eye move-

ments (Friston et al. 2010b) and saccades in particular (Fris-

ton et al. 2012a). However, these applications ignored senso-

rimotor delays and their potentially confounding effects on

optimal control.

Crucially, the active inference schemes we have con-

sidered previously are formulated using representations in

generalised coordinates of motion; that is, states (such as

position) are represented along with their higher-order tem-

poral derivatives (such as speed, acceleration and jerk). This

means that one has an implicit representation of hidden

states in the recent past and future that can be used to

finesse the problems of delays. For example, it has been

shown that acceleration is a necessary component of the

predictive drive to eye movements (Bennett et al. 2007).

In brief, generalised representations can be projected to

the past and to the future using simple (linear) mixtures

of generalised motion. Note that a representation of gen-

eralised motion can be explicit or implicit using a popula-

tion coding scheme—as has been demonstrated for accelera-

tion (Lisberger and Movshon 1999). Representations of gen-

eralised motion may be important for modelling delays when

integrating information in the brain from distal sources—

such as other cortical columns in the same cortical area or

other areas that are connected with fixed but different delays

(Roelfsema et al. 1997). The integration of information over

time becomes particularly acute in motor control, where the

products of sensory processing couple back to the sampling

of sensory information through action.

In the context of action, acted inference finesses the

problems with delayed control signals in classical formu-

lations of motor control by replacing command signals with

descending corticospinal predictions. For instance, the loca-

tion of receptive fields in the parietal cortex in monkeys is

shown to shift transiently before an eye movement (Duhamel

et al. 1992). These predictions are fulfilled at the peripheral

level, using fast closed loop mechanisms (peripheral reflex

arcs). In principle, “these predictions can anticipate delays if

they are part of the generative model,” (Friston 2011); how-

ever, this anticipation has never been demonstrated formally.

Here, we show how generalised Bayesian filtering—as used

in active inference—can compensate for both sensory and

motor delays in the visual–oculomotor loop.

It is important to mention what this work does not address.

First, we focus on tracking eye movements (pursuit of a

single-dot stimulus for a monocular observer with fixed head

position): we do not consider other types of eye movements

(vergence, saccades or the vestibulo-ocular reflex). Second,

we take an approach that complements existing models, such

as those of Robinson et al. [1986] and Krauzlis and Lisberger

[1989]. Existing models account for neurophysiological and

behavioural data by refining block diagram models of ocu-

lomotor control to describe how the system might work. We

take a more generic approach, in which we define the imper-

atives for any system sampling sensory data, derive an opti-

mal oculomotor control solution and show why this solu-

tion explains the data. Although the two approaches should

be consistent, ours offers a principled approach to identify-

ing the necessary solutions (such as predictive coding) to a

given problem (oculomotor delays). We hope to demonstrate

the approach by modelling pursuit initiation and smooth

pursuit—and then consider the outstanding issue of antic-

ipatory responses: in previous treatments (Robinson et al.

1986), “[anticipation] has not been adequately modelled and

no such attempt is offered (…) only unpredictable move-

ments are considered”.

1.3 Outline

The main contributions of our work are described in the

subsequent five sections. First, sect. 2 summarises the basic

theory behind active inference and attempts to link gener-

alised filtering to conventional Bayesian filters used in opti-

mal control theory. This section then considers neurobio-

logical implementations of generalised filtering, in terms of

predictive coding in generalised coordinates of motion. This

formulation allows us to consider the problem of delayed sen-

sory input and motor output in sect. 3—and how this prob-

lem can be finessed in a relatively straightforward way using

generalised representations. Having established the formal

framework (and putative neuronal implementation), the final

three sections deal with successively harder problems in ocu-

lomotor control. We start in Sect. 4 by considering pursuit

initiation using a simple generative model of oculomotor tra-

jectories. Using simulations, we consider the impact of motor

delays, sensory delays and their interaction on responses to a

single sweep of a visual target. The subsequent section turns

to smooth pursuit eye movements—using a more sophisti-

cated generative model of oculomotor trajectories, in which

prior beliefs about eye movements enable the centre of gaze

to predict target motion using a virtual or fictive target (see

Sect. 5). In the final section, we turn to hierarchical models

of target trajectories that have explicit memories of hidden

dynamics, which enable anticipatory responses (see Sect. 6).

These responses are illustrated using simulations of antici-

patory pursuit movements using (rectified) hemi-sinusoidal

motion. In short, these theoretical considerations lead to a

partition of stimulus-bound eye movements into pursuit ini-

tiation, smooth pursuit and anticipatory pursuit, where each

mode of oculomotor control calls on formal additions to the

underlying generative model; however, they all use exactly

the same scheme and basic principles. Where possible, we
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try to simulate classic empirical results in this field—at least

heuristically.

In short, these theoretical considerations lead to a parti-

tion of stimulus-bound eye movements into pursuit initiation,

smooth pursuit and anticipatory pursuit, where each mode of

oculomotor control calls on formal additions to the underly-

ing generative model. However, these models all use exactly

the same scheme and basic principles; in particular, they all

use the same solution to the oculomotor delay problem. These

simulations illustrate that the active inference scheme can

reproduce classical empirical results in three distinct exper-

imental contexts.

2 From predictive coding to active inference

This section sets out the basic theory, before applying it to

the special problem of oculomotor delays in the following

sections. We first introduce the general framework of active

inference in terms of generalised Bayesian filtering and vari-

ational free energy minimisation. In brief, active inference

can be regarded as equipping standard Bayesian filtering

schemes with classical reflex arcs that enable action, such as

an eye movement, to fulfil predictions about hidden states of

the world. Second, we will briefly describe the formalism of

active inference in terms of differential equations describing

the dynamics of the world and internal states of the visual–

oculomotor system. The neurobiological implementation of

these differential equations is considered in terms of predic-

tive coding, which uses prediction errors on the motion of

hidden states—such as the location of a visual target. In the

next section, we will turn to the special problem of oculo-

motor delays and how this problem can be finessed using

active inference in generalised coordinates of motion. This

solution will be illustrated in subsequent sections using sim-

ulations of pursuit initiation responses and smooth pursuit.

Finally, we shall exploit the richness of hierarchical genera-

tive models—which underlie active inference—to illustrate

anticipatory eye movements that cannot be explained by sim-

ply compensating for oculomotor delays.

2.1 From free energy to generalised filtering

The scheme used here to model oculomotor behaviour has

been used to model several other processes and paradigms

in neuroscience. This active inference scheme is based upon

three assumptions:

– The brain minimises the free energy of sensory inputs

defined by a generative model.

– The generative model used by the brain is hierarchical,

nonlinear and dynamic.

– Neuronal firing rates encode the expected state of the

world, under this model.

The first assumption is the free energy principle, which

leads to active inference in the context of an embodied inter-

action of the system with its environment, where the system

can act to change its sensory inputs. The free energy here

is a variational free energy that provides a computationally

tractable upper bound on the negative logarithm of Bayesian

model evidence (see Appendix 1). In Bayesian terms, this

means that the brain maximises the evidence for its model

of sensory inputs (Ballard et al. 1983; Bialek et al. 2001;

Dayan et al. 1995; Gregory 1980; Grossberg et al. 1997;

Knill and Pouget 2004; Olshausen and Field 1996). This is

the Bayesian brain hypothesis (Yuille and Kersten 2006). If

we also allow action to maximise model evidence, we get

active inference (Friston et al. 2010b). Crucially, unlike con-

ventional optimal control schemes, there is no ad hoc value

or loss function guiding action: action minimises the free

energy of the system’s model. This permits the application

of standard Bayesian solutions and simplifies the implicit

neuronal architecture; for example, there is no need for an

efference copy signal (Friston 2011). In this setting, desired

movements are specified in terms of prior beliefs about

state transitions or the motion of hidden states in the gen-

erative model. Action then realises prior beliefs (policies)

by sampling sensory data that provide evidence for those

beliefs.

The second assumption above is motivated by noting that

the world is both dynamic and nonlinear—and that hierarchi-

cal structure emerges inevitably from a separation of tempo-

ral scales (Ginzburg 1955; Haken 1983). The third assump-

tion is the Laplace assumption that, in terms of neural codes,

leads to the Laplace code, which is arguably the simplest

and most flexible of all neural codes (Friston 2009). In brief,

the Laplace code means that probabilistic representations are

encoded explicitly by synaptic activity in terms of their mean

or expectation (while the second-order statistics such as dis-

persion or precision are encoded implicitly in terms of synap-

tic activity and efficacy). This limits the representation of

hidden states to continuous variables, as opposed to discrete

states; however, this is appropriate for most aspects of sen-

sorimotor processing. Furthermore, it finesses the combina-

toric explosion associated with discrete state space models.

Restricting probabilistic representations to a Gaussian form

clearly precludes multimodal representations. Having said

this, the hierarchical form of the generative models allows for

fairly graceful modelling of nonlinear effects (such as shad-

ows and occlusions). For example, a Gaussian variable at one

level of the model may enter the lower levels in highly non-

linear way—we will see examples of this later. See Appendix

2 for a motivation of the Laplace assumption from basic prin-

ciples.
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Under these assumptions, action and perception can be

regarded as the solutions to coupled differential equations

describing the dynamics of the real world (the first pair of

equations) and the behaviour of an agent (the second pair of

equations), expressed in terms of action and internal states

that encode conditional expectations about hidden states of

the world (Friston et al. 2010b):

s = g(x, ν, a) + ων

ẋ = f (x, ν, a) + ωx

ȧ = −∂a F(s̃, µ̃)

˙̃µ = Dµ̃ − ∂µ̃F(s̃, µ̃) (1)

For clarity, real-world states are written in boldface, while

internal states of the agent are in italics: Here, (s, x, ν, a)

denote sensory input, hidden states, hidden causes and action

in the real world, respectively. The variables in the second

pair of equations (s̃, µ̃, a) correspond to generalised sensory

input, conditional expectations and action. Generalised coor-

dinates of motion, denoted by the ~ notation, correspond to

a vector representing the different orders of motion of a vari-

able: position, velocity, acceleration and so on (Friston et al.

