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Parametric transformation is a powerful tool in

shape analysis which gives good results even in the

presence of noise and occlusion. Major shortcom-

ings of the technique are excessive storage require-

ments, computational complexity and the need to

initiate a separate transformation process with re-

spect to each feature under detection. In addition,

standard parametric transformation processes the

entire image treating each image point indepen-

dently. The proposed method selectively segments

the image and provides a feedback mechanism link-

ing image and transform space. Decisions are

made concerning the probable instance of shape un-

der detection, the viability of processing and the

need to gather further evidence from the image.

The processing monitors itself and adapts to fo-

cus on areas of interest avoiding computationally

expensive global processing. Low level processing

and high level decision making are provided with a

window of communication not previously available

using such parametric transform methods. The

method is applied and illustrated with respect to

the detection of circles and elipses.

The Hough transform[l] works by group-
ing low level feature points (edge image data) into
object specific intermediate features (e.g. line seg-
ments). This is accomplished using the low level
feature points to generate information concerning
all possible groupings of points within the image.
The corresponding transform plane is the accumu-
lation of that evidence. The technique is compu-
tationally intensive because evidence is generated
of all possible groupings of points in the image.

Previous suggested approaches may be di-
vided into three categories. The first seeks to re-
duce the computational load by using information
from the image to reduce the generation of evi-
dence in the transform plane[2], [3], [4], [5]. The
second class of methods involves absolute or iter-
ative reductions in resolution of either the trans-
form or the image space[6], [7], [8], [9]. Where
more than two parameters are under detection the

method may involve unpractically large compu-
tation and storage requirements. To deal with
this particular difficulty, a third class of meth-
ods decomposes the computation into separate
stages[10], [11], [12], [13], each stage passing results
to the next. The present method, the DGHT[14],
[15], [16] uses information available in the relative
distribution of feature points to optimise the com-
putation of the transform. The n parameters as-
sociated with the shape under detection are calcu-
lated using a single fixed image point and all pos-
sible combinations of that image point with sets
of (n — 1) other image points. Each parameter is
calculated independently and requires only one di-
mensional accumulation of evidence. Hence if T
is the resolution in transform space and n is the
number of parameters under detection then use of
the DGHT reduces memory requirements from T

n

to nT and introduces the opportunity for parallel
calculation and accumulation of parameters.

Peaks in the histograms will indicate the
parameters associated with the most probable in-
stance of the shape in image space of which the
fixed point is a member. This information may be
used to detect that shape and to remove the points
associated with it from the image. The process is
then repeated using the shortened list. Peak de-
tection in the transform space normally presents
difficulties. The combinatorial nature of the gener-
ation of peaks using the DGHT means that peaks
are significantly higher than the background and
detection is one dimensional.

Global processing of the image has re-
mained a standard feature of parametric transfor-
mation. The DGHT is sensitive to feature point
density in the image and it is therefore expedient
to segment the image. Uniform segmentation has
been used previously[15] for a simple image of a
single object. Where the image contains multiple
objects or occlusion is present, segmentation can-
not be fixed but needs to be adapted to the image
and the type of shape under detection. The DGHT
provides a feedback mechanism linking image and
transform space. Decisions can be made concern-
ing the probable instance of shape under detection,

49 BMVC 1990 doi:10.5244/C.4.11



the viability of processing and the need to gather
further evidence from the image. This means that
the processing can monitor itself and adapt to fo-
cus on areas of interest avoiding computationally
expensive global processing. The present work ex-
plores this requirement.

1 . The Dynamic Generalized Hough transform

An expression for the Generalized Hough
Transform, GHT, may be written in the form sug-
gested by Deans[l]

f(t,P) = jj F(x,y)6(p-C(x,y;t))dxdy (1)

where F(x,y) is an arbitrary generalized func-
tion^] denned on the xy plane D and the argu-
ment of the delta function defines some family of
curves in the xy plane parametrized by the scalar
p and the components f 1, £2 > • • • £n of the vector £.

If, F(x,y), represents a binary image the
integral of equation 1 will have a value of 1 when
the argument of the delta function evaluates to
zero, in computational terms, this occurs at all
values of (x,y) that are solutions to the discrete
equation

Pj = C{xi,yi;tJ) (2)

and this equation is used to calculate the standard
GHT. The i, j subscripts refer to ordered sets in
the image and the transform space respectively.
For every point, (x{,yi), of the image, i is fixed
and the values pj are calculated using stepwise in-
crements of the components of £j. Each point,
(pj, £j), in the transform space will refer to a possi-
ble curve in image space which passes through the
point (zt-,y,). The SHT therefore provides a great
redundancy of information concerning the image.
This is because each image point is treated inde-
pendently.