2010a). Using the Lagrangian notation for temporal deriva-

tives, we get, e.g., for s: s̃ = (s, s′, s′′, . . .). In the absence of

delays s̃(t) = s̃(t), the agent receives instantaneous sensa-

tions from the real world. The differential equations above are

coupled because sensory states depend upon action through

hidden states and causes (x, ν) while action a(t) = a(t)

depends upon sensory states through internal states µ̃.

By explicitly separating real-world states—hidden from

the agent—to its internal states, one can clearly separate the

generative model from the updating scheme that allows to

minimise the agent’s free energy: the first pair of coupled

stochastic differential equations describes the dynamics of

hidden states and causes in the world and how they gener-

ate sensory states. These equations are stochastic because

sensory states and the motion of hidden states are subject to

random fluctuations (ωx, ων).

The second pair of differential equations corresponds

to action and perception, respectively—they constitute a

(generalised) gradient descent on variational free energy.

The differential equation describing changes in conditional

expectations (perception) is known as generalised filter-

ing or predictive coding and has the same form as stan-

dard Bayesian (Kalman–Bucy) filters—see also Beal [2003]

and Rao and Ballard [1999]. The first term is a prediction

based upon a differential operator D that returns the gen-

eralised motion of the conditional expectations, namely the

vector of velocity, acceleration, jerk and so on—such that

Dµ̃ = (µ′, µ′′, µ′′′, . . .). However, the expected velocity is

not the velocity of the expectation and comprises both pre-

diction and update terms: the second term reflects this correc-

tion and ensures the changes in conditional expectations are

agent environment 

s = g( ,a) +

a = argmin
a

F(s,µ)

µ = argmin
µ

F(s,µ)= f ( ,a) +

Separated by a Markov blanket

Hidden 
states 

Internal 
states 

Sensation 

Action 

Exchange with the environment 

Sensory delays 

Motor delays 

Fig. 2 This schematic shows the dependencies among various quan-

tities modelling exchanges of an agent with the environment. It shows

the states of the environment and the system in terms of a probabilis-

tic dependency graph, where connections denote directed dependen-

cies. The quantities are described within the nodes of this graph—with

exemplar forms for their dependencies on other variables (see main

text). Hidden (external) and internal states of the agent are separated by

action and sensory states. Both action and internal states—encoding a

conditional probability density function over hidden states—minimise

free energy. Note that hidden states in the real world and the form of

their dynamics can be different from that assumed by the generative

model; this is why hidden states are in bold. See main text for further

details

Bayes optimal predictions of hidden states of the world—

in the sense that they maximise the free-energy bound on

Bayesian model evidence. See Fig. 2 for a schematic sum-

mary of the implicit conditional dependencies implied by

Eq. 1.

2.2 Hierarchical form of the generative model

To perform simulations using this scheme, one simply inte-

grates or solves Eq. 1 to simulate (neuronal) dynamics that

encode conditional expectations and ensuing action. Condi-

tional expectations depend upon a generative model, which

we assume has the following (hierarchical) form

s = g(1)(x (1), v(1)) + ω(1)
ν

ẋ (1) = f (1)(x (1), v(1)) + ω(1)
x

...

ν(i−1) = g(i)(x (i), v(i)) + ω(i)
ν

ẋ (i) = f (i)(x (i), v(i)) + ω(i)
x

... (2)

where (i) indexes the level in the hierarchical model. Note

that we denote the sensory layer as i = 0, but this index-

ing is somewhat arbitrary. This equation is just a way of

writing down a generative model that specifies a probability

density function over sensory inputs and hidden states and

causes. This probability density is needed to define the free
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energy of sensory input: it is specified in terms of functions

( f (i), g(i)) and Gaussian assumptions about random fluctu-

ations (ω
(i)
x , ω

(i)
ν ) on the motion of hidden states and causes.

It is these that make the model probabilistic—they play the

role of sensory noise at the first level and induce uncertainty

about states at higher levels. The precisions of these fluctua-

tions are quantified by (�
(i)
x ,�

(i)
ν ) which are defined as the

inverse of the respective covariance matrices.

The deterministic part of the model is specified by non-

linear functions of hidden states and causes ( f (i), g(i)) that

generate dynamics and sensory consequences. Hidden causes

link hierarchical levels, whereas hidden states link dynamics

over time. Hidden states and causes are abstract quantities

that the brain uses to explain or predict sensations—like the

motion of an object in the field of view. In hierarchical mod-

els of this sort, the output of one level acts as an input to the

next. This input can produce complicated convolutions with

deep (hierarchical) structure. We will see examples of this

later in particular in the context of anticipatory movements.

2.3 Perception and predictive coding

Given the form of the generative model (Eq. 2), one can write

down the differential equations (Eq. 1) describing neuronal

dynamics in terms of prediction errors on the hidden causes

and states. These errors represent the difference between con-

ditional expectations and predicted values, under the gener-

ative model (using A · B := AT B for the scalar product and

omitting higher-order terms):

˙̃µ(i)
x = Dµ̃(i)

x +
∂ g̃(i)

∂µ̃
(i)
x

· �(i)
ν ε̃(i)

ν

+
∂ f̃ (i)

∂µ̃
(i)
x

· �(i)
x ε̃(i)

x − D�(i)
x ε̃(i)

x

˙̃µ(i)
ν = Dµ̃(i)

ν +
∂ g̃(i)

∂µ̃
(i)
ν

· �(i)
ν ε̃(i)

ν

+
∂ f̃ (i)

∂µ̃
(i)
ν

· �(i)
x ε̃(i)

x − �(i+1)
ν ε̃(i+1)

ν

ε̃(i)
x = Dµ̃(i)

x − f̃ (i)
(

µ̃(i)
x , µ̃(i)

ν

)

ε̃(i)
ν = µ̃(i−1)

ν − g̃(i)
(

µ̃(i)
x , µ̃(i)

ν

)

(3)

The quantities ε̃(i) correspond to prediction errors (on hid-

den states x or hidden causes ν). These are weighted by

their respective precision vectors �(i) in the update scheme.

Equation 3 can be derived fairly easily by computing the

free energy for the hierarchical model in Eq. 2 and insert-

ing its gradients into Eq. 1. This gives a relatively simple

update scheme, in which conditional expectations are driven

by a mixture of prediction errors, where prediction errors are

defined by the equations of the generative model.

It is difficult to overstate the generality and importance of

Eq. 3—its solutions grandfather nearly every known statisti-

cal estimation scheme, under parametric assumptions about

additive noise (Friston 2008). These range from ordinary

least squares to advanced variational deconvolution schemes.

In this form, one can see clearly the relationship between pre-

dictive coding and Kalman–Bucy filtering—changes in con-

ditional expectations comprise a prediction (first term) plus a

weighted mixture of prediction errors (remaining terms). The

weights play the role of a Kalman gain matrix and are based

on the gradients of the model functions and the precision of

random fluctuations.

In neural network terms, Eq. 3 says that error units receive

predictions from the same hierarchical level and the level

above. Conversely, conditional expectations (encoded by the

activity of state units) are driven by prediction errors from

the same level and the level below. These constitute bottom-

up and lateral messages that drive conditional expectations

towards a better prediction to reduce the prediction error in

the level below. This is the essence of recurrent message

passing between hierarchical levels to suppress free energy

or prediction error: see Friston and Kiebel [2009] for a more

detailed discussion. In neurobiological implementations of

this scheme, the sources of bottom-up prediction errors, in the

cortex, are thought to be superficial pyramidal cells that send

forward connections to higher cortical areas. Conversely, pre-

dictions are conveyed from deep pyramidal cells by backward

connections, to target (polysynaptically) the superficial pyra-

midal cells encoding prediction error (Friston and Kiebel

2009; Mumford 1992). This defines an elementary circuit

that may be the basis of the layered organisation of the cor-

tex (Bastos et al. 2012). Figure 3 provides a schematic of the

proposed message passing among hierarchically deployed

cortical areas.

2.4 Action

In active inference, conditional expectations elicit behaviour

by sending predictions down the hierarchy to be unpacked

into proprioceptive predictions at the level of (pontine) cra-

nial nerve nuclei and spinal cord. These engage classical

reflex arcs to suppress proprioceptive prediction errors and

produce the predicted motor trajectory

ȧ = −∂a F = −(∂a ε̃(1)
ν ) · �(1)

ν ε̃(1)
ν (4)

The reduction of action to classical reflexes follows

because the only way that action can minimise free energy

is to change sensory (proprioceptive) prediction errors by

changing sensory signals. This highlights the tight relation-

ship between action and perception; cf., the equilibrium point

formulation of motor control (Feldman and Levin 1995). In

short, active inference can be regarded as equipping a gen-

eralised predictive coding scheme with classical reflex arcs:
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Fig. 3 Schematic detailing a neuronal message passing scheme (gen-

eralised Bayesian filtering or predictive coding) that optimises con-

ditional expectations about hidden states of the world, given sensory

(visual) data and the active (oculomotor) sampling of those data. This

diagram shows the speculative cells of origin of forward driving con-

nections (in red) that convey prediction error from a lower area to a

higher area and the backward connections (in black) that construct pre-

dictions (Mumford 1992). These predictions try to explain away pre-

diction error in lower levels. In this scheme, the sources of forward and

backward connections are superficial (red) and deep (black) pyramidal

cells, respectively. The equations on the right represent a generalised

descent on free energy under the hierarchical model described in the

main text—this can be regarded as a generalisation of predictive coding

or Kalman filtering: see Friston [2008]. State units are in black and error

units are in red. Here, we have placed different levels of some hierarchi-

cal model within the visual–oculomotor system. Visual input arrives in

an intrinsic (retinal) frame of reference that depends upon the angular

position of a stimulus and the direction of gaze. Exteroceptive input is

then passed to the lateral geniculate nuclei (LGN) and to higher visual

and prefrontal (e.g. motion sensitive, such as the frontal eye field) areas

in the form of prediction errors. Crucially, proprioceptive sensations

are also predicted, creating prediction errors at the level of the cranial

nerve nuclei (pons). The special aspect of these proprioceptive predic-

tion errors is that they can be resolved through classical reflex arcs—in

other words, they can elicit action to change the direction of gaze and

close the visual–oculomotor loop

see Friston et al. [2010b] and Friston et al. [2009] for details.

The actual movements produced clearly depend upon (chang-

ing) top-down predictions that can have a rich and complex

structure. This scheme is consistent with the physiology and

anatomy of the oculomotor system (for a review see Ilg 1997;

Krauzlis 2004), although our goal here is not to identify

the role of each anatomical structure but rather to give a

schematic proof-of-concept.

2.5 Summary

In summary, we have derived equations for the dynamics

of perception and action using a free energy formulation of

adaptive (Bayes optimal) exchanges with the world and a

generative model that is both generic and biologically plau-

sible. A technical treatment of the material above will be

found in Friston et al. [2010a], which provides the details

of the generalised filtering used to produce the simulations

in the next section. Before looking at these simulations, we

consider how delays can be incorporated into this scheme.

3 Active inference with sensorimotor delays

If action and sensations were not subject to delays, one could

integrate (solve) eq. 1 directly; however, in the presence of

sensory and motor delays (τs and τa , respectively), eq. 1

becomes a (stochastic and nonlinear) delay differential equa-

tion because s̃(t) = s̃(t − τs) and a(t) = a(t + τa). In

other words, the agent receives sensations from (sees) the

past, while emitting motor signals that will be enacted in

the future (we will only consider delays from the sensory

and motor sub-systems and neglect delays between neuronal

systems in this paper).
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To finesse the integration of these delay differential equa-

tions, one can exploit their formulation in generalised coor-

dinates: By taking linear mixtures of generalised motion, one

can easily map from the present to the future, using the matrix

operators:

T (τ ) = exp(τD) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1
1!

τ 1
2!

τ 2 . . .

0 1 1
1!

τ 0

0 0 1
. . .

0 0 0
. . .

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

with D =

⎡

⎢

⎢

⎢

⎣

0 1 0 0

0 0 1 0

0 0 0
. . .

0 0 0 0

⎤

⎥

⎥

⎥

⎦

(5)

The first differential operator simply returns the gener-

alised motion D x̃(t) = x̃ ′(t) while the second delay operator

produces generalised states in the future T (τ )x̃(t) = x̃(t+τ)

(we define delays as positive by convention). Note that shift-

ing forwards and backwards by the same amount of time

produces the identity operator T (τ )T (−τ) = I and that,

more generally, T (τ1)T (τ2) = T (τ1 + τ2).

These delay operators are simple to implement computa-

tionally (and neurobiologically) and allow an agent to finesse

the delayed coupling above by replacing (delayed) sensory

signals with future input s̃(t) = T (τs)s̃(t − τs) = s̃(t)

for subsequent action and perception. Alternatively, one can

regard this compensation for sensory delays as attempting to

predict the past (see below). Generalised coordinates allow

the representation of the trajectory of a given variable at any

time (that is its evolution in the near past and present) and

thus allow its projection into the future or past. Generalised

representations are more extensive than ‘snapshots’ at a par-

ticular time and enable the agent to anticipate the future (of

delayed sensory trajectories) and represent hidden states in

real time—that is, representations that are synchronised with

the external events. In terms of motor delays, the agent can

replace its internal motor signals with action in the future

a(t) = T (τa)a(t −τa) = a(t), such that when action signals

reach the periphery, they correspond to the action encoded

centrally. These substitutions allow us to express action and

perception in Eq. 1 as1:

ȧ(t)=−∂a F(T (τa)T (τs)s̃(t− τ s −τ a), T (τa)µ̃(t−τ a))

=−∂a F(T (τs − τ s +τa − τ a)s̃(t), T (τa − τ a)µ̃(t))

1 We have a made a slight approximation here because T (τa)µ̃(t −

τ a) = T (τa − τ a)µ̃(t) when, and only when, the free energy gradients

are zero and ˙̃µ(t) = Dµ̃(t). Under the assumption that the perceptual

destruction of these gradients is fast, in relation to action, this can be

regarded as an adiabatic approximation.

˙̃µ(t) = Dµ̃(t) − ∂µ̃F(T (τs)s̃(t − τ s), µ̃(t))

= Dµ̃(t) − ∂µ̃F(T (τs − τ s)s̃(t), µ̃(t)) (6)

This equation distinguishes between true delays (τ ) and

those assumed by the agent (τ ). When the two are the same,

the delay operators T (τ − τ ) = I : τ = τ become identity

matrices and Eq. 6 reduces to Eq. 1. When the two differ,

Eq. 6 permits the simulation of a system with uncompen-

sated delays. Notice how the dynamics of action in the first

differential equation are driven by a gradient descent on the

free energy of sensations with composite sensory and motor

delays. In other words, action in the real world depends upon

sensory states generated τ s + τ a in the past.

One can now solve eq. 6 to simulate active inference,

with or without compensation for sensorimotor delays. We

use a standard local linearisation scheme for this integra-

tion (Ozaki 1992), where delays enter at the point at which

sensory prediction error is computed and when it drives

action: from Eqs. 3 and 4:

ε̃(1)
ν = T (τs)s̃(t − τ s) − g̃(1)(µ̃(1)

x , µ̃(1)
ν )

= T (τs − τ s)s̃(t) − g̃(1)(µ̃(1)
x , µ̃(1)

ν )

ȧ(t) = −(∂a ε̃(1)
ν ) · �(1)

ν T (τa)ε̃(1)
ν (t − τ a)

= −(∂a ε̃(1)
ν ) · �(1)

ν T (τa − τ a)ε̃(1)
ν (t) (7)

Equation 7 means that perfect (errorless) prediction

requires T (τs)s̃(t − τ s) = g̃(1)(µ̃
(1)
x , µ̃

(1)
ν ). In other words,

errorless prediction means that the agent is effectively pre-

dicting the future projection of the past. Note again the

dependency of action, via prediction errors, on sensory states

τ s + τ a in the past. See Appendix 3 for further details of the

integration scheme used in the simulations below.

3.1 Summary

This section has considered how the differential equations

describing changes in action and internal (representational)

states can be finessed to accommodate sensorimotor delays.

This is relatively straightforward—in the context of gener-

alised schemes—using delay operators that take mixtures of

generalised motion to project states into the future or past.

Sensory delays can be (internally) simulated and corrected

by applying delays to sensory input producing sensory pre-

diction error, while motor delays can be simulated and cor-

rected by applying delays to sensory prediction error pro-

ducing action. Neurobiologically, the application of delay

operators just means changing synaptic connection strengths

to take different mixtures of generalised sensations and their

prediction errors. We will now use these operators to look at

the effects of sensorimotor delays with and without compen-

sation.
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4 Results: pursuit initiation

This section focuses on the consequences of sensory delays,

motor delays and their combination—in the context of pursuit

initiation—using perhaps the simplest generative model for

active inference. Our purpose is to illustrate the difficulties in

oculomotor control that are incurred by delays and how these

difficulties dissolve when delays are accommodated during

active inference. We start with a description of the generative

model and demonstrate its behaviour when delays are com-

pensated. We then use this normal behaviour as a reference

to look at failures of pursuit initiation induced by delays. In

this section, responses to a single sweep of rightward motion

are used to illustrate basic responses. In the next section, we

consider pursuit of sinusoidal motion (with abrupt onsets)

and the implications for generative models that may be used

by the brain.

4.1 Generative model of pursuit initiation

The generative model for pursuit initiation used here is very

simple and is based upon the prior belief that the centre of

gaze is attracted to the target location. The processes gener-

ating sensory inputs and the associated generative model can

be expressed as follows:

s =

[

so

st

]

=

[

xo

xt − xo

]

+ ω(1)
ν

ẋ =

[

ẋo

ẋt

]

=

[

1
ta

a − 1
to

xo
1
tm

(ν(1) − xt )

]

+ ω(1)
x

s =

[

so

st

]

=

[

xo

xt − xo

]

+ ω(1)
ν

ẋ =

[

ẋo

ẋt

]

=

[

1
ts
(xt − xo)

1
tm

(ν(1) − xt )

]

+ ω(1)
x

ν(1) = ω(2)
x (8)

The first pair of equations corresponds to a noisy sensory

mapping from hidden states and the equations of motion for

states in the real world. These pertain to real-world vari-

ables representing the position of the target and of the eye

(in boldface). The remaining equations constitute the gener-

ative model of how sensations are generated using the form

of Eq. 2. These define the free energy in Eq. 1—and specify

behaviour under active inference. The variables constitute

the first layer of the hierarchical model (see Eq. 2, but for

simplicity, we have written x instead of x(1) and x instead of

x (1)).