The DGHT proposes that image points are
tested for the most probable, as opposed to all pos-
sible, membership of a shape. (In two dimensions
shape may refer to a curve and in three dimen-
sions a surface). If, when the-image is scanned
for candidate feature points, a list of those feature
points is maintained, then possible membership of
curves/surfaces may be tested. Where n parame-
ters are associated with the shape under detection
then a minimum of n points are required to test
the membership of a shape of any given point and
any other (n - l) image points. What follows is

an application to the detection of conic sections,
in particular circles and ellipses.

2 . Active Intelligent Detection of Conic Sections.

The general equation of the conic section is:

ax
2
 + hxy + by

2
 + 2gx + 2fy + c = 0 (3)

In the case of the circle, a = b. The number of
parameters may then be reduced to three by nor-
malisation. For an ellipse equation 3 has one pa-
rameter too many. For a well determined model
a constant needs to be applied to a, b, h, g, f and
c. This needs to be done in a manner that leads
to a numerically stable model. It can be shown[3]
that an appropriate constraint for the detection of
ellipses is to set a + c = Constant. The equation
can now be written:
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The ellipse eccentricity is given by e = b/a and

1-e 2

U = cos2a:
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1 - e 2
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U and V depend only on a, the angle of rotation of
the ellipse and e, its eccentricity. In particular, for
a circle, U and V are zero. In the case of images
which may contain both circles and ellipses such
a mixture may be detected with a single scan of
the image. Equation 4 is used to deduce the eigen-
values of each combination of image points. The
eigenvector corresponding to the least eigenvalue
will contain the parameters under detection[3].

Processing begins by scanning the edge im-
age for feature points. When a likely point is en-
countered a simple check is made to eliminate iso-
lated noise points. Points around the candidate
first point are summed first in a horizontal direc-
tion and then a vertical direction. If either sum
exceeds a threshold then this point is accepted.

The efficiency of the DGHT is sensitive to
feature point density in the image. It is therefore
necessary to segment the image. Having selected a
candidate first feature point the algorithm focuses
on an area of interest around that point using a
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fixed size of segment. The results of the transfor-
mation of the feature points contained in that seg-
ment are then tested. Where a calculated param-
eter has a percentage contribution to a maximum
value of less than a predetermined percentage of
feature points processed then this is an unreliable
result requiring further accumulation of evidence.
The processing thus adjusts the size of the segment
and continues the transformation and accumula-
tion process. For the circle center co-ordinates
and radius respectively, as,,(30%), y0(30%), r(30%)
are acceptable percentages. For the ellipse center
co-ordinates, major and minor axes and angle of
rotation respectively, zo(20%), yo(20%), a(15%),
6(15%), a(10%) are acceptable percentages. It is
not within the scope of such a short paper to dis-
cuss the data dependence of these thresholds, they
are simply stated. It should be noted that the algo-
rithm allows parallel calculation and accumulation
of the parameters.

3 . Computational Complexity

If N is the number of parameters under de-
tection and 77i is the number of features points in a
segment then the number of operations associated
with the detection of either a circle or an ellipse is
given by:

(10)

Ellipse
m(m - l)(m - 2)(m - 3)

24
0{N

3
)

(11)
It should be noted that where a parallel imple-
mentation is possible then the O(N

3
) term will

become O(4N) giving an appreciable speed up in
computation time. Using a hypothetical 10MIPS
machine as a benchmark, the above expressions
were used to calculate the estimated computation
times shown in Fig. la and lb. In the case of the
ellipse this is shown in seconds and for the circle
seconds xlO~3

It can be seen that the feature point density
is critical in the case of ellipse detection. Where
this is ~ 100 points then the calculation time is
~ 48s. For 70 pts this decreases to 12s. In all cases
it is advantageous to keep the feature point density
as low as possible without significantly affecting
the accuracy of detection. In the case of a straight
line Kiriyati et al[4] have shown that it is possible
to use a very small, randomly sampled subset of
image points. A sample size as low as 2% is shown
to be effective. The method was tested in the case
of ellipse detection and the results are detailed in
the next section.