The real-world provides sensory input in two modalities:

proprioceptive input from cranial nerve nuclei reports the

angular displacement of the eye so ∈ R
2 and corresponds

to the centre of gaze. Note that, using the approximation

of relatively small displacements, we use Cartesian coordi-

nates to follow previous treatments, e.g. Friston et al. [2010a].

However, visual space is better described by bounded polar

coordinates, and treatments of large eye movements should

account for this. Exteroceptive (retinal) input reports the

angular position of a target in a retinal (intrinsic) frame of

reference st ∈ R
2. The indices o and t thus refer to states of

the oculomotor system or of the target, respectively. Note that

st is just the difference between the centre of gaze and target

location in an extrinsic frame of reference xt − xo. In this

paper, we are modelling the online inference of target posi-

tion, and we are ignoring the problem of how the causal struc-

ture of the environment is learned. We simply assume that

this structure has already been learned accurately, and there-

fore, the dynamics of the real world and the generative model

are the same. Clearly, this model of visual processing is an

enormous simplification: we are assuming that place coded

spatial information can be summarised in terms of displace-

ment vectors. However, more realistic simulations—using a

set of retinotopic inputs with classical receptive fields cover-

ing visual space—produce virtually the same results. We will

use more realistic models in future publications that deal with

smooth pursuit and visual occlusion. Here, we use the sim-

pler formulation to focus on delays and the different sorts of

generative models that can provide top-down or extra-retinal

constraints on visual motion processing.

The hidden states of this model comprise the true, real-

world oculomotor displacement (xo ∈ R
2) and target loca-

tion (xt ∈ R
2). The units of angular displacement are arbi-

trary, but parameters are tuned to correspond to a small dis-

placement of 4 degrees of visual angle for one arbitrary unit

(that is approximately 4 times the width of a thumb’s nail at

arm’s length). The oculomotor state is driven by action with

a time constant of ta = 64 ms and decays (slowly) to zero

through damping, with a time constant of to = 512 ms. The

target location is perturbed by hidden causes xt ∈ R
2 that

describe the location to which the target is drawn, with a time

constant of tm = 16 ms. In this paper, the random fluctuations

on sensory input and on the motion of hidden states are very

small, with a log precision of 16. In other words, the random

fluctuations have a variance of exp(−16). This completes our

description of the process generating sensory information, in

which hidden causes force the motion of a target location and

action forces oculomotor states. Target location and oculo-

motor states are combined to produce sensory information

about the target in an intrinsic frame of reference.

The generative model has exactly the same form as the

generative process but with one important exception: there is

no action and the motion of the hidden oculomotor states is

driven by the displacement between the target location and

the central gaze (with a time constant of ts = 32 ms). In

other words, the agent believes that its gaze will be attracted

to the location of the target, which, itself, is being driven
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by some unknown exogenous force or hidden cause. The

log precisions on the random fluctuations in the generative

model were four, unless stated otherwise. This means that

uncertainty about sensory input, (motion of) hidden states

and causes was roughly equivalent.

Having specified the generative process and model, we can

now solve the active inference scheme in Eq. 1 and examine

its behaviour. Sensorimotor delays are implemented in the

message passing from the generative process to the gener-

ative model. This generative model produces pursuit initia-

tion because it embodies prior beliefs that the centre of gaze

will follow the target location. This pursuit initiation rests on

conditional expectations about the target location in extrin-

sic coordinates and the state of the oculomotor plant, where

the location is driven by hidden causes that also have to be

inferred.

The generative model described in this section provides

the equations required to simulate active inference using the

formalism of the previous section. In short, we now consider

the generative model that defines the variational free energy

and (Bayes) optimal active inference.

4.2 Simulations

All simulations were performed with a time bin of 16ms,

and we report results in milliseconds. All results were repli-

cated with different time bins (16ms, 8ms, 4ms, 2ms and

1ms) with minimal changes to the results. Figure 4 reports

the conditional estimates of hidden states and causes during

the simulation of pursuit initiation, using a simple rightward

sweep of a visual target and compensating for sensorimotor

delays: τs = τ s and τa = τ a . This compensation is effec-

tively the same as simulating responses in the absence of

delays—because the delay operators reduce to the identity

matrix. Target motion was induced using a hidden cause that

was a ramp function of post-stimulus time. Note that ramp

stimuli are often used in psychophysics, and this generative

model—using velocity in place of position—produces the

same results in velocity space. Indeed, most models, such

as Robinson et al. [1986] or Krauzlis and Lisberger [1989],

focus on modelling velocity responses. We choose to model

the tracking of position for two reasons: First, it is easy to

generalise position results to velocity using generalised coor-

dinates of motion. Second, positional errors can induce slow

eye movements (Kowler and Steinman 1979; Wyatt and Pola

1981) and we hoped to accommodate this in the model. If we

assume that the units of angular displacement are 4 degrees

of visual angle, then the resulting peak motion corresponds

to about 20 degrees per second.

The upper left panel shows the predicted sensory input

(coloured lines) and sensory prediction errors (dotted red

lines) along with the true values (broken black lines). Here,

we see horizontal excursions of oculomotor angle (upper

lines) and the angular position of the target in an intrinsic

frame of reference (lower lines). This is effectively the dis-

tance of the target from the centre of gaze and reports the

spatial lag of the target that is being followed (solid red line).

One can see clearly an initial retinal displacement of the tar-

get that is suppressed after approximately 20 ms. This effect

confirms that the visual representation of target position is

predictive and that the presentation of a smooth predictable

versus an unpredictable target would induce a lag between

their relative positional estimates, as is evidenced in the flash-

lag effect (Nijhawan 1994).

The sensory predictions are based upon the conditional

expectations of hidden oculomotor (blue line) and target (red

line) angular displacements shown on the upper right. The

grey regions correspond to 90 % Bayesian confidence inter-

vals, and the broken lines show the true values. One can see

clearly the motion that elicits pursuit initiation responses,

where the oculomotor excursion follows with a short delay

of about 64 ms. The hidden cause of these displacements is

shown with its conditional expectation on the lower left. The

true cause and action are shown on the lower right. The action

(blue line) is responsible for oculomotor displacements and

is driven by proprioceptive prediction errors. Action does not

return to zero because the sweep is maintained at an eccen-

tric position during this simulation. This eye position slightly

undershoots the target position: it is held at around 95 %

of the target eccentricity in the upper right panel. Note that

this corresponds roughly to the steady-state gain observed in

behavioural data, which was modelled explicitly by Robin-

son et al. [1986]. For our purposes, these simulations can be

regarded as Bayes optimal solutions to the pursuit initiation

problem, in which sensorimotor delays have been accommo-

dated (discounted) via absorption into the generative model.

We can now examine the performance in the absence of com-

pensation and see how sensory and motor delays interact to

confound pursuit initiation:

The above simulations were repeated with uncompensated

sensory delays (τs = 0 ms and τ s = 32 ms), uncompen-

sated motor delays (τa = 0 ms and τ a = 32 ms) and com-

bined sensorimotor delays of 64 ms (τa = τs = 0 ms and

τ a = τ s = 32 ms). To quantify behaviour, we focus on

the sensory input and underlying action. The position of the

target in intrinsic coordinates corresponds to spatial lag and

usefully quantifies pursuit initiation performance. Figure 5

shows the results of these three simulations (red lines) in

relation to the compensated (optimal) active inference shown

in the previous figure (blue lines). True sensory input corre-

sponds to solid lines and its conditional predictions to dotted

lines. The left panels show the true and predicted sensory

input, while action is shown in the right panels. Under pure

sensory delays (top row), one can see the delay in sensory

predictions, in relation to the true inputs. The thicker (solid

and dotted) red lines correspond, respectively, to (true and
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Fig. 4 This figure reports the conditional estimates of hidden states

and causes during the simulation of pursuit initiation, using a single

rightward (positive) sweep of a visual target, while compensating for

sensory motor delays. We will use the format of this figure in subse-

quent figures: the upper left panel shows the predicted sensory input

(coloured lines) and sensory prediction errors (dotted red lines) along

with the true values (broken black lines). Here, we see horizontal excur-

sions of oculomotor angle (upper lines) and the angular position of the

target in an intrinsic frame of reference (lower lines). This is effectively

the distance of the target from the centre of gaze and reports the spatial

lag of the target that is being followed (solid red line). One can see

clearly the initial displacement of the target that is suppressed after a

few hundred milliseconds. The sensory predictions are based upon the

conditional expectations of hidden oculomotor (blue line) and target

(red line) angular displacements shown on the upper right. The grey

regions correspond to 90 % Bayesian confidence intervals and the bro-

ken lines show the true values of these hidden states. One can see the

motion that elicits following responses and the oculomotor excursion

that follows with a short delay of about 64 ms. The hidden cause of these

displacements is shown with its conditional expectation on the lower

left. The true cause and action are shown on the lower right. The action

(blue line) is responsible for oculomotor displacements and is driven

by the proprioceptive prediction errors

predicted) proprioceptive input, reflecting oculomotor dis-

placement. Crucially, in contrast to optimal control, there

are oscillatory fluctuations in oculomotor displacement and

the retinotopic location of the target that persists even after

the target is stationary. These fluctuations are similar to the

oscillations elicited by adding an artificial feed-back delay

(Goldreich et al. 1992). Here, the fluctuations are caused

by damped oscillations in action due to, and only to, sen-

sory proprioceptive and exteroceptive delays. These become

unstable (increasing in their amplitude) when the predicted

value oscillates in counter phase with the real value. Simi-

lar oscillations are observed with pure motor delays (middle

row). However, here there is no temporal lag between the

true and predicted sensations (solid vs. dashed lines). Fur-

thermore, there is no apparent delay in action–action appears

to be emitted for longer, reaching higher amplitudes. In fact,

action is delayed but the delay is obscured by the increase in

the amplitude of action—that is induced by greater propri-

oceptive prediction errors. If we now combine both sensory

and motor delays, we see a catastrophic failure of oculo-

motor tracking (lower row). With combined sensorimotor

delays the pursuit initiation becomes unstable, with expo-
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Fig. 5 This figure illustrates

the effects of sensorimotor

delays on pursuit initiation (red

lines) in relation to compensated

(optimal) active inference—as

shown in the previous figure

(blue lines). The left panels

show the true (solid lines) and

estimated sensory input (dotted

lines), while action is shown in

the right panels. Under pure

sensory delays (top row), one

can see clearly the delay in

sensory predictions, in relation

to the true inputs. The thicker

(solid and dotted) red lines

correspond, respectively, to (true

and predicted) proprioceptive

input, reflecting oculomotor

displacement. The middle row

shows the equivalent results

with pure motor delays, and the

lower row presents the results

with combined sensorimotor

delays. Of note here is the

failure of optimal control with

oscillatory fluctuations in

oculomotor trajectories, which

become unstable under

combined sensorimotor delays
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nentially increasing oscillations as action over-compensates

for delay-dependent errors.

In effect, the active inference scheme has undergone a

phase transition from a stable to an unstable fixed point. We

have illustrated this bifurcation by increasing sensorimotor

delays under a fixed motor precision or gain in Eq. 7. The

results in Fig. 5 used a motor gain with a log precision of 2.5.

We chose this value because it produced stable responses

with sensory or motor delays alone and unstable dynamics

with combined delays. These results illustrate the profound

and deleterious effects of sensorimotor delays on simple pur-

suit initiation, using biologically plausible values—namely

sensorimotor delays of 64 ms and a target velocity of about 16

degrees per second. This also illustrates the necessity of com-

pensation for these delays so that the system can achieve a

more robust and stable response. One would anticipate, in the

face of such failures, real subjects would engage interceptive

saccades to catch the target, of the sort seen in schizophrenic

patients (Levy et al. 1993). In the remainder of this paper, we

will concentrate on the nature of pursuit initiation and smooth

pursuit with compensated sensorimotor delays, using a rea-

sonably high motor gain with a log precision of four.

4.3 Pursuit initiation and visual contrast

Before turning to more realistic generative models of smooth

pursuit, we consider the empirical phenomena in which fol-

lowing responses to the onset of target movement are sup-

pressed by reducing the visual contrast of the target (Thomp-
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Fig. 6 This figure reports the spatial lag (the displacement of the target

from the centre of gaze) as a function of contrast (log precision of exte-

roceptive sensory input). The upper panel shows the true (solid lines)

and predicted (dotted lines) spatial lag as a function of peristimulus

time for different log precisions, ranging from two (black lines) to eight

(red lines). The peak lags are plotted in the lower panel as a function of

visual contrast or log precision. These results show how the perceived

lag increases with contrast, while the true lag decreases in accord with

empirical observations

son 1982). In simulations of this sort, visual contrast is mod-

elled in terms of the precision of sensory information in

accord with Weber’s law—see Feldman and Friston [2010]

for details. Contrast-dependent effects are easy to demon-

strate in the context of active inference. Figure 6 shows

the spatial lag—the displacement in intrinsic coordinates

of the target from the centre of gaze depicted by the solid

red line in Fig. 4—as a function of contrast or log preci-

sion of exteroceptive sensory input. The upper panel shows

the true (solid lines) and predicted (dotted lines) spatial lag

as a function of peristimulus time for different log preci-

sions, ranging from two (low) to eight (high). The peak

lags are plotted in the lower panel as a function of visual

contrast or log precision. Since estimation error decreases

as visual contrast increases, both curves converge, leading

to a decrease to zero of the prediction error. These results

show, in accord with empirical observations, how the spa-

tial lag (position error) increases with contrast (Arnold et al.

2009), while the true lag decreases (Spering et al. 2005).

A similar difference between perception and action was

recently reported (Simoncini et al. 2012). The explanation

for this contrast–dependent behaviour is straightforward—

because pursuit initiation is based upon proprioceptive pre-

diction errors, it depends upon precise sensory informa-

tion. Reducing the precision of visual input—through reduc-

ing contrast—increases uncertainty about visual information

(sensory estimation error) and places more weight on prior

beliefs and proprioceptive sensations. This reduces the per-

ceived motion of the target and reduces the amplitude of

prediction errors driving action.

4.4 Summary

In this section, we have seen that sensorimotor delays can

have profound and deleterious effects on optimal oculomo-

tor control. Here, optimal control means Bayes optimal active

inference, in which pursuit initiation emerges spontaneously

from prior beliefs about how a target attracts the centre

of gaze. These simulations demonstrate that it is relatively

easy to compensate for sensorimotor delays by exploiting

representations in generalised coordinates of motion. Fur-

thermore, the resulting scheme has some construct validity

in relation to experimental manipulations of the precision

or contrast of visual information. However, there are cer-

tain aspects of oculomotor tracking that suggest the pursuit

initiation model above is incomplete: when presented with

periodic target motion, the latency of motor gain (defined

operationally in terms of the target and oculomotor veloci-

ties) characteristically reduces after the first cycle of target

motion (Barnes et al. 2000). This phenomenon cannot be

reproduced by the pursuit initiation model above.

Figure 7 shows the responses of the pursuit initiation

model to sinusoidal motion using the same format as Fig. 4.

Here, the hidden cause driving the target was a sine wave with

a period of 512 ms that started after 256 ms. If we focus on

the spatial lag (solid red line in the upper left panel), one can

see that the lag is actually greater after one period of motion

than at the onset of motion. This contrasts with empirical

observations, which suggest that the spatial lag should be

smaller after the first cycle (Barnes et al. 2000). In the next

section, we consider a more realistic generative model that

resolves this discrepancy and takes us from simple pursuit

initiation to smooth pursuit.

123



790 Biol Cybern (2014) 108:777–801

Fig. 7 This figure uses the

same format as Fig. 4—the only

difference here is that the target

motion is sinusoidal. The key

thing to take from this

simulation is that the peak

spatial lag at the onset of the

second cycle of target motion is

greater than the peak lag at the

onset of the first. This is contrary

to empirical predictions
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5 Results: smooth pursuit

In this section, we consider a slightly more realistic gen-

erative model that replaces the prior beliefs about the tar-

get attracting the centre of gaze with the belief that both

the target and centre of gaze are attracted by the same (fic-

tive) location in visual space. This allows pursuit initiation

to anticipate the trajectory of the target and pursue the target

more accurately—providing the trajectories are sufficiently

smooth. The idea behind this generative model is to account

for the improvements in tracking performance that are not

possible at the onset of motion and that are due to inference

on smooth target trajectories.

5.1 Smooth pursuit model

The smooth pursuit model considered in this paper rests on a

second-order generalisation of the pursuit initiation model of

previous section. Previously, we have considered the motion

of the oculomotor plant to be driven directly by action. This

form of action can be considered as an (adiabatic) solution

to a proper second-order formulation, in which action exerts

a force and thereby changes the angular acceleration of ocu-

lomotor displacement. This second-order formulation can be

expressed in terms of the following generative process and

model
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ẋ′
o

ẋt
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Fig. 8 This figure uses the

same format as the previous

figure—the only difference here

is that we have replaced the

pursuit initiation model with a

smooth pursuit model. In the

smooth pursuit model, the

centre of gaze is attracted by a

hidden cause of target motion,

as opposed to the target per se.

Note that, in comparison with

the previous figure, the peak lag

at the onset of the second cycle

of target motion is now smaller

than at the onset to the first
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Here, the only thing that has changed is that we have intro-

duced new hidden states corresponding to oculomotor veloc-

ity x′
o ∈ R

2. Action now changes the motion of the velocity

(i.e. acceleration), as opposed to the velocity directly. This

difference is reflected in the generative model but with one

crucial addition—the hidden oculomotor state is not driven

by the displacement between the target and the centre of gaze

but by the displacement between the hidden cause and the

centre of gaze. In other words, the hidden oculomotor states

are attracted by the hidden cause of target motion—not the

target motion per se. The idea here is that inference about the

trajectory of the hidden cause should enable an anticipatory

optimisation of pursuit initiation, provided these trajectories

are smooth—hence a smooth pursuit model. Note that the

equation of motion in the oculomotor model ẋo = 1
ts
(xt −xo)

(see Eq. 8) is the (adiabatic) solution to the equation used

to model smooth pursuit: 1
tv

(ν(1) − xo) −
ts
tv

x ′
o = 0 when

ν(1) = xt (see Eq. 9). As a result (and as confirmed by simu-

lations), this model behaved similarly for the sweep stimulus

used in Figs. 4, 5 and 6.

5.2 Simulations

We repeated the simulation reported in Fig. 7 using the

smooth pursuit generative model. The results of this sim-

ulation are shown in Fig. 8 using the same format as Fig. 7.

The key difference—in terms of performance—is that the

peak spatial lag after one cycle of motion is now less than

the peak lag at the onset of motion. The response to the sinu-

soid trajectory contrasts with simple pursuit initiation and is

more consistent with empirical observations. The true and

expected hidden states show that the oculomotor trajectory

now follows the target trajectory more accurately, particu-

larly at the peaks of rightward and leftward displacement.