51

1
o
u

0.00
0.00 30.00 10.00 60.00 60.00 100.00

Feature Points

Fig.la Circle Estimated Computation Times

"S
m
e

w

UJ

>.00 20.00 40.00 60.00 80.00 100.00 120.00 U0.O0

Feature Points

Fig.lb Ellipse Estimated Computation Times

4 . Results

The algorithm may be activated to detect
single features or a mix of features. To date, it is
implemented and tested with respect to circle and
ellipse detection.

The test image shown in Fig.7 is of a de-
graded noisy image with examples of multiple cir-
cles of differing sizes and some occlusion. The over-
all signal to noise ratio of the image is 0.64 but be-
cause the image was segmented the average signal
to noise ratio of each segment was 0.87 ± 0.08.



Fig.8 shows in mid grey the detected circles
and also the segmentation used. The processing
has located all of the circles present in the image
even those which are partially occluded. It failed
to locate the quarter circular arc in the bottom
right of the image. The circles were detected with
errors in x0, j/o, fo of ±1 pixel.

Fig. 5 shows the histogram associated with
a rejected (< 30%) estimate of the radius of the
circle A shown in Fig.7. This estimate was the
result of transforming the points shown in the seg-
ment labelled 1 in Fig. 8. The histogram shows
wide multiple peaks. A larger segment size (seg-
ment 2, Fig. 8) gave the accepted estimate whose
histogram is shown in Fig. 6. Here the peak is
well defined and isolated.

As a rough comparison and using weights
of 1 for addition and subtraction and 2 for mul-
tiplication or division, the test image shown re-
quires only 0.7% of the calculations necessary to
achieve the same resolution of result using a stan-
dard Hough transform (SHT) algorithm. Peak de-
tection is only one dimensional and will result in
significant computational savings. The opportu-
nity exists to reduce further the run time of the
algorithm by using a parallel implementation.

The algorithm was tested without further
refinement on the real image of some coins (Fig.
2). The elliptical appearance of the coins is due
to non-square pixels. Fig. 3 shows the edge image
data and Fig. 4 shows the detected objects and
the segmentation used.

The test image used for ellipses is shown in
Fig. 9. Four numbered ellipses are shown. Taking
a random sample of 30% of the points in each of the
segments associated with an ellipse, the algorithm
was able in all cases to estimate the center co-
ordinates to within 2 pixels. These estimates were
not bettered by taking a larger sample of points.
At this (30%) sampling rate, the parameters as-
sociated with ellipses 3 and 4 were estimated to
within 2 pixels for a and b and to within 1° for a.
Ellipses 1 and 4 did not have good estimates of a
or b until 60% and 80% of the points were sampled
respectively. The angle of rotation of both ellipses
1 and 4 was poorly determined in all cases. This
is to be expected because for a jk 0 or y the prob-
lem becomes ill-conditioned[3]. This suggests that
a more computationally efficient formulation of the
algorithm would involve a two stage approach as
in [5]. The center co-ordinates could be estimated
very quickly using only a small sample of the fea-
ture points. In general, for a ~ 0 or f this would
be sufficient to estimate all of the parameters with-

Fig. 9 Ellipse Test Image

out engaging further processing stages. Where
Q ^ 0 or | then the estimated center co-ordinates
can be used to translate the feature points to this
new origin and the problem is then reduced to one
of the determination of the three remaining param-
eters with the associated savings in computation
time.

5 . Conclusions

Although much work remains in testing and im-
plementing the algorithm with respect to ellipse
detection and mixed feature detection, it has been
shown that the present approach offers a signif-
icant improvement to previous suggested imple-
mentations of the Hough transform. It is com-
putationally less intensive. The proposed method
is more efficient in memory utilization. If T is the
resolution in the transform space and n is the num-
ber of parameters under detection then the SHT
requires T

n memory allocations in order to main-
tain a unified n dimensional accumulator. The
Dynamic Generalized Hough transform (DGHT)
requires only nT memory allocations, each one di-
mensional accumulator being independent of all
other (n - 1) accumulators. Using the (DGHT)
the parameters can be calculated and accumu-
lated independently. Peak detection is one dimen-
sional and can also be accomplished independently.
The method provides an efficient feedback mecha-
nism linking the accumulated boundary point ev-
idence and the contributing boundary point data.
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It achieves this goal with an intelligent monitor-
ing of the transformation re-directing the process-
ing as appropriate to the shape under detection.
The method provides much scope for parallel im-
plementations.
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