Interestingly, the amplitude of action has not changed very

much (compare Figs. 7 and 8, upper right panels). However,

action is initiated with a slightly shorter latency, which is suf-

ficient to account for the improved pursuit when informed

by the prior beliefs about the smooth trajectory of the

target.
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Fig. 9 This figure uses the

same format as the previous

figure—the only difference is

that the target motion has been

rectified so that it is

(approximately)

hemi-sinusoidal. The thing to

note here is that the improved

accuracy of the pursuit

previously apparent at the onset

of the second cycle of motion

has now disappeared—because

active inference does not have

access to the immediately

preceding trajectory. This failure

of an anticipatory improvement

in tracking is contrary to

empirical predictions
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5.3 Summary

In summary, by simply replacing the target with the hid-

den cause of target motion—as the attractor of oculomo-

tor trajectories—we can account for empirical observations

of improved pursuit during periodic target motion. In the

context of active inference, this smooth trajectory can only

be recognised—and used to inform action—after the onset

of periodic motion. However, this smooth pursuit model

still fails to account for anticipatory effects that are not

directly available in sensory trajectories. Empirical obser-

vations suggest that any systematic or regular structure in

target motion can facilitate the accuracy of smooth pur-

suit, even if this information is not represented explicitly

in target motion. A nice example of this rests on the use

of rectified periodic motion, in which only rightward target

excursions are presented. Experimentally, subjects can antic-

ipate the periodic but abrupt onset of motion, provided they

recognise the underlying periodic behaviour of the target.

We can emulate this hemi-periodic motion by thresholding

the hidden cause to suppress leftward deflections. Figure 9

shows the results of simulating smooth pursuit using the

same format as Fig. 8. The only difference here is that we

replaced the sinusoidal hidden cause ν(t) = sin(2π f · t)

with ν(t) = exp(4(sin(2π f · t) − 1)). This essentially sup-

presses motion before rightward motion. This suppression

completely removes the benefit of smooth pursuit after a

cycle of motion—compare Figs. 8 and 9. Here, the peak spa-

tial lag at the onset of the second cycle of motion is exactly

the same as the lag at the onset of motion; in other words,

there is no apparent benefit of modelling the hidden causes

of motion in terms of pursuit accuracy. This failure to model

the anticipatory eye movements seen experimentally leads us

to consider a full hierarchical model for anticipatory pursuit.

6 Results: anticipatory pursuit

This section presents a full hierarchical model of anticipatory

smooth pursuit eye movements that tries to account for antic-
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ipatory oculomotor responses that are driven by extra-retinal

beliefs about the periodic behaviour of targets. This entails

adding a hierarchical level to the model that enables the

agent to recognise and remember the latent structure in target

trajectories and suitably optimise its pursuit movements—

which are illustrated here in terms of an improvement in the

accuracy of target following after the onset of rectified target

motion.

6.1 Anticipatory pursuit

The generative process used in these simulations is exactly

the same as in the above (smooth pursuit) scheme (see Eq. 9);

however, the generative model of this process is equipped

with an extra level in place of the model for the hidden cause

of target motion in the generative model:
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The first level of the generative model is exactly the same

as above. However, the hidden causes are now informed by

the dynamics of hidden states at the second level. These hid-

den states model underlying periodic dynamics using a sim-

ple periodic attractor that produces sinusoidal fluctuations of

any amplitude or phase and a frequency that is determined

by a second-level hidden cause with a prior expectation of a

frequency of η (in Hz). It is somewhat similar to a control

system model that attempted to achieve zero-latency target

tracking by fitting the trajectory to a (known) periodic sig-

nal (Bahill and McDonald 1983). Our formulation ensures a

Bayes optimal estimate of periodic motion in terms posterior

beliefs about its frequency. In these simulations, we used a

fixed Gaussian prior centred on the correct frequency with a

period of 512 ms. This prior reproduces a typical experimen-

tal setting in which the oscillatory nature of the trajectory

is known, but its amplitude and phase (onset) are unknown.

Indeed, it has been shown that anticipatory responses are

cofounded when randomising the inter-cycle interval (Becker

and Fuchs 1985). In principle, we could have considered

many other forms of generative model, such as models with

prior beliefs about continuous acceleration (Bennett et al.

2010).

As above, all the random fluctuations were assumed to

have a log precision of four. Crucially, the mapping between

the second-level (latent) hidden states and the motion of first-

level hidden states encoding trajectories in visual (extrinsic)

space is nonlinear. This means that latent periodic motion can

be distorted in any arbitrary way. Here, we use a soft thresh-

olding function σ(x) = exp(4(x − 1)) to suppress negative

(rightward) excursions of the target to model hemi-sinusoidal

motion. This is the same function we used to generate the

motion in Fig. 9. Note that if the precision of the noise at the

second level falls to zero and there is no (precise) informa-

tion at this level, the generative model assumes that the ran-

dom fluctuations have an infinite variance. As a consequence,

the prediction at the level below in the hierarchical model

simplifies to ν(1) = ω
(2)
ν , and we recover eq. 9 describing

the smooth pursuit model. As a consequence, this parameter

tunes the relative strength of anticipatory modulation.

Figure 10 shows the results of simulating active infer-

ence under this anticipatory model, using the same format

as Fig. 9. However, there is now an extra level of hidden

states encoding latent periodic motion. It can be seen that

expectations about hidden states attain nonzero amplitudes

shortly after motion onset and are periodic thereafter. These

provide predictions about the onset of rightward motion after

the first (latent) cycle, enabling a more accurate oculomotor

response. This is evidenced by the reduction in the spatial

lag at the onset of the second cycle of motion, relative to

the first (solid red lines on the upper left). This improve-

ment in accuracy should be compared to the previous fig-

ure and reflects Bayes optimal anticipatory responses of the

sort observed empirically (Barnes et al. 2000). Further evi-

dence of anticipatory inference can be seen by examining the

conditional expectations about hidden causes at the second

level. Note the substantial reduction in prediction error on the

hidden cause (dotted red lines), when comparing the onset

of the second cycle to the onset of the first. This reflects

the fact that the conditional expectations about the hidden

cause show a much reduced latency at the onset of the second

cycle due to top-down conditional predictions provided by

the second-level hidden states. This recurrent and hierarchi-

cally informed inference provides the basis for anticipatory

oculomotor control and may be a useful metaphor for the

hierarchical anatomy of the visual–oculomotor system.

6.2 Summary

In conclusion, to account for anticipatory pursuit movements

that are not immediately available in target motion, one needs

to equip generative models with a hierarchal structure that

can accommodate latent dynamics—that may or may not be

expressed at the sensory level. It is important to note that

this model is a gross simplification of the complicated hier-

archies that may exist in the brain. For instance, while some
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Fig. 10 This figure uses the

same format as the previous

figure—the only difference is

that the generative model has

been equipped with a second

hierarchical level that contains

hidden states, modelling latent

periodic behaviour of the

(hidden) causes of target

motion. With this addition, the

improvement in pursuit

accuracy apparent at the onset of

the second cycle of motion is

reinstated. This is because the

model has an internal

representation of latent causes

of target motion that can be

called upon even when these

causes are not expressed

explicitly in the target trajectory
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Aperiodic motion:

anticipation may be induced in smooth pursuit eye move-

ments, some aspects, such as the aperture problem, may not

be anticipated (Montagnini et al. 2006). In this model, the

second-level hidden causes are simply driven by prediction

errors and assume a constant frequency. As a consequence,

prior beliefs about frequency are modelled as stationary. In

the real brain, one might imagine that models of increasing

hierarchical depth might allow for nonstationary frequencies
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and other dynamics—that would better fit behavioural data.

We have chosen to illustrate the basic ideas using a min-

imalistic example of anticipation in eye movements. Hier-

archical extensions of this sort emphasise the distinction

between visual motion processing and attending oculomotor

control based purely upon retinal and proprioceptive input—

they emphasise extra-retinal processing that is informed by

prior experience and beliefs about the latent causes of visual

input. We will exploit this anticipatory smooth pursuit model

in future work, where visual occluders are used to disclose

beliefs about latent motion.

7 Discussion

In this paper, we have considered optimal motor control in the

context of pursuit initiation and anticipatory smooth pursuit.

In particular, we have taken a Bayesian perspective on opti-

mality and have simulated various aspects of eye movement

control using predictive coding and active inference. This

provides a solution to the problem of sensorimotor delays

that reproduces the results of earlier solutions—but using

a neuronally plausible (predictive coding) scheme that has

been applied to a whole range of perceptual, psychophysi-

cal, decision theoretic and motor control problems beyond

oculomotor control. Active inference depends upon a gener-

ative model of stimulus trajectories and their active sampling

through movement. This requires a careful consideration of

the generative models that might be embodied by the visual–

oculomotor system—and the sorts of behaviours one would

expect to see under these models. The treatment in this paper

distinguishes between three levels of predictive coding with

respect to oculomotor control: the first is at the lowest level

of sensorimotor message passing between the sensorium and

internal states representing the causes of sensory signals.

Here, we examined the potentially catastrophic effects of

sensorimotor delays and how they can easily render ocu-

lomotor tracking inherently unstable. This problem can be

finessed—in a relatively straightforward way—by exploiting

representations in generalised coordinates of motion. These

can be used to offset both sensory and motor delays, using

simple and neurobiologically plausible mixtures of gener-

alised motion. We then motivated a model of smooth pursuit

eye movements by noting that a simple model of target fol-

lowing cannot account for the improvement in visual track-

ing after the onset of smooth and continuous target trajec-

tories. In this paper, smooth pursuit was modelled in terms

of hidden causes that attracted both the target and centre of

gaze simultaneously—enabling the trajectory of the target

to inform estimates of the hidden cause that, in turn, pro-

vide predictions about oculomotor consequences. While this

extension accounted for experimentally observed tracking

improvements—under continuous trajectories—it does not

account for anticipatory movements that have to accumu-

late information over time. This anticipatory behaviour could

only be explained with a deeper hierarchical model that has an

explicit representation of latent (periodic) structure causing

target motion. When the generative model was equipped with

a deeper structure, it was then able to produce anticipatory

movements of the sort seen experimentally. Clearly, the sim-

ulations in this paper are just heuristic and do not represent a

proper simulation of neurobiological processing. However,

they can be taken as proof of principle that the basic computa-

tional architecture—in terms of generalised representations

and hierarchical models—can explain some important and

empirical facts about eye movements. In what follows, we

consider the models in this paper in relation to other models

and how modelling of this sort may have important implica-

tions for understanding the visual–oculomotor system.

7.1 Comparison with other models

The model that we have presented here speaks to and com-

plements several existing models of the oculomotor sys-

tem. First, it shares some properties with computer vision

algorithms used for image stabilisation. Such models often

use motion detection coupled with salient feature detec-

tion for the registration of successive frames (Lucas and

Kanade 1981). A major difference is that these models are

often applied to very specific problems or configurations for

which they give an efficient, yet ad hoc solution. A more

generic approach is to use—as our model does—a prob-

abilistic method, for instance particle filtering (Isard and

Blake 1998). Our model provides a constructive extension—

as we integrate the dynamics of both sensation and action.

In principle, this could improve the online response of feature

tracking algorithms.

Second, using our modelling approach, we reproduce sim-

ilar behaviours shown by other neuromimetic models of the

oculomotor system. For example, the pursuit of a dot with

known uncertainty can be modelled as the response of a

Kalman filter (Kalman 1960). Both generalised Bayesian

(active inference) and Kalman filtering predict the current

state of the system using prior knowledge (about previous

target locations) and refine these predictions using sensory

data (prediction errors). This analogy with block diagrams

from control theory was first highlighted by Robinson et al.

[1986] and Krauzlis and Lisberger [1989]—and has since

been used widely (Grossberg et al. 1997). For a recent treat-

ment involving the neuromorphic modelling of cortical areas,

see Shibata et al. [2005]. However, it should be noted that the

link with Kalman filtering is rarely explicit (but see de Xivry

et al. 2013); most models have been derived heuristically,

rather than as optimal solutions under a generative model.

One class of such neuromimetic models uses neural net-

works that mimic the behaviour of the Kalman filter (Haykin
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2001). This model was used to fit and predict the response of

smooth pursuit eye movements under different experimental

parameters (Montagnini et al. 2007) or while interrupting

information flow (Bogadhi et al. 2011a). Developing this

methodology—and by analogy with modular control the-

ory architectures—these building blocks can be assembled

to accommodate increasingly complex behavioural tasks.

This can take the form of a multi-layered model for trans-

parency processing (Raudies et al. 2011) or of an inter-

connected graph connecting the form and motion pathways

(Beck et al. 2008). Such models have been used to under-

stand adaptation to blanking periods and to tune the balance

between sensory and proprioceptive inputs (Madelain and

Krauzlis 2003). Our model is different in a key aspect: The

Kalman filter is indeed the (Bayes) optimal solution under a

linear generative model, but a cascade of such solutions is not

the optimal solution to (nonlinear) hierarchical models (Bal-

aji and Friston 2011). The active inference approach consid-

ers the (embodied) system as a whole and furnishes an opti-

mal solution in the form of generalised Bayesian filtering. In

particular, given the delays at the sensory and motor levels, it

provides an optimal solution that accommodates (or compen-

sates for) these delays. As shown in the results, the ensuing

behaviour reproduces experimental results from pursuit ini-

tiation (Masson et al. 2010) to anticipatory responses (Avila

et al. 2006; Barnes et al. 2000). The approach thus provides

in inclusive framework, compared with heuristics used in

neuromimetic models that focus on specific aspects of ocu-

lomotor control (see below).

The model presented here shares many features with other

probabilistic models. First, representations are encoded as

probability density is. This allows processing and control to

be defined in terms of probabilistic inference; for instance,

by specifying a prior belief that favours slow speeds (Weiss

et al. 2002). This approach has been successful in explaining

a wide variety of physiological and psychophysical results.

For example, it allows one to model spatial (Perrinet and

Masson 2007) or temporal (Montagnini et al. 2007) integra-

tion of information, using conditional independence assump-

tions. Furthermore, recent developments have addressed the

estimation of the shape and parameters of priors for slow

speeds (Stocker and Simoncelli 2006) and for the integration

of ambiguous versus non-ambiguous information (Bogadhi

et al. 2011b). The active inference scheme used here relies on

generative models that entail exactly the same sorts of pri-

ors. It has also been shown that free energy minimisation

extends the type of probabilistic models described above

to encompass retinal stabilisation and oculomotor reflexes

(Friston et al. 2010b). A crucial difference here is that we have

explicitly considered the problem of dynamics and delays.

Our goal was to understand how the system could provide

an optimal solution, when it knows (or can infer) the delay

between sensing input (in the past) and processing infor-

mation that informs action (in the future). This endeavour

allowed us to build a model—using simple priors over the

dynamics of the hidden causes—that reproduces the sorts of

anticipatory behaviour seen empirically.

7.2 Limitations

Clearly, there are many aspects of oculomotor control we

have ignored in this theoretical work. Foremost, we have

used a limited set of stimuli to validate the model. Pursuit

initiation was only simulated using a simple sweep of a dot,

while smooth pursuit was studied using a sinusoidal trajec-

tory. However, these types of stimuli are commonly used in

the literature, as they best characterise the type of behav-

iour (following, pursuit) that we have tried to characterise:

see Barnes [2008] for a review. We have not attempted to

reproduce the oscillations at steady state as in Robinson et

al. [1986] or Goldreich et al. [1992], although this may help to

optimise the parameters of our model in relation to empirical

data. The hemi-sinusoidal stimulus is also a typical stimulus

for studying anticipatory responses (Avila et al. 2006; Barnes

et al. 2000). Further validations of this model would call on a

wider range of stimuli and consider and accumulated wealth

of neurophysiological and behavioural data (Tlapale et al.

2010).

In this paper, we have focused on inference under a series

of generative models of oculomotor control. We have not con-

sidered how these models are acquired or learned. In brief, the

acquisition of generative models and their subsequent optimi-

sation in terms of their parameters (i.e. synaptic connection

strengths) is an important, if distinct, issue. In the context of

active inference, model acquisition and perceptual learning

can be cast in terms of model selection and parameter optimi-

sation through the minimisation of free energy. Under certain

simplifying assumptions, this learning reduces to associative

plasticity. A discussion of these and related issues can be

found in Friston [2008].

The generative model used in this paper has no explicit

representation of space but only the uncertain, vectorial posi-

tion of a target. We have previously studied the role of predic-

tion in solving problems that are associated with the detection

of motion using a dynamical and probabilistic model of spa-

tial integration (Perrinet and Masson 2012). Both that model

and the current model entertain a similar problem: that of the

integration of local information into a global percept, in both

the temporal (this manuscript) and spatial (Perrinet and Mas-

son 2012) domains. We have considered integrating sensory

information in the spatial domain: terms of the prediction

of sensory causes and their sampling by saccades (Friston

et al. 2012b), and of the effects on smooth pursuit of reduc-

ing the precision. This manipulation can account for several

abnormalities of smooth pursuit eye movements typical of

schizophrenia (Adams et al. 2012). In this paper, we have lim-
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ited ourselves to integrating information over time. It would

be nice, in the future, to consider temporal and spatial inte-

gration simultaneously.

A final limitation of our model is the simplified modelling

of the physical properties of the oculomotor system—due

to the biophysics of the eyes and photoreceptors, sensory

input contains motion streaks that can influence the detec-

tion of motion (Barlow and Olshausen 2004). Furthermore,

we have ignored delays in neuronal message passing among

and within different levels of the hierarchy: for a review

of quantitative data from monkeys, see Salin and Bullier

[1995]. Finally, we have not considered in any depth the

finer details of how predictive coding or Bayesian filter-

ing might be implemented neuronally. It should be noted

that predictive coding in the cortex was attended by some

early controversies; for example, paradoxical increases in

visual evoked responses were observed when prediction error

should be minimal. For example, a match between sensory

signals and descending predictions can lead to the enhance-

ment of neuronal firing (Roelfsema et al. 1998). The neu-

ronal implementation assumed in our work (see 2) finesses

many of these issues. In this (hypothetical) scheme, pre-

dictions and prediction errors are encoded by the neuronal

activity of deep and superficial pyramidal cells, respectively

(Mumford 1992; Bastos et al. 2012). In this scheme, the

enhancement of evoked responses is generally thought to

reflect attentional gain, which corresponds to the optimisa-

tion of the expected precision (inverse variance) of predic-

tion errors, via synaptic gain control (Feldman and Fris-

ton 2010). Put simply, attention increases the gain of salient

or precise prediction errors that the predictions are trying

to suppress. Indeed, the orthogonal effects of expectations

and attention in predictive coding have been established

empirically using fMRI (Kok et al. 2011). See Bastos et al.

[2012] for a review of the anatomical and electrophysio-

logical evidence that is consistent with the scheme used

here.

7.3 Perspectives

Notwithstanding the limitations above, this approach may

provide some interesting perspectives on neural computa-

tions in the oculomotor system. First, the model presented

here can be compared to existing models of the oculomotor

system. In particular, any commonalities of function suggest

that extant neuromimetic models may be plausibly imple-

mented using a generic predictive coding architecture. Sec-

ond, the Bayes optimal control solution rests on a compu-

tational (anatomical) architecture that can be informed by

electrophysiological or psychophysical studies. For exam-

ple, we have considered only delays at the motor and sensory

level. However, delays in axonal conduction between hierar-

chical levels—within the visual–oculomotor system—may

have implications for intrinsic and extrinsic connectivity:

in visual search, predictions generated in higher areas (say

supplementary and frontal eye fields) may exploit a shorter

path, by stimulating the actuator to sample more informa-

tion (by making an eye movement) rather than accumulating

evidence by explaining away prediction errors in lower (stri-

ate and extrastriate) cortical levels (Masson et al. 2010). By

studying the structure of connections implied by theoretical

considerations (see Fig. 3), our modelling approach could

provide a formal framework to test these sorts of hypothe-

ses. A complementary approach would be to apply dynamic

causal modelling (Friston et al. 2003) to electrophysiolog-

ical data, using predictive coding architectures, such that

transmission delays (and their compensation or modelling)

among levels of the visual–oculomotor system could be eval-

uated empirically. A recent example of using dynamic causal

modelling to test hypotheses based upon predictive coding

architectures can be found in Brown and Friston (2012).

This example focuses on attentional gain control in visual

hierarchies.

Second, this work may provide a new perspective for

experiments, in particular for the generation of stimuli. We

have previously considered such a line of research by design-

ing naturalistic, texture-like pseudo-random visual stimuli to

characterise spatial integration during visual motion detec-

tion (Leon et al. 2012). We were able to show that the ocu-

lomotor system exhibits an increased following gain, when

stimuli have a broad spatial frequency bandwidth. Interest-

ingly, the velocities of these stimuli were harder to discrim-

inate relative to narrow bandwidth stimuli—in a two alter-

native forced-choice psychophysical task (Simoncini et al.

2012). In this work, the authors used competitive dynamics

based on divisive normalisation. Moreover, textured stim-

uli were based on a simple forward model of motion detec-

tion (Leon et al. 2012). This may call for the use of more

complex generative models to generate such textures. In

addition, the use of gaze contingent eye-tracking systems

allows real-time manipulation of the configuration (position,

velocity, delays) of the stimulus, with respect to eye position

and motion. By targeting different sources of uncertainty,

at the different levels of the hierarchical model, one might

be able to get a better characterisation of the oculomotor

system.

The confounding influence of delays inherent in neuronal

processing is a strong biophysical constraint on neuronal

dynamics. Representations in generalised coordinates of

motion provide a potential resolution that may have enjoyed

positive evolutionary pressure. However, it remains unclear

how neural information, represented in a distributed man-

ner across the nervous system, is integrated with exterocep-

tive, operational time. The “binding” of different informa-

tion, without a central clock, seems essential, but the corre-

late of such a temporal representation of sensory information
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(independent of delays) has never been observed explicitly

in the nervous system. Elucidating the neural representation

of temporal information would greatly enhance our under-

standing of both neural computations themselves and our

interpretation of measured electromagnetic (EEG and MEG)

signals that are tightly coupled to those computations.
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8 Appendix

8.1 Appendix 1: Variational free energy

Here, we derive various formations of free energy and show

they relate to each other. We start with the quantity we want

to bound and implicitly minimise—namely, surprise or the

negative log-evidence associated with sensory states s̃(t) that

have been caused by some unknown quantities �(t). These

hidden causes correspond to the (generalised) motion (that

is position, velocity, acceleration, etc.) of a target that the

oculomotor system is tracking.

− ln p(s̃) = − ln

∫

p(s̃, �)d� (11)

We now simply add a non-negative cross-entropy or diver-

gence between some arbitrary (conditional) density q(�) =

q(�|µ̃) and the posterior density p(�|s̃) to create a free

energy bound on surprise

F = − ln p(s̃) +

∫

q(�) ln
q(�)

p(�|s̃)
d�

= − ln p(s̃) + D(q(�)||p(�|s̃)) (12)

The cross-entropy term is non-negative by Gibb’s inequal-

ity. Because surprise depends only on sensory states, we can

bring it inside the integral and use p(s̃, �) = p(�|s̃)p(s̃)

to show free energy is a Gibb’s energy G = − ln p(s̃, �)

expected under the conditional density minus the entropy of

the conditional density

F =

∫

q(�) ln
q(�)

p(�|s̃)p(s̃)
d�

=

∫

q(�) ln
q(�)

p(�, s̃)
d�

= −

∫

q(�) ln p(�, s̃)d� +

∫

q(�) ln q(�)d� (13)

This is a useful formulation because it can be evalu-

ated in a relatively straightforward way given a probabilis-

tic generative model p(s̃, �). A final rearrangement, using

p(s̃, �) = p(s̃|�)p(�), shows free energy is also com-

plexity minus accuracy, where complexity is the divergence

between the recognition density q(�) and the prior density

p(�)

F =

∫

q(�) ln
q(�)

p(�|s̃)p(s̃)
d�

= −

∫

q(�) ln p(s̃|�)d� + D(q(�)||p(�)) (14)

8.2 Appendix 2: The maximum entropy principle and the

Laplace assumption

If we admit an encoding of the conditional density up to

second order moments, then the maximum entropy princi-

ple (Jaynes 1957), implicit in the definition of free energy

above, requires q(�|µ̃) = N (µ̃,�) to be Gaussian. This

is because a Gaussian density has the maximum entropy of

all forms that can be specified with two moments. Assum-

ing a Gaussian form is known as the Laplace assumption and

enables us to express the entropy of the conditional density in

terms of its first moment or expectation. This follows because

we can minimise free energy with respect to the conditional

covariance as follows:

F = G(s̃, µ̃) +
1

2
tr(�∂µ̃µ̃G) −

1

2
ln |�|

G = − ln p(s̃, �)

∂� F =
1

2
∂µ̃µ̃G −

1

2
� (15)

so that ∂� F = 0 implies

� = ∂µ̃µ̃G

F = G(s̃, µ̃) +
1

2
ln |∂µ̃µ̃G| (16)

Here, the conditional precision �(s̃, µ̃) is the inverse of

the conditional covariance �(s̃, µ̃). In short, free energy is a

function of generalised conditional expectations and sensory

states.

8.3 Appendix 3: Integrating or solving active inference

schemes using generalised descents.

Given a generative model or its associated Gibbs energy func-

tion, one can now simulate active inference by solving the

following set of ordinary differential equations for a system

that includes generalised real-world states and internal states

of the agent mediating (delayed) action and perception:
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u̇ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

˙̃s
˙̃x
˙̃ν
˙̃ωνν
˙̃ωxν
˙̃µ
˙̃η

ȧ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

D g̃(x̃, ν̃, ã) + Dω̃ν

f̃ (x̃, ν̃, ã) + ω̃x

D ν̃

Dω̃ν

Dω̃x

Dµ̃ − ∂µ̃F(T (τs − τs)s̃, µ̃)

D η̃

−∂a F(T (τs − τs + τa − τa)s̃, T (τa − τa)µ̃)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(17)

Generalised action ã(t) is approximated using discrete val-

ues of a(t) from the past. Note that we have included a

prior expectation η̃(t) of hidden causes to complete the

agent’s generative model of its world. Integrating or solv-

ing equation 17 corresponds to simulating active inference.

The updates of the collective states over time steps of 
t use

a local linearisation scheme (Ozaki 1992):


u = (exp(
t · ∂u u̇) − I )(∂u u̇)−1

∂u u̇ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 D∂x̃ g̃ D∂ν̃ g̃ D . . . D∂a g̃

∂x̃ f̃ ∂ν̃ f̃ I ∂a f̃

.

.

. D

.

.

.
.
.
.

D

. . . D . . .

−∂µ̃s̃ F . . . −D∂µ̃µ̃ F −∂µ̃η̃ F −∂µ̃a F

−∂η̃µ̃ F D

−∂as̃ F −∂aµ̃ F −∂aη̃ F −∂aa F

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(18)

Details about how to compute the gradients and curva-

tures pertaining to the conditional expectations can be found

in Friston et al. [2010a]. These are generally cast in terms

of prediction errors using straightforward linear algebra.

Because action can only affect free energy through the sen-

sory states, its dynamics are prescribed by the following gra-

dients and curvatures (ignoring higher-order terms):

∂a F = (∂a ε̃(1)
ν ) · �(1)

a T (τa − τ a)ε̃(1)
ν

∂aa F = (∂a ε̃(1)
ν ) · �(1)

a T (τa − τ a)(∂a ε̃(1)
ν )

∂a ε̃(1)
ν = T (τs − τ s)∂a s̃(t)

∂a s̃ = ∂a g̃ + ∂x̃ g̃

(

∑

i

D
−i (∂x̃ f̃ )i−1

)

∂a f̃ (19)

The partial derivative of the sensory states with respect

to action and is specified by the generative process. In bio-

logically plausible instances of this scheme, this deriva-

tive would have to be computed on the basis of a map-

ping from action to sensory consequences. It is generally

assumed that agents are equipped with ∂a s̃ epigenetically,

because it has a simple form. For example, contracting a

muscle fibre elicits a proprioceptive stretch signal in a one-

to-one fashion. The precision matrix �
(1)
a in Eq. 19 is spec-

ified such that only proprioceptive prediction errors with

these simple forms have nonzero precision. This can be

regarded as the motor gain in response to proprioceptive pre-

diction errors. Equation 18 may look complicated but can

be evaluated automatically using numerical derivatives for

any given generative model. All the simulations in this paper

used just one routine—toolbox/DEM/spm_ADEM.m. All

figures are reproducible and summarised in the script

toolbox/DEM/ADEM_oculomotor_delays.m. Both are

available as part of the SPM software (http://www.fil.ion.

ion.ucl.ac.uk/spm).
